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SUMMARY

Reversing the dysfunctional T cell state that arises
in cancer and chronic viral infections is the focus of
therapeutic interventions; however, current thera-
pies are effective in only some patients and some
tumor types. To gain a deepermolecular understand-
ing of the dysfunctional T cell state, we analyzed
population and single-cell RNA profiles of CD8+ tu-
mor-infiltrating lymphocytes (TILs) and used genetic
perturbations to identify a distinct gene module for
T cell dysfunction that can be uncoupled from T cell
activation. This distinct dysfunction module is down-
stream of intracellular metallothioneins that regulate
zinc metabolism and can be identified at single-cell
resolution. We further identify Gata-3, a zinc-finger
transcription factor in the dysfunctional module, as
a regulator of dysfunction, and we use CRISPR-
Cas9 genome editing to show that it drives a
dysfunctional phenotype in CD8+ TILs. Our results
open novel avenues for targeting dysfunctional
T cell states while leaving activation programs intact.

INTRODUCTION

During persistent immune activation, such as uncontrolled tumor

growth or chronic viral infections, the ability of CD8+ lympho-

cytes to secrete pro-inflammatory cytokines and elaborate

cytotoxic function becomes compromised to different extents

(Anderson et al., 2016; Baitsch et al., 2012; Kim and Ahmed,

2010; Wherry and Kurachi, 2015; Zuniga et al., 2015). Such

dysfunctional, or ‘‘exhausted,’’ CD8+ cells are believed to consti-

tute a barrier to successful anti-tumor and anti-viral immunity.

Gaining a clear molecular understanding of the dysfunctional

T cell state can thus help develop successful therapeutic

interventions.
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Dysfunctional CD8+ T cells from LCMV-infected mice (Black-

burn et al., 2009; Wherry et al., 2007) and cancer (Baitsch

et al., 2011; Fourcade et al., 2010; Matsuzaki et al., 2010; Sa-

kuishi et al., 2010) differ profoundly from memory CD8+ T cells

and co-express multiple co-inhibitory or immune checkpoint

receptors such as PD-1, Lag-3, and Tim-3. Indeed, therapeutic

targeting of co-inhibitory receptors, such as CTLA-4 and PD-1,

with blocking antibodies has achieved great success in can-

cer patients. However, many patients still fail to respond, and

some cancers are refractory to these therapies (Restifo et al.,

2016). Thus, to identify novel therapeutic targets and stratify pa-

tients, it is important to better understand the dysfunctional T cell

state.

A major challenge to developing therapies that specifically

target the dysfunctional CD8+ T cell state is that current markers

and transcriptional signatures of dysfunction are closely inter-

twined with the activated CD8+ T cell state (Doering et al.,

2012; Fuertes Marraco et al., 2015; Tirosh et al., 2016). This is

not surprising, given that T cell dysfunction arises in the face of

chronic T cell activation. Thus, both dysfunctional CD8+ T cells

and activated CD8+ T cells upregulate genes involved in activa-

tion of the cell cycle, T cell homing, and migration, as well as

effector molecules, such as granzymes and co-stimulatory and

co-inhibitory receptors that mark T cells for subsequent regula-

tion (Giordano et al., 2015; Wherry et al., 2007). Moreover, both

cell types downregulate memory cell gene signatures (Doering

et al., 2012; Wherry et al., 2007). Indeed, T cell dysfunction likely

evolved as a physiological process to balance T cell activation

with self-regulation in the face of chronic antigen persistence,

thereby limiting immunopathology. As a result, it has been chal-

lenging to identify markers and approaches that would specif-

ically target the dysfunctional T cell state while preserving the

activated T cell state, as well as to identify bona fide dysfunc-

tional T cells in vivo.

Here, we used an integrated experimental and computational

approach to systematically dissect the molecular pathways

associated with activation and dysfunction within CD8+ tumor-

infiltrating lymphocytes (TILs). We find that metallothioneins,
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intracellular zinc chaperones, are highly enriched in the most

dysfunctional CD8+ TILs and demonstrate that targeted deletion

of metallothioneins results in loss of T cell dysfunction and

significantly reduced tumor growth despite no reduction in the

expression of co-inhibitory molecules. We analyzed metallothio-

nein-deficient CD8+ TILs and identified a novel dysfunction gene

module that is distinct from that of T cell activation. Using single-

cell RNA sequencing (RNA-seq), we show that the activation and

dysfunction gene modules are mutually exclusive at the single-

cell level and that cells primarily expressing the dysfunction

module are absent among metallothionein-deficient CD8+ TILs.

