Supporting Information

L.L. Jiang, et al.

The N-terminal dimerization is required for TDP-43 splicing activity

Lei-Lei Jiang¹, Wei Xue¹, Jun-Ye Hong¹, Jun-Ting Zhang², Min-Jun Li³, Shao-Ning Yu², Jian-Hua He³, and Hong-Yu Hu¹

¹ State Key Laboratory of Molecular Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.

² Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, P.
R. China.

³ Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 239 Zhangheng Road, Shanghai 201204, P. R. China.

Correspondence and requests for materials should be addressed to H.-Y H. (email: <u>hyhu@sibcb.ac.cn</u>).

SUBJECT AREAS: MECHANISMS OF DISEASES; PROTEIN AGGREAGATION

Running title: Structure and function of TDP-43 N-terminus

D

Protein	Conc.	Volume	Apparent	Theoretical	n	
FIOLEIII	(µM)	(mL)	MW (kDa)	MW (kDa)		
TDP(1-261)	10	14.90	46.5	30.7	1.5	
	50	13.92	68.6	30.7	2.2	
	250	12.64	113.6	30.7	3.7	
	500	12.24	133.2	30.7	4.3	
TDP(1-89)	10	17.00	20.3	11.1	1.8	
	50	16.27	27.1	11.1	2.4	
	250	15.29	39.8	11.1	3.6	
	500	14.94	45.7	11.1	4.1	
TDP(101-261)	10	16.91	21.0	19.6	1.1	
	50	16.89	21.2	19.6	1.1	
	250	16.82	21.7	19.6	1.1	
	500	16.73	22.5	19.6	1.1	

Figure S1. SEC characterization of the oligomeric states of the N-terminal fragments from TDP-43. (A) SEC profiles for TDP(1-261) at different concentrations. (B) TDP(1-89). (C) TDP(101-261). The down panels show the normalized chromatograms. The proteins were diluted to different concentrations with Buffer A and analyzed using a Superdex-200 Increase 10/30 GL column. (D) Data from the SEC experiments (A - C) on the apparent MWs and their stoichiometries (n). Conc., concentration.

Figure S2

F

Ductain	Conc.	Volume	Apparent	Theoretical	n	
Protein	(µM)	(mL)	MW (kDa)	MW (kDa)	п	
TDP(1-261)	500 + DTT	12.24	132.3	30.7	4.3	
TDP(1-89)	500 + DTT	14.92	46.2	11.1	4.2	
TDP(101-261)	500 + DTT	16.70	22.3	19.6	1.1	
	10	15.08	43.3	30.7	1.4	
TDP(1-261)-	50	14.92	46.2	30.7	1.5	
C39/C50S	250	13.89	69.5	30.7	2.3	
	500	13.46	82.2	30.7	2.7	
	10	17.32	17.9	11.1	1.6	
TDP(1-89)-	50	17.03	20.1	11.1	1.8	
C39/C50S	250	16.47	25.0	11.1	2.3	
	500	16.12	28.7	11.1	2.6	

Figure S2. Role of the Cys residues in the oligomeric states of the N-terminal fragments as characterized by SEC. (A) SEC profiles of TDP(1-261) with or without 5 mM DTT. The protein concentration was 500 μ M in Buffer A, and the

experiment was performed using a Superdex-200 Increase 10/30 GL column equilibrated with Buffer A. (B) As in (A), TDP(1-89). (C) As in (A), TDP(101-261). (D) SEC profiles of TDP(1-261)-C39/C50S at different concentrations. The right panels show the normalized chromatograms. The experiment was carried out using a Superdex-200 Increase 10/30 GL column. (E) As in (D), TDP(1-89)-C39/C50S. (F) Data from the SEC experiments (A - E) on the apparent MWs and their stoichiometries (n). Conc., concentration.

