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Supplementary Note 1. SYSTEM HAMILTONIAN

Here we give the full system Hamiltonian to the precision with which we have characterized it. We denote the annihilation
operator corresponding to the oscillator (transmon) mode with â (b̂). Breaking down the system Hamiltonian into components
representing the individual modes, their interactions, as well as driving terms, we can write

H(t) = Hoscillator + Htransmon + Hinteraction + Hdrive(t) (1)

Hoscillator/~ = ωCâ†â +
K
2

(â†)2â2 (2)

Htransmon/~ = ωTb̂†b̂ +
α

2
(b̂†)2b̂2 (3)

Hinteraction/~ = χâ†âb̂†b̂ +
χ′

2
b̂†b̂(â†)2â2 (4)

Hdrive(t)/~ = εC(t)â + εT(t)b̂ + h.c. (5)

When simulating how known decoherence sources should impact the fidelity of our operations, we use a Markovian Lind-
blad master equation of the form:

∂

∂t
ρ(t) =

−i
~

[H(t), ρ(t)] +

(
1

T1,C
D[â] +

1
T1,T

D[b̂] +
1

Tφ
D[b̂†b̂]

)
(ρ(t)) (6)

D[a](ρ) = aρa† −
1
2
{a†a, ρ} (7)

The measured values for each of these system parameters are shown in Supplementary Table 1.

System Parameter Hamiltonian Term Parameter Value
Transmon frequency ωTb̂†b̂ 2π × 5664.0 MHz
Oscillator frequency ωCâ†â 2π × 4452.6 MHz
Dispersive shift χâ†âb̂†b̂ 2π × −2194 ± 3 kHz
Transmon anharmonicity α

2 (b̂†)2b̂2 2π × −236 MHz
Oscillator anharmonicity (Kerr) K

2 (â†)2â2 2π × −3.7 ± 0.1 kHz
Second order dispersive shift χ′

2 (â†)2â2b̂†b̂ 2π × −19.0 ± 0.4 kHz
Transmon relaxation 1

T1
D[b̂] 170 ± 10µs

Transmon dephasing 1
Tφ

D[b̂†b̂] 43 ± 5µs

Oscillator relaxation 1
Tcav

D[â] 2.7 ± 0.1ms

Supplementary Table 1: Measured system parameters The dispersive shift and its second order correction are determined
using transmon spectroscopy experiments (Supplementary Figure 1). The oscillator anharmonicity is determined by fitting a

set of Wigner functions after different lengths of free evolution time.
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Supplementary Figure 1: Dispersive shift measurement. The dispersive shift χ and its second order correction term χ′ are
determined from transmon spectroscopy experiments with several different displacements (top). Each peak is fit to a

Gaussian and the resulting center frequencies are fit using a quadratic model.
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Supplementary Figure 2: Measurement setup. An FPGA controller (2x Innovative Integration X6-1000M in VPXI-ePC
chassis) generates 3 pairs of I/Q waveforms using 500 Msample/s digital to analog converters (DAC). Each pair is

upconverted using an I/Q mixer (Marki IQ-0307-LXP or IQ-0618-LXP depending on the frequency). The color of the mixer
indicates the local oscillator: red for the storage, yellow for the readout and blue for the transmon. To prevent problems due
to mixer leakage, each local oscillator is set 50 MHz above the desired frequency and single-sideband modulation is used.
Proper attenuation at each temperature stage is crucial to thermalize the black-body radiation from the 50Ω environment.
Additional low-pass filters (K&L250-10000 and home-built eccosorb) protect the sample from spurious high-frequency
components. The output chain consists of a Josephson Parametric Converter (JPC), which reflects the input signal with

∼ 20 dB of gain (bandwidth ∼ 6 MHz). The circulators (Pamtech XTE0812KC) prevent the amplified signal from going back
to the sample and direct it through 2 isolators (Pamtech CWJ0312KI) to a HEMT-amplifier (Low Noise Factory

LNF-LNR1 12A). Finally, an image reject mixer (Marki SSB-0618) converts the RF signal back to the intermediate
frequency (50 MHz). The FPGA samples the signal using a 1 Gsample/s analog to digital converter (ADC), demodulates and

integrates to give one bit of information indicating whether the transmon was in |g〉 or |e〉.
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Supplementary Note 2. GRAPE IMPLEMENTATION

We define operations on our system in terms of a set of simultaneous state transfers, i.e. the operation should, for each i, take
the initial state

∣∣∣ψ(i)
init

〉
to the corresponding final state

∣∣∣ψ(i)
final

〉
. In order to prepare a desired operation on the joint oscillator-

transmon Hilbert space, we use grape to maximize the (coherent) average fidelity of these state transfers over the controls
ε(t) ≡ (εC(t), εT(t)):

maximize
ε(t)

