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ABSTRACT Trees are combinatorial structures that arise
naturally in diverse applications. They occur in branching
decision structures, taxonomy, computer languages, combina-
torial optimization, parsing of sentences, and cluster expan-
sions of statistical mechanics. Intuitively, a tree is a collection
of branches connected at nodes. Formally, it can be defmed as
a connected graph without cycles. Schroder trees, introduced
in this paper, are a class of trees for which the set of subtrees
at any vertex is endowed with the structure of ordered parti-
tions. An ordered partition is a partition of a set in which the
blocks are linearly ordered. Labeled rooted trees and labeled
planed trees are both special classes of Schrdder trees. The
main result gives a biection between Schrider trees and forests
of small trees-namely, rooted trees of height one. Using this
bijection, it is easy to encode a Schroder tree by a sequence of
integers. Several classical algorithms for trees, including a
combinatorial proof of the Lagrange inversion formula, are
immediate consequences of this bijection.

1. Introduction

I introduce the concept of Schroder trees, which are defined
as labeled rooted trees for which the set of subtrees of any
vertex is endowed with the structure of ordered partitions.
An ordered partition is a partition of a set in which the blocks
are linearly ordered. This is a generalization of both labeled
rooted trees and labeled plane trees. The term Schroder tree
was suggested by G.-C. Rota (personal communication), for
Schroder was the first to consider plane trees. In the language
of species (1), we may say that a Schroder tree is a rooted tree
enriched by the species of ordered partitions. A rooted tree
of height one will be called a small tree. It is essentially a set
of more than one element with a distinguished element. A
small tree with only one leaf is called a match.
We find a bijection between Schroder trees and forests of

small trees. Using this bijection, it is straightforward to
encode a Schroder tree by a sequence. Many classical results
on enumeration of trees are immediate consequences of this
bijection. Moreover, the bijection is even valid for Schroder
trees enriched by a species on the blocks and small trees
enriched by the same species. Especially, the Lagrange
inversion formula can be stated explicitly in terms of Schro-
der trees and the cancellation involving Lagrange inversion
turns out to be a sign change in constructing a Schroder tree
out of several smaller Schroder trees. Thus, the notion of
Schroder trees seems to have answered a question of Rota
(personal communication) about what is the intrinsic con-
nection among partitions, rooted trees, and the Lagrange
inversion formula, especially, what is the combinatorial
nature of the cancellation involving the Lagrange inversion.

2. A Bijection for Schroder Trees

All the trees considered in this paper are assumed to be
labeled trees, unless otherwise stated. For a vertex v in a
rooted tree, the number of vertices covered by v is called the
degree or outdegree of v. If v is not a leaf, we shall call the
set of vertices covered by v the fiber of v. Conversely, if a
vertex u is covered by v, we shall call v the root of u. In a
Schroder tree T, the total number of blocks of partitions on
all the fibers is called the number of blocks of T. A vertex in
a rooted tree will be called an internal vertex if it is not a leaf.
The following theorem shows that a Schroder tree on more
than one vertex with k blocks can be uniquely decomposed
into k small trees. The bijection will be given in the proof.
THEOREM 2.1. There is a bijection between the set of all

Schroder trees on n (n > 1) vertices with k blocks and the set
offorests of k small trees on n + k - 1 vertices.

Proof: I first give the procedure to construct a Schroder
tree on {1, 2,... ., n} with k blocks from a forest F of k small
trees on {1, 2, . . . , n + k - 1}. For convenience, we shall
mark all the vertices n + 1, n + 2, . ,n + k - 1 by the
symbol *.

(I) Find the tree T in F with the smallest root such that
there is no marked vertex in T. Let i be the root of T.

(2) Find the tree T* in F that contains the smallest marked
vertex. Let j* be this marked vertex.

(3) If j* is the root of T*, then merge T and T* by
identifying i and j*, keep i as the new vertex, and put
the subtrees of T* at the right-hand side of T. We shall
call this operation a horizontal merge:

k L~~~~c~~~(~

T T*

Ifj* is a leaf of T*, then replace j* with T in T*. We
shall call this operation a vertical merge:

T

(4) Repeat the above procedure until F becomes a Schro-
der tree.