We further use CRISPR-Cas9 genome editing of primary

T cells to demonstrate that one of the major predicted regulators

of the dysfunction module, the zinc-finger transcription factor

Gata-3, is a key driver of T cell dysfunction in CD8+ T cells in

cancer. Our analysis identifies a gene module that is expressed

in dysfunctional T cells, but not in activated T cells, and defines

critical molecular nodes that control this module, opening the

way to develop targeted therapy specific for the dysfunctional

T cell state.

RESULTS AND DISCUSSION

Transcriptional Signatures for CD8+ T Cell Dysfunction
and Activation Are Intertwined
CD8+ TILs exhibit distinct functional phenotypes that we (Sa-

kuishi et al., 2010) and others (Baitsch et al., 2011; Fourcade

et al., 2010; Matsuzaki et al., 2010; Zhou et al., 2011) have pre-

viously defined using a combination of co-inhibitory receptors

as markers. Specifically, cell surface expression of T cell immu-

noglobulin and mucin-domain-containing-3 (Tim-3) and pro-

grammed cell death-1 (PD-1) can be used to partition CD8+

TILs into three different groups: Tim-3�PD-1� (DN, double nega-

tive), Tim-3�PD-1+ (SP, single positive), and Tim-3+PD-1+ (DP,

double positive). DN TILs exhibit full effector function, SP TILs

exhibit partial dysfunction, and DP TILs exhibit severe dysfunc-

tion, as reflected by the respective differences in their ability to

produce effector cytokines (Sakuishi et al., 2010).

To study the molecular programs associated with the func-

tional spectrum of CD8+ TILs, we measured the transcriptional

profiles of CD8+ DN, SP, and DP TILs (Figure 1A and STAR

Methods) (Johnson et al., 2007; Reich et al., 2006; Subramanian

et al., 2005). We did not examine CD8+ Tim-3+PD1� TILs,

because these cells are rarely observed in growing tumors. For

comparison, we profiled CD8+ CD44hiCD62Low effector/memory

(EffMem) and naive CD8+ CD44lowCD62Lhigh T cells from non-tu-

mor-bearing mice. We identified 3,031 genes that were differen-

tially expressed (STAR Methods and Table S1) across the three

TIL subpopulations (Figure 1B). The gene-expression profiles of

DP and SP TILs were similar to each other, while the profile of DN

TILs was distinct and shared some features with both naive and

EffMem CD8+ T cells (Figure 1B).

We identified ten clusters (k-means clustering; C1–C10, STAR

Methods) with distinct gene expression patterns across the cell

populations (Figures 1B and S1). Some of these clusters showed

either gradual increase or gradual decrease from DN to SP to DP

TILs, suggesting a possible association with the functional differ-

ences observed in these populations. Of the ten clusters, only
cluster 2 (C2) was significantly enriched for genes upregulated

in a viral CD8+ T cell exhaustion signature (Doering et al., 2012)

(Figure 1C, p < 0.0002, hypergeometric test). However, cluster

2 was also strongly enriched (p < 10�5) for genes upregulated

in an in vivo CD8+ T cell activation signature (Sarkar et al.,

2008) (Figure 1C). Conversely, clusters 3 and 4 were enriched

for genes highly expressed in naive T cells (Figure 1B, p <

0.004, 10�5, respectively, Table S2).

The transcriptional coupling of T cell activation and dysfunc-

tion has been observed previously (Doering et al., 2012; Tirosh

et al., 2016) and is not surprising given that T cell dysfunction/

exhaustion arises from chronic T cell activation due to antigen

persistence. This, however, raises the fundamental question of

whether a distinct gene module for T cell dysfunction exists

and, if so, whether it is exclusively expressed by a subset of

CD8+ TILs. We hypothesized that characterizing CD8+ TILs

following perturbations of the dysfunctional state might allow

us to refine the dysfunction signature. We therefore focused

on the members of cluster 2. Ranking cluster 2 genes by their

differential expression across the three TIL subpopulations, we

identified metallothionein 1 (MT1) as the top-ranking gene in

this cluster (Figure 1D and Table S1).