F (ε(t)) (8)

F (ε(t)) =

∣∣∣∣∣∣∣∑i

〈
ψ(i)

final

∣∣∣U (T, ε(t))
∣∣∣ψ(i)

init

〉∣∣∣∣∣∣∣
2

, (9)

where the unitary U defined by the waveforms ε(t) is given by the time-ordered exponential of the Hamiltonian up to some
final time T ,

U(T, ε(t)) = T exp
(
−

∫ T

0
dt H (ε(t))

)
. (10)

To make the problem numerically tractable, ε(t) is represented as a piecewise constant function with N = T/∆t steps of length
∆t = 2 ns, corresponding to the time resolution of our arbitrary waveform generator.

U (T, ε(t)) = UNUN−1 · · ·U2U1 (11)

Uk = exp
(

i∆t
~

H(ε(k∆t)
)

(12)

Using 4 parameters per time point (real and imaginary components of the oscillator and transmon drives) and N = 550 time
points representing the 1.1 µs pulse, there are 2200 parameters to optimize over. In order to carry out a numerical optimization
with such a large number of parameters, it is crucial that one can efficiently calculate the gradient of the optimized function
with respect to all of its parameters. In this case it is possible to use Quasi-Newton optimization algorithms, such as L-BFGS
[1] in order to optimize the function with many fewer function evaluations. We can simplify the calculation of the gradient as
follows:

∂F

∂εi(k∆t)
= 2

(
Re(v)Re

(
∂v

∂εi(k∆t)

)
+ Im(v)Im

(
∂v

∂εi(k∆t)

))
(13)

v ≡
∑

i

〈
ψ(i)

final

∣∣∣U (T, ε(t))
∣∣∣ψ(i)

init

〉
(14)

∂v
∂εi(k∆t)

=
∑

i

〈
ψ(i)

final

∣∣∣∂U (T, ε(t))
∂εi(k∆t)

∣∣∣ψ(i)
init

〉
(15)

=
∑

i

〈
ψ(i)

final

∣∣∣UN · · ·Uk+1
∂Uk

∂εi(k∆t)
Uk−1 · · ·U1

∣∣∣ψ(i)
init

〉
(16)

Therefore, the calculation of the gradient can be reduced to computing the states Uk−1 · · ·U1
∣∣∣ψ(i)

init

〉
, U†k+1 · · ·U

†

N

∣∣∣ψ(i)
final

〉
as

well as the gradient of the step propagator ∂Uk
∂εi(k∆t) . The states can be stored from the evaluation of the fidelity itself, and there

are several efficient ways of evaluating the gradient of the propagator [2].
The optimization problem defined by equation 8 is generally underdetermined, i.e. there are many solutions ε(t) which

achieve equally high fidelities. Therefore, we can add additional terms to the optimization cost function, such that the resulting
solution optimizes against several other desiderata. For a set of constraints on the solution {gi ≥ 0}, where ideally gi (ε(t)) = 0,
we can associate a Lagrange multiplier λi, and modify our optimization to read:

maximize
ε(t)

F (ε(t)) −
∑

i

λigi (ε(t)) (17)
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The values λi are chosen by trial-and-error, set to be just large enough that the violation of the constraint upon termination is
within acceptable levels. For instance, since the output power of our AWG is limited, the pulse must obey ε(t) ≤ εmax for all t.
We can construct a penalty term of the form

gamplitude (ε(t)) =

∫
dt (|ε(t)| − εmax)2 Θ (|ε(t)| − εmax) (18)

=
∑

n

(|ε(n∆t)| − εmax)2 Θ (|ε(n∆t)| − εmax) (19)

Since the transfer function of the lines between the AWG and the experimental system becomes more and more uncertain
as one moves further away from resonance, it is also desirable to minimize the bandwidth of the applied pulses, we do this in
two ways. First, we create a penalty term of the form

gderivative (ε(t)) =

∫
dt

(
∂ε(t)
∂t

)2

(20)

→
∑

n

(ε((n + 1)∆t) − ε(n∆t))2 , (21)

where equation 21 is the appropriate equivalent of equation 20 for a piecewise constant function. Additionally, we enforce a
hard cutoff on the minimum and maximum frequencies allowed in the solution by reparametrizing the optimization problem
in terms of the Fourier transform of the pulses [3]:

maximize
ε̃(ω)