At the first step, there are k small trees and k - 1 marked
vertices; thus there must be a small tree without any marked
vertex. After each merge, both the number of trees and the
number of marked vertices decrease by 1; this means that we
can always find a tree without any marked vertex at any step.
It is also clear that a marked vertex is always either a root or
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a leaf, so we may eventually get a Schroder tree from the
above construction.
The following is the procedure to decompose a Schroder

tree into small trees.
(1) Find the smallest internal vertex i such that all vertices

in the leftmost block B in the fiber of i are leaves. Then
we may obtain a small tree with root i and leaf set B.

(2) Remove the block B and relabel the vertex i by n + 1.
However, the original label i will be reused for later
comparisons of vertices.

(3) Repeat the above procedure and relabel the encoun-
tered roots of small trees subsequently by n + 2, n +
3,...,n+k-1. 0

From the above bijection, it is straightforward to obtain the
following correspondence between Schroder trees and some
sequences on the roots of small trees. Given a sequence L =
a1a2 ... a,, on a set S, the number of distinct elements
appearing in L will be called the multiplicity of L.
THEOREM 2.2. There is a bijection between Schroder trees

on n (n > 1) vertices with k blocks and sequences
aja2 ... an-1 ofmultiplicity k on the set {1, 2,. ., n + k -
1}.

Proof: Let F be a forest of k small trees on {1, 2, . ., n
+ k - 1}. Clearly, there is a total of n - 1 leaves in F. Let
b1b2 ... b,,-1 be the increasingly ordered sequence of these n
- 1 leaves. For any leaf bi in the forest, let ai be the root of
bi. Thus, a1a2 ... a,,-1 is a sequence of multiplicity k on {1,
2, . . . , n + k - 1}.
Given a sequence a1a2 ... a,,-, of multiplicity k on {1, 2,

... , n + k - 1}, let P be the underlying set and Q = {1, 2,

... , n + k - 1}\P. Since P has k elements, Q must have
n - 1 elements. Let b1b2 ... b,,-1 be the increasingly ordered
sequence of elements in Q. By letting bi be a leaf of a,, we
obtain a desired forest of k small trees. O
Example 2.3: The following are a Schroder tree on 14

vertices, its small tree decomposition, and the corresponding
sequence.

9

1 6 11

13 4 12

2 8 3 10 12 17 18

19

A
7 16

2

14

9 13 4 9 19 13 4 9 15 20 19 5 5

3. Rooted Trees

A rooted tree can be regarded as a Schroder tree with every
fiber having exactly one block. In the above construction of
a Schroder tree T from small trees, there is a fiber of T with
more than one block if and only if a horizontal merge occurs.
This leads to the following theorem.
THEOREM 3.1. There is a bijection between rooted trees on

n (n > 1) vertices with k internal vertices and forests of k
small trees on {1, 2, . . ., n + k - 1} with unmarked roots,
namely every root is not greater than n.

COROLLARY 3.2. The number ofrooted trees on n vertices
n!

with k leaves is - S(n - 1, n - k), where S(n, k) are the

Stirling numbers of the second kind.
Proof: Let Tbe any rooted tree on n vertices with k leaves.

Consider the small tree decomposition of T; there are
/n

(n 1k ways to choose the n - k unmarked roots of small

trees and (n - k)!S(n - 1, n - k) ways to arrange the
remaining n - 1 elements. O
COROLLARY 3.3. Let (dj, d2, ... , dn) be a sequence of

nonnegative integers satisfying d, + d2 + *. dn = n - 1.
Then the number ofrooted trees on {v1, V2, . . , Vn with the

n- 1
outdegree of v; being di is (d,d.,dn

Proof: Let T be a rooted tree with degree sequence (dj, d2,
. , d,,). For any di > 0, vi must be the root of a small tree

with di leaves in the small tree decomposition of T. Since
there is a total of n - 1 leaves among all the small trees, the
proof is complete by the definition of the multinomial coef-
ficient. LI
The correspondence between Schroder trees and se-

quences induces a bijection for rooted trees which is similar
to the Prufer correspondence for rooted trees (2, 3).
COROLLARY 3.4. There is a bijection between the set of

rooted trees on n vertices and the set of all sequences of
length n - 1 on n elements.