Metallothionein Deficiency Affects Tumor Growth in a
T-Cell-Intrinsic Manner
Metallothioneins are cysteine-rich intracellular proteins with high

affinity for zinc that serve as zinc chaperones and regulate zinc

metabolism.Consequently,metallothioneins can impact immune

responses through actions on diverse zinc-dependent proteins,

including zinc-finger transcription factors and kinases (Bonaven-

tura et al., 2015; Hamer, 1986). We confirmed that both MT1 and

its co-regulated paralog MT2 are consistently upregulated in

highly dysfunctional CD8+ DP TILs in two different mouse tumor

models (Figure S2A). Given the role of MT1 andMT2 in zinc regu-

lation, we further examinedwhether zinc availability ismodulated

in these TILs populations and found that the availability of intra-

cellular zinc closely parallels the upregulation of MT1 and MT2

in DP CD8+ TILs (Figure S2B). Thus, the expression of MT1 and

MT2 and elevated zinc status correlate with loss of effector func-

tion and acquisition of a dysfunctional phenotype. We therefore

hypothesized that MT1 and MT2 may regulate CD8+ T cell

dysfunction and impact anti-tumor immunity.

To examine the role of MT1 and MT2 in regulating T cell

dysfunction and tumor growth, we investigated the effect of

MT1 and MT2 deficiency using knockout mice. There was a

significant delay in the growth of B16F10melanoma in mice defi-

cient in both MT1 and MT2 (MT�/�) compared to littermate

controls (Figure 2A). Furthermore, CD8+ T cells isolated from

the tumors and tumor-draining lymph nodes of MT�/� mice

exhibited increased proliferation in response to stimulation

with tumor-specific antigen, indicating an improved anti-tumor

CD8+ T cell response (Figure 2B). MT1 and MT2 deficiency

also reversed the increased zinc observed in DP CD8+ TILs (Fig-

ure S2B). To confirm a T cell intrinsic role of metallothioneins in

regulating anti-tumor responses, we used a system in which

adoptive transfer of Ova-specific OT1 CD8+ T cells to mice

bearing MC38 tumors that express Ova (MCA38-Ova) shows

tumor growth control. We overexpressed MT1 in OT1 CD8+
Cell 166, 1500–1511, September 8, 2016 1501
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Figure 1. CD8+ T Cell Dysfunction and Activation Are Transcriptionally Intertwined

(A) Outline of experimental strategy. CT26 colon carcinoma was used.

(B) Heatmap of the 3,031 differentially expressed genes across the TIL subpopulations. Naive: CD8+CD62LhiCD44low cells from non-tumor-bearing Balb/c mice;

EffMem: effector memory CD8+CD62LlowCD44hi cells from non-tumor-bearing Balb/c mice; DN: CD8+Tim3�PD1�; SP: CD8+Tim3�PD1+; DP: CD8+Tim3+PD1+

TILs from CT26 colon carcinoma.

(C) Cluster 2 is significantly enriched with genes upregulated in a CD8+ viral exhaustion signature (Doering et al., 2012), as well as an in vivo CD8+ activation

signature (Sarkar et al., 2008). p values determined by hypergeometric test.

(D) Heatmap of the top-ranking genes from cluster 2.

See also Figure S1 and Tables S1 and S2.
T cells and transferred these cells or control OT-1 CD8+ T cells

into wild-type (WT) mice bearing MC38-Ova tumors. Recipients

of MT-OT1 CD8+ T cells failed to exhibit tumor growth control

compared to recipients of control OT-1 CD8+ T cells (Figure 2C).

Indeed, tumor growth in recipients of MT-OT1 CD8+ T cells
1502 Cell 166, 1500–1511, September 8, 2016
resembled that of mice that did not receive any tumor-antigen-

specific CD8+ T cells. These results indicate a CD8+ T cell

intrinsic role of MT. Taken together, our data support that

expression of metallothioneins in CD8+ T cells plays a critical

role in suppressing anti-tumor CD8+ T cell responses.
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Figure 2. Metallothionein Deficiency Improves Anti-tumor Immunity and Reverses T Cell Dysfunction

(A and B) Mice deficient in both MT1 and MT2 (MT�/�) and WT littermate controls were implanted subcutaneously with B16F10 melanoma. (A) Mean tumor

growth. Statistical analysis was performed using linear regression ***p < 0.001. (B) Tumor-draining lymph node (dLN, top) and tumor-infiltrating lymphocytes (TIL,

bottom) were isolated from WT and MT�/� mice 15 days post-tumor inoculation and stimulated with tumor antigen gp100. On day 3, tumor-antigen-specific

proliferation was measured by 3H incorporation.

(C) Naive OT-1 cells were sorted, activated, and infected with empty retrovirus (control OT1) or MT1 retrovirus (MTOT1) prior to transfer (13 106 cells/mouse) into

WT mice that were subsequently implanted with MC38-OVA tumor the next day. Mean tumor growth is shown. Statistical analysis was performed using linear

regression. **p < 0.01.

