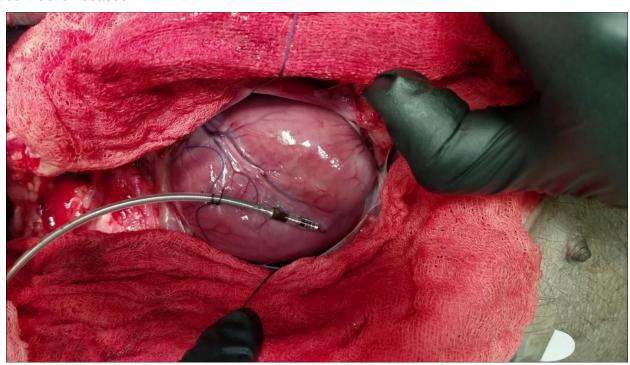
Supplementary Information:

Inductively Powered Wireless Pacing via a Miniature Pacemaker and Remote Stimulation Control System


Parinaz Abiri ^{a,b}, Ahmad Abiri ^b, René R. Sevag Packard ^a, Yichen Ding ^{a,b}, Alireza Yousefi ^c, Jianguo Ma ^{a,1}, Malcolm Bersohn ^d, Kim-Lien Nguyen ^d, Dejan Markovic ^c, Shervin Moloudi ^c, Tzung K. Hsiai ^{a,b*}

- ^a Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095, USA
- ^b Department of Bioengineering, School of Engineering and Applied Sciences, UCLA, Los Angeles, CA 90095, USA
- ^c Department of Electrical Engineering, School of Engineering and Applied Sciences, UCLA, Los Angeles, CA 90095, USA
- ^d VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA

*Corresponding Author: THsiai@mednet.ucla.edu

This file includes:

Video 1: Video recording of cardiac pacing post-euthanasia. Pacing via the remote-controlled wireless pacemaker results in cardiac contractions. When pacing is deactivated, contraction ceases