Cayley's formula then follows most naturally from the
above corollary. Moreover, Clarke's formula also follows
this way.
COROLLARY 3.5 (CLARKE). The number ofrooted trees on

n + 1 vertices with a specific root and root degree k is
tn 1

n-

k 1nn.
Proof: Suppose Tis any rooted tree with a specific root, say

v,,+1, and root degree k. In the small tree decomposition of T,
v,,+1 is a root of a small tree S with k leaves. Clearly, S must
contain the maximum marked vertex, namely n + 1 must
appear at the end of the sequence representation of T. Thus,

we have (k- 1) ways to choose other k - 1 positions to

place n + 1, and n"ll ways to fill out the remaining n - k
positions. O

4. Plane Trees

Suppose T is a Schroder tree on n + 1 vertices. It is clear that
T has n blocks if and only if every block of T contains exactly
one vertex. Thus, a plane on n + 1 vertices can be regarded
as a Schroder tree on n + 1 vertices with n blocks. By the
bijection between Schroder trees and small trees, we obtain
a bijection between plane trees on n + 1 vertices and forests
of n small trees on 2n vertices, namely forests of n matches
on 2n vertices.
COROLLARY 4.1. There is a bijection between plane trees

on n + 1 vertices and forests of n matches on 2n vertices.
If we order the n matches vertically, we may get a

permutation on 2n elements. Hence, the number of labeled
plane trees on n + 1 vertices is (2n)!/n!. Dividing this number
by (n + 1)!, we then obtain the number of unlabeled plane
trees on n + 1 vertices. This is the well-known Catalan
number
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By the correspondence between Schroder trees and se-
quences, we see that a plane tree on n + 1 vertices can be
encoded by a sequence a1a2 ... an of multiplicity n on 2n
elements. Clearly, no element could appear more than once
in such sequences. Thus we have the following corollary.
COROLLARY 4.2. There is a bijection between plane trees

on n + 1 vertices and permutations of length n on 2n
elements.
The above bijection seems to be the simplest interpretation

of Catalan numbers. Moreover, we may have the following
refinement (4).
COROLLARY 4.3 (NARAYANA). The number of unlabeled

plane trees on n + 1 vertices with k leaves equals

Tn+1lk=n+1 n + 1 )(n - 1)

Proof: Let T be any plane tree on {1, 2, . , n + 1}. By
the above bijection between plane trees on n + 1 vertices and
forests of matches on a total of 2n vertices, it is clear that T
is a plane tree with k leaves if and only if there are exactly k
unmarked vertices among the leaves in the corresponding

/n + 1
forest of T. Thus, we have ( k ways to choose the k

An - 1
unmarked leaves, and k ways to choose the remain-

ing n - k marked leaves. Once the leaves are chosen, there
are n! ways to arrange the roots. Dividing the total number of
choices by (n + 1)!, we may obtain the desired formula for
unlabeled plane trees. O
By turning every match in the forest decomposed from a

plane tree upside down, we obtain an involution on the set of
all plane trees on n vertices, which maps a leaf to an internal
vertex and vice versa.
Note that our basic bijection for Schroder trees is auto-

matically valid for Schroder trees with every block endowed
with the structure of linear orders or even other combinato-
rial structures. Therefore, a plane tree can be uniquely
decomposed into small plane trees.
COROLLARY 4.4. There is a biection between the set of

plane trees on n (n > 1) vertices with k internal vertices and
the set offorests ofk small plane trees on n + k - 1 vertices
with unmarked roots.
The Narayana number also follows from the above corol-

lary. If we consider k-ary plane trees (i.e., plane trees with
every fiber having k vertices) on kn + 1 vertices, we may have
the following bijection.
COROLLARY 4.5. There is a bijection between the set of

k-ary plane trees on kn + 1 vertices and the set offorests of
n small k-ary plane trees with unmarked roots.

In the above corollary, there are kn + 1 unmarked vertices,
lkn + 10

so we may have ( ) ways to choose the n roots in the

forest. After these n roots are chosen, we may order them in
an increasing order. Therefore, any order of the kn leaves
determines the forest. Hence the number of k-ary labeled
plane trees on kn + 1 vertices is

kn + 1)
(kn) !.

n

So we have the following formula for the number of unlabeled
k-ary plane trees on kn + 1 vertices (2, 5):

1 (kn;+ 1

kn+1n

In general, given any degree sequence (dj, d2, . .. , dj)
satisfying d, + d2 + * * * + d,, = n - 1, there are always (n -
1)! labeled plane trees having this degree sequence. This
relation connects the enumeration of plane trees to the
enumeration of certain degree sequences. Although it could
also follow from Corollary 3.3, it did not seem to be paid
enough attention in the study of enumeration of plane trees.
For example, from this point of view it would be obvious to
obtain the number of unlabeled plane trees with a given
degree type (6, 7).
COROLLARY 4.6 (ERDtLYI-ETHERINGTON). Let 1l'122 ...

mnm be a partition of n - 1, i.e., n1 + 2n2 + * * * mnm = n -
1, and no = n - (n, + n2 + - - - + nm). Then the number of
unlabeled plane trees having ni vertices with degree i equals

(no + nu + * *. + nm - 1)!

nonl! ...*nm !