(D and E)MT�/�CD8+ TILs have increased functionality as compared toWTCD8+ TILs. TILs were isolated and stimulated with PMA/ionomycin in the presence of

brefeldin A for 4 hr prior to extracellular and intracellular staining and analysis by flow cytometry. *p < 0.05.

(F) Tim-3 and PD-1 expression in WT and MT�/� TILs. The DN, SP, and DP subpopulations are present in both the WT and MT�/� TILs.

See also Figure S2.
Metallothionein Deficiency Uncouples Co-inhibitory
Receptor Expression from a T Cell Dysfunction
Phenotype
We next analyzed the functional phenotype of CD8+ TILs iso-

lated from WT and MT�/� tumor-bearing mice. Consistent with
retarded tumor growth, the effector function of MT�/� CD8+

Tim-3+ TILs was significantly improved, with higher production

of interleukin-2 (IL-2), tumor necrosis factor a (TNF-a), and gran-

zyme B (Figures 2D and S2C) and a higher percentage of poly-

functional T cells (Figure 2E). However, despite the enhanced
Cell 166, 1500–1511, September 8, 2016 1503



effector function and retarded tumor growth inMT�/�mice, Tim-

3 and PD-1 expression was either unchanged or even increased

onMT�/�CD8+ TILs (Figure 2F) such that, in the setting of metal-

lothionein deficiency, Tim3 and PD-1 expression is no longer

associated with a dysfunctional T cell phenotype but, rather,

with an activated T cell phenotype. This uncoupling of co-inhib-

itory receptor expression from a dysfunctional T cell phenotype

suggested that co-inhibitory receptors may be part of a tran-

scriptional program that is associated with T cell activation and

is separable from the transcriptional program that drives

dysfunction in CD8+ T cells.

Expression Profiling of MT�/� TILs Identifies Distinct
Programs for T Cell Activation and T Cell Dysfunction
To identify putative gene programs that are distinctly associated

with T cell dysfunction, we leveraged our observation that the

dysfunctional phenotype of WT Tim3+PD-1+ CD8+ TILs is absent

in MT�/� Tim3+PD-1+ TILs (Figures 2D–2F). We hypothesized

that comparing transcriptional profiles between the dysfunctional

(WT) and activated (MT�/�) CD8+ TIL populations could identify

gene modules and pathways that are specific to the dysfunctional

phenotype. We surmised that, while both programs should be co-

expressed in the CD8+ Tim3+PD1+ population in dysfunctional

(WT) cells, any modules related to the dysfunction phenotype per

se should be absent from the functional (MT�/�) cells.We therefore

profiled the CD8+ DN, SP, and DP TIL populations from both WT

andMT�/� tumor-bearing mice and then performed unsupervised

principle component analysis (PCA) of the samples using the4,155

genes that were both highly expressed and variable across the

CD8+ TIL subsets (Figures 3A and 3B, STARMethods) (Langmead

et al., 2009; Li and Dewey, 2011; Picelli et al., 2013).

The first principle component (PC1; 38% of variance) distin-

guished the DN, SP, and DP populations of CD8+ TILs similarly

for WT andMT�/�mice and in a manner reflecting their transcrip-

tional activation status (Figure 3B, x axis; black, blue, red, respec-

tively). In both WT and MT�/�, the DN, SP, and DP profiles had

respectively increasing scores on PC1, with DP populations

scoring highest (Figure 3C). MT�/� DPs scored higher than WT

DPs and had the strongest association with PC1. Thus, we in-

ferred that PC1 separated cells based on their activation status,

with high activation associated with high PC1 scores. Indeed,

cell-cycle-associated signatures were highly enriched for the

PC1 loadings (p < 10�3, GSEA pre-ranked test, Table S3); a

signature for CD8+ in vivo activation (Sarkar et al., 2008) wasposi-

tively correlated with PC1 (Figure 3E and STAR Methods); and

naive and in-vitro-activated CD8+ T cells isolated from non-tu-

mor-bearingWTmice had low and high PC1 scores, respectively

(Figure S3). Interestingly, previously annotated signatures of T cell

dysfunction/exhaustion (Doering et al., 2012) and our cluster 2

gene signature (Figure 1D) were also positively correlated with

PC1 (Figure 3E), consistent with the coupling between activation

and dysfunction/exhaustion. Collectively, these data indicate that

PC1 captures a transcriptional signature for CD8+ T cell activation

and that the enrichment of previously annotated T cell exhaustion

signatures with PC1 genes likely reflects the coupling of the T cell

activation and dysfunction gene modules.