F (ε(t)) −
∑

i

λigi (ε(t)) (22)

such that ε̃(ω) = 0 when ω < ωmin or ω > ωmax

Since computer memory is finite, we are forced to choose a photon number truncation N such that the operator â becomes
a N × N matrix. When we do this, we are in effect replacing our infinite-dimensional oscillator with a finite-dimensional
qudit. This replacement is only valid if all of the system dynamics relevant for the desired state transfers occurs within the
{|0〉, . . . , |N − 1〉} subspace. For generic applied drives this is not the case. In order to enforce this property, we modify the
optimization problem to find a solution which operates identically under several different values of N. Writing the fidelity as
computed with a truncation N as FN , we have:

maximize
ε̃(ω)

∑
k

FN+k (ε(t))

 − ∑
i

λigi (ε(t))

 (23)

To enforce that the behavior is identical in the different truncations, we add the penalty term

gdiscrepancy
(
ε(t)

)
=

∑
k1,k2

(
FN+k1 (ε(t)) − FN+k2 (ε(t))

)2 (24)

The choice of N determines the maximum photon number population which can be populated during the pulse, and figures
in determining the minimum time necessary for the operation (faster pulses can be achieved with higher N).

Supplementary Note 3. SYSTEM PREPARATION

The system is initialized by cooling of both the storage resonator (typical steady-state population ∼ 2%) and the transmon
(steady-state population ∼ 5%) using measurement-based feedback. The protocol is detailed in Supplementary Figure 3. It
proceeds by first establishing that the oscillator is in its ground state, and finishes by ensuring that the transmon is in its
ground state (Supplementary Figure 3a). If it is determined that the oscillator is not empty, a set of ”Q-Switching” drives is
applied which effectively couples the storage mode to the short-lived readout mode (Supplementary Figure 3b). The drives
consist of strong tones applied at ωC + ∆ and ωRO + ∆ with ∆ = 40 MHz. The effectiveness of this strategy can be seen from
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Supplementary Figure 3: System preparation. a, System preparation protocol to cool the oscillator as well as the transmon.
b, Lifetime of the transmon and oscillator. For the oscillator we prepare the Fock state |1〉 using an optimal control pulse and

show a natural decay curve as well as one with Q-switching pumps applied. c, Transmon spectroscopy data after system
preparation. The ”cooling” (”no-cooling”) curve are with (without) the feedback-cooling protocol. Photons in the storage

(readout) oscillator show up as a peak around χs ≈ 2 MHz (χr ≈ 1 MHz).

the transmon spectroscopy traces (Supplementary Figure 3c). The transmon population is reduced to ∼ 1% and the storage
resonator population is� 1%. A residual population of the readout resonator of about 1% is visible as a peak around 1 MHz
detuning. Additionally, this cooling protocol allows for a dramatically increased experimental repetition rate, decreasing the
inter-experimental delay τ from τ ≈ 18 ms to τ < 1 ms.
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Supplementary Figure 4: Optimized pulse waveforms. In the first column, we plot the complex waveforms εT(t) and εC(t).
In the second column, we show the Fourier spectrum |ε̃(ω)|2. Blue (red) lines correspond to drives on the transmon

(oscillator). Solid (dotted) lines correspond to the in-phase (quadrature) component of the drive. Note that the I and the T
gate do not have to change the photon number distribution, but only have to apply different phases to each Fock state

component. This can be done by manipulating the transmon [4] only; grape finds a solution with a very small oscillator drive
amplitude as well.
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Supplementary Figure 5: Full Process Tomography Results. The experimentally determined Pauli bars in dark red, the
ideal in light red. The reported ∆F is the difference between FPT(UdecUXUenc) and FPT(UdecUenc) = 0.964.

Supplementary Note 4. RANDOMIZED BENCHMARKING VALIDITY

The rigorous mathematical validity of randomized benchmarking as a tool to measure average gate fidelity requires that
the errors be of a certain type. They must be time-independent, Markovian and gate-independent. If one or more of these
properties are violated, the randomized benchmarking results must be analyzed with care. In our case, the vast majority of
errors occuring during the operation take states from within to outside the encoded subspace (see Supplementary Table 1).
This constitutes a form of leakage error which can cause non-Markovian effects [5]. There are many adjusted RB protocols
which attempt to deal with this issue [6–9]. These protocols generally assume the ability to either measure or manipulate
states outside of the logical space. Since we did not have easy access to these tools, we instead have performed an unmodified
RB protocol and have adjusted the interpretation to account for the possibility of misleading results.