Proof: Consider the number of degree sequences (d1, d2,
.. ., d,,) with ni numbers being i. This number is the same as
the number of ways to distribute n - 1 identical balls into n
distinguishable boxes such that there are ni boxes having

/n
exactly i balls, which equals . Multiplying

no, nj, . , nm
this number by (n - 1)!, we get the number o labeled plane
trees with the given degree type, then dividing by n!, it
becomes the desired number for unlabeled plane trees. O
The same observation also leads to a quick solution to a

problem of Klarner (5). He considered the number U,,+1,k of
unlabeled plane trees on n + 1 vertices in which every vertex
has outdegree not greater than k, but he did not find an
explicit formula for U,+l,k. Let V,,+1 k be the corresponding
number for labeled plane trees. Clearly, we have the relation
Vl+lk = (n + 1)!Ui+1.;. It is easy to see that the number of
degree sequences (dj, d2, .. , d,,+1) satisfying 0 < di < k is
the coefficient of x7 in

(1 Xt')" + 1 ~(1-X )n(1+x+...+Xk)n+l -=+

Itfollows1)t Xhat)i jXith.

It follows that

Un+1k= E
n + 1 (k+l)i+j=n ( l)i~n + 1)(n + j)

The decomposition of rooted trees into small trees natu-
rally extends to enriched trees by a general species. LetM be
a species. Then the number of M-enriched trees on n vertices
with degree sequence (dj, d2, . d,,) is

(j d2 ).d M[dj] M[d2]1 ... M[dn] I-

This gives the following formula for the number of M-en-
riched trees on n vertices (1).
COROLLARY 4.7. Let M be a species and

xn
M(x) = E M[n] I -

n.0 n.
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be the generating function of M. Then the number of M-en-
xn-1

riched trees on n vertices equals the coefficient of( in

M'(x).
Since we know that the generating function for the number

of ordered partitions is (2 - ex)-l, by the above corollary, we
have the following formula for the number of Schroder trees
on n vertices:

1 o(n + k - l kV-
2' k-0 k J2kV

As another example of enriched trees, we consider rooted
trees in which every fiber is endowed with a cyclic permu-
tation, and we call them cyclic trees. The bijection for
Corollary 3.2 essentially shows that the number of cyclic
trees on n vertices is

n-i

E (n)kls(n - 1, k)I, [4.1]
k= 1

where s(n, k) are the Stirling numbers of the first kind. Since
the generating function for cyclic permutations is 1 + log

1
1 - the above formula also follows from Corollary 4.7 and

the following well-known identity:

(log 1- k) l

cently a combinatorial explanation of such cancellation was
obtained by Haiman and Schmitt (10) by using a bijection
between semilabeled trees and partitions. This bijection was
also discovered independently by Erdos and Szekely (11).
Rota predicted that an ultimately satisfactory combinatorial
interpretation should exist (personal communication). It
turned out that the cancellation for the Lagrange inversion
corresponds to a sign change in constructing a Schroder tree
from several smaller Schroder trees. In other words, we
obtain an involution on the set of rooted forests of Schroder
trees on more than one vertex; here a rooted forest means a
forest with a distinguished tree.
THEOREM 5.1. There is a bijection between Schroder trees

on n (n > 1) vertices and rootedforests on n vertices with at
least two Schroder trees.