С

Protein	R _h (nm) / Apparent MW (kDa)			
	50 µM	250 µM	500 µM	Average
TDP(1-77)	2.90 / 41.3	3.01 / 44.7	3.32 / 56.0	3.08 /47.3
TDP(1-77)-				
C39/C50S	2.15 / 20.2	2.20 / 21.4	2.44 / 22.2	2.26 / 21.3

Figure S3. DLS analysis of the sizes and size distribution of TDP(1-77) and its Cys mutant. (A) TDP(1-77). (B) TDP(1-77)-C39/C50S. The protein was diluted with Buffer A to different concentrations, and the hydrodynamic radius (R_h) and apparent MW were calculated. (C) Data from the DLS experiments (A, B) on the hydrodynamic radii (R_h) and apparent MWs.

Figure S4

Figure S4. Effects of Cys mutations on the oligomeric states and secondary structures of TDP(1-77). (A) SDS-PAGE of TDP(1-77) and its Cys mutants with Coomassie blue staining. Each protein (500 μ M in Buffer A) was treated with or without 10 mM DTT. (B) CD spectra of TDP(1-77) and its Cys mutants. The protein concentrations were 0.24 mg/mL in Buffer A.

Figure S5. Characterization of the oligomeric states of GB1-fused TDP(1-77) and its Cys mutant. (A) SEC profiles of TDP(1-77)-GB1 at different concentrations. The protein was diluted with Buffer A to different concentrations and loaded onto a Superdex-75 10/30 GL column. (B) TDP(1-77)-GB1 with or without 5 mM DTT. (C) As in (A), TDP(1-77)-GB1-C39/C50S. (D) DLS analysis of TDP(1-77)-GB1-C39/C50S. (E) SDS-PAGE analysis of TDP(1-77)-GB1 and its Cys mutants. Each protein (500 μ M in Buffer A) was treated with or without 10 mM DTT. (F) Data from the DLS measurements (D) on the hydrodynamic radii (R_h) and apparent MWs for TDP(1-77)-GB1-C39/C50S. Conc., concentration.

Table S1

Number of experimental restraints	TDP(1-77)-GB1-C39C50S			
Total unambiguous distance restraints	829			
Intra residual	447			
Sequential ($ i-j =1$)	176			
Medium range ($2 \le i-j \le 4$)	84			
Long range ($ i-j \ge 5$)	122			
Hydrogen bond restraints	38			
Dihedral angle restraints				
φ:	65			
ψ:	64			
Structure statistics				
RMSD from experimental restraints				
NOE distances (Å)	0.179±0.022			
Dihedral angles (deg.)	2.706±0.161			
RMSD from idealized geometry				
Bonds (Å)	0.008 ± 0000			
Angles (deg.)	0.968±0.032			
Impropers (deg.)	3.026±0.184			
Ramachandran analysis	-			
Residues in most favored regions (%)	75.1			
Residues in additionally allowed regions (%)	16.0			
Residues in generously allowed regions (%)	6.1			
Residues in disallowed regions (%)	2.9			
Average atomic RMSDs				
All residues				
Backbone atoms (Å)	0.94±0.21			
Heavy atoms (Å)	1.51±0.25			

Table S1. NMR experimental restraints and structural statistics for TDP(1-77)-	
GB1-C39C50S. The average atomic RMSD is defined from the 10 final structures.	

Figure S6

F

TDP(1-77)	β-sheet	α-helix	β-turn	Random
	(%)	(%)	(%)	(%)
Wild-type	62	7	7	24
C39/C50S	61	9	7	23
CS-L71/Y73A	63	17	4	14
CS-V72/V74/Y43A	56	14	7	23
CS-L27/I60/V57A	71	8	6	14

Figure S6. FT-IR analysis of TDP(1-77) and its mutants for estimating secondary structures. (A) Curve-fitting analysis of the inverted second-derivative amide I spectrum for wild-type TDP(1-77). (B) C39/C50S. (C) C39/C50S-L27/I60/V57A. (D) C39/C50S-L71/Y73A. (E) C39/C50S-V72/V74/Y43A. (F) Secondary structure contents of TDP(1-77) and its various mutants. The secondary structure contents were estimated from the FT-IR spectra (A - E) by curve-fitting analysis.

Figure S7

Figure S7. Structural model of the TDP-43 NTD dimer. The model shows the dimer interfaces centered at Leu71 and Val72 around the β 7-strand. The structure was analyzed by using the HADDOCK program with the active residues from mutagenesis and SEC experiments.