To analyze the potential error, we have simulated randomized benchmarking on a model system which allows for leakage.
We consider a two-level system being benchmarked, in addition to a d-dimensional auxilary system. The following protocol
is simulated:

Here the Ui are perfect single qubit clifford operations. The Λi are the associated error terms which couple the logical and
ancilla spaces. These are created via small a random Liouvillian:



9

|0Li Us1

⇤s1

Us2

⇤s2

· · · UsN

⇤sN

Ucorr

|0Auxi · · · Trace

Λi = eεLi

Li = q[Hi, ·] + (1 − q)
4d2−1∑
k=1

D[Ai,k]

The Ai and Hi are random 2d × 2d matrices. q scales the relative coherence of the errors, and ε is set to adjust the total error
level. The naive RB fidelity is calculated by scanning the sequence length N, sampling many random sequences s and fitting
the exponential decay. This value can be compared with the underlying average fidelity

Fi,av =

∫
dψL〈ψL, 0|Λi (|ψL, 0〉〈ψL, 0|) |ψL, 0〉
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Supplementary Figure 6: Effect of leakage dimension on randomized benchmarking accuracy. As a function of the size
of the Hilbert space that leakage can occur to, the fidelity as estimated by an RB experiment overestimates the underlying

fidelity by a certain factor, which depends sub-linearly on the size of the additional Hilbert space. In our experiment, the size
of the Hilbert space is of order 10 and we estimate that a correction factor of 1.7 ± 0.1 is required.

As we see in Supplementary Figure 6, across a range of underlying fidelities (here between .8 and .995), and for both
coherent and incoherent errors, a relatively fixed ratio of RB fidelity to underlying fidelity, which does depend, sublinearly,
on the dimension of the auxilary space. The RB estimate therefore overestimates the fidelity, but by a small, fixed amount.
While we cannot precisely quantify the dimension of the space our errors leak into, we can estimate that the error rate is less
than twice that of the naive estimate. This imprecision contributes the largest component to the error in our reporting of the
gate fidelity.

Supplementary Note 5. EMPIRICAL TUNING

We use the randomized benchmarking protocol [10, 11] to perform fine tuning of the resulting pulse waveforms. Since the
cables and frequency modulation setup between our waveform generator and our device are not spectrally flat, we attempt
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Supplementary Figure 7: Dispersion and amplitude optimization The randomized benchmarking decay constant versus
transmon drive amplitude for several different dispersion values (in % per MHz). Because of the spectral content of the

pulses, the amplitude might have to be corrected when the dispersion value is adjusted.

0 1 2 3 4 5 6
Delay (ns)

40

45

50

55

60

R
B

 d
e
ca

y
 c

o
n
st

a
n
t

Supplementary Figure 8: Delay optimization. RB decay constant as a function of delay time between the transmon and
oscillator control fields.

to find a correction to the pulse by applying a linear amplitude weighting in the frequency domain, i.e. Fourier transforming
the waves to find ε̃(ω), transforming using the weighting coefficient b and delay parameter τ. ε̃(ω) → (1 + bωeiωτ)ε̃(ω), and
inverse Fourier transforming to find the corrected waves in the time domain. We can empirically optimize the value of b
(Supplementary Figure 7) and τ (Supplementary Figure 8) using randomized benchmarking.
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Supplementary Figure 9: Lifetime of the cat-qubit. The long-lived resonator is not perfectly harmonic; its Kerr is
−3.7 kHz. This nonlinearity will scramble the basis-states of our encoding under free evolution. The black curve shows the
process fidelity versus waiting time: periodic revivals [12] associated with rephasing of the basis-states are clearly visible.

Note that the revival periodicity is not 1/K due to an intentional frequency detuning. Our control pulses take this effect into
account during their operating time. Additionally, we can design a control pulse that corrects for the evolution associated

with some time ∆t of free evolution. The different curves in this plot are the result of a stroboscopic Kerr-correction
experiment for 20, 50 and 100 µs of free-evolution. We can infer a Kerr-correction gate error of ≈ 1.7% per gate by

extracting the additional decay rate compared to the natural decay.

Gate P(error) P(|e〉 | error) P(detectable | error)
I 0.004 0.480 0.978
X90 0.012 0.517 0.946
-X90 0.013 0.588 0.980
X180 0.016 0.496 0.974
Y90 0.012 0.541 0.965
-Y90 0.012 0.615 0.965
Y180 0.022 0.411 0.981
H 0.015 0.507 0.968
Average 0.013 0.519 0.970
UencUdec 0.027 0.414 0.813
T 0.007 0.495 0.945

Supplementary Table 2: Error probability and detectability. Results from master equation simulation of pulses using
parameters from Supplementary Table 1. The first column indicates the probability of an error (i.e. ending the pulse in an
incorrect state). The second column indicates the probability of finding the transmon in the excited state conditioned on an

error having occurred. The third column indicates the probability of ending in a state outside the logical subspace given that
an error has occurred, and is the maximum fraction of the errors which could be in principle detected in some way.
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