Proof: Let Tbe a Schroder tree on n vertices. Since n > 1,
we may assume that {vj, v2,.Vk, Vk} is the last block in the
fiber of the root of T. Let Tj be the subtree of T with root vi
for all i and T' be the subtree of T by removing all Tis from
T. Thus, we obtain a forest of Schroder trees on n vertices
with T' as the distinguished tree. Clearly, the above con-
struction is reversible. O
The bijection in the above proof is illustrated below:

5. Lagrange Inversion Formula

Let f(x) = X,,.i a,,x"/n! be a formal power series with a, #
0 and g(x) = X,,_1 b,,x"/n! be the functional inverse off(x),
namely the formal power series satisfying f(g(x)) = g(f(x))
= x. The Lagrange inversion formula states that

xn-1 / X\

bn = the coefficient of in t . [5.1]
(n -i)! \f x)

There is an equivalent form for b,, involving the exponential
Bell polynomials B,,,k(xl, X2.. ., X,1). For a partition of a
finite set, we assign xi as the weight of a block of i elements
and define the weight of the partition as the product of the
weights of all blocks. Then B,,,k(xl, x2, . . . , x,) is defined as
the sum of weights of all the partitions of {1, 2, . . ., n} with
k blocks. An equivalent expression for b,, is as follows [see
Comtet (8)]:

n-i (-l)k
b k=aE+k Bn+k-1,k(O, a2, a3, . . ) [5.2]

It is well known that the functional composition oftwo formal
power series can be explained by the convolution of the
incidence algebra of the partition lattice. The proof of the
Lagrange inversion formula then turns out to be the verifi-
cation of the following identity (1, 9):

E bi.bi.. biak = 8n1, [5.3]

where {B1, B2, . . . Bk} runs over all partitions of {1, 2,.
n} and il = JB11, i2 = 1B21, . . ., ik = IBkI. Although there have
been several combinatorial proofs of the Lagrange inversion
formula, none of them seems to have revealed the combina-
torial nature of the cancellation in the above identity. Re-

T2

For a Schroder tree T with more than one vertex, we shall
call the last block in the fiber of the root the critical block of
T. To express the Lagrange inversion formula in terms of
Schroder trees, we need to define the weight of a Schroder
tree T. Suppose do, dj, d2, . . . is a sequence of indetermi-
nates. The weight of the root of T is defined to be 1/do, and
the weight of any block of k vertices is defined to be
-dkj/dots; the weight of T is then defined to be the product
of weights of the root and all blocks, denoted by w(T). For
example, the Schroder tree in Example 2.3 has weight
-d2jdd3/d2'. Let W,, be the sum of weights of all Schroder
trees on n vertices. Clearly, W1 = 1ldo.

Let T be a Schroder tree on more than one vertex and B =
{v,, v2, .V.,Vk-l} be its critical block, and T', T1, T2, . .
Tki.- be the decomposition of T into a rooted forest of k
Schroder trees as in Theorem 5.1. Since the weight of the
block B in T is -dk.-l/dok and the weight of any root of Tj is
1/do, it follows that

w(T)do= -w(T')w(Tl) ... w(Tk.l)dkl-.

Thus, we have

WAdO =- > W,1Wj ...Wikdk-l
{B.. B2, ... Bk}
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where {B1, B2,. . . , Bk} runs over all partitions on {1, 2, . . .
n} with more than one block, and il = B11, ... , ik. = lBk!. The
factor k in the above identity comes from the number of ways
to distinguish a tree in a forest of k trees. Now set ak = kdkl,
or define the weight of the root of a Schroder tree as 1/a1 and
the weight of any block of k - 1 vertices as -ak/(ka',). By
comparing the above identity and Eq. 5.3, we obtain
THEOREM 5;2. For the above formal power series f(x), its

compositional inverse g(x) is given by

bn = E w(T),
T

where T runs over all Schroder trees on n vertices.
The Lagrange inversion formula in the form of Eq. 5.2

immediately follows from the above theorem and the bijec-
tion between Schroder trees and forests of small trees. To
prove Eq. 5.1, we need the following formula for the coef-
ficient c,, in the formal power series h(x) = 2n.O cx/n! =
(21,.0 dnx"/n!)-l. It can be proved combinatorially or by
using the antipode formula of Schmitt (12) that

(-1)t'
(BI. B2. B) do

where (B1, B2,. , Bk) runs over all ordered partitions of {1,
2, ... ., n}. The above expression of c, suggests another
definition of the weight w'(T) of a Schroder tree T: for a fiber
with ordered partition (B1, B2, . . . , BO), its weight is defined
by (-l)kdld,, . . . dk/do+1, while the weight of a leaf is set to
l/do, and the weight w'(T) is defined as the product ofweights
of all fibers and leaves. It can be easily seen that this
definition of weight is essentially the same as the definition

given before, and these two definitions coincide ifwe assume
a, = 1. Therefore, the Lagrange inversion in the form of Eq.
5.1 follows from the combinatorial interpretation of Corollary
4.7.
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