Conversely, while PC2 (8.4% of variance) clearly distin-

guished the DN, SP, and DP CD8+ TIL populations from WT
1504 Cell 166, 1500–1511, September 8, 2016
mice, it did not distinguish between these populations from

MT�/� mice (Figure 3D) and did not separate naive and in-vi-

tro-activated T cells (Figure S3). Since T cell dysfunction is

observed in WT, but not in MT�/�, CD8+ TILs, we hypothesized

that PC2 and its associated genes could contribute to the

uniquely dysfunctional phenotype in WT CD8+ TILs. Interest-

ingly, PC2 genes had no significant association with known sig-

natures of T cell activation, with previously annotated signatures

of T cell dysfunction/exhaustion, or with other features of T cell

biology (Table S3). Thus, our analysis shows that, while the WT

TIL populations have independent contributions from both PC1

and PC2 (Figures 3C and 3D), previously annotated signatures

of T cell dysfunction only account for the separation observed

on PC1.

A Novel Signature for T Cell Dysfunction
We leveraged the uncoupling of T cell activation from T cell

dysfunction to annotate a novel and distinct signature for T cell

dysfunction. To this end, we generated two scores for each

gene: one for its association with activation and the other for

dysfunction. Since only WT TILs exhibit dysfunction, as reflected

on PC2, we computed the ‘‘dysfunction score’’ only from the

WT subpopulation samples. Each gene’s dysfunction score

was defined as (�1) times the Pearson correlation coefficient be-

tween the gene’s expression profile across the WT samples and

those samples’ PC2 scores (Figure 4A, y axis). Since the MT�/�

TILs have the least dysfunction and separate best on PC1 (Fig-

ure 3C), we computed an ‘‘activation score’’ for each gene to

be the Pearson correlation coefficient between a gene’s expres-

sion profile across the MT�/� samples and those samples’ PC1

scores (Figure 4A, x axis). Finally, we ranked the genes with

respect to the four corners of the plot by projecting each gene

onto each of the two diagonals to identify genes associated

with dysfunction, but not activation (upper-left corner); activa-

tion, but not dysfunction (lower-right corner); both activation

and dysfunction (upper-right corner); and neither (lower-left

corner) (Figure 4A, marked ‘‘1’’, ‘‘2’’, ‘‘3’’, and ‘‘4’’, respectively).

Finally, we generated gene signatures for each of these four

modules (STAR Methods and Table S4).

As expected, the activation/dysfunction module had high

scores for genes previously associated with T cell dysfunction

such as co-inhibitory receptors (e.g., PD-1, Tim-3, TIGIT, and

CTLA-4). Interestingly, we also observed high scores for several

co-stimulatory receptors of the TNF receptor family, including

TNFRSF9 (4-1BB), TNFRSF4 (OX-40), and TNFRSF18 (GITR)

(Figure 4B). The presence of TNF receptor family co-stimulatory

receptors together with co-inhibitory receptors in this module

could reflect shared regulatory mechanisms for these receptors.

Furthermore, each of the four modules was significantly asso-

ciated with distinct signatures (mHG ranked test; Figure 4C). As

expected, the activation/dysfunction module was enriched for

signatures of CD8+ T cell activation in vivo (Sarkar et al., 2008)

and in vitro (STAR Methods), as well as for previously annotated

signatures for T cell dysfunction (Doering et al., 2012) and our

cluster 2 gene signature (Figure 1D). The activation module

was most significantly associated with the signature for in vitro

activation (Figure 4C). The module with neither high activation

nor high dysfunction scores was enriched for naive CD8+ T cell
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Figure 3. Transcriptional Profiling of MT�/� Enables Uncoupling of Activation and Dysfunction in CD8+ TILs

(A) Outline of experimental strategy. B16F10 melanoma was used.

(B) PCA analysis of WT and MT�/� DN, SP, and DP TIL populations.

(C and D) Bar plots for the means of the PC1 (C) and PC2 (D) values for the DN, SP, and DP subpopulations. Error bars are the SEM estimator. p values for

significance are computed using standard t test. *p < 0.05, **p < 0.01.

(E) Correlations of PC1 and PC2 values with various signatures. PC1 shows strong positive correlation with an in vivo CD8+ activation signature (Sarkar et al.,

2008), a CD8+ viral exhaustion signature (Doering et al., 2012), and our cluster 2 gene signature (Figure 1B) and strong negative correlation with a naive CD8+ and a

memory CD8+ signature (MSigDB [Subramanian et al., 2005], STAR Methods).

See also Figure S3 and Table S3.
signatures and memory CD8+ T cell signatures (STAR Methods)

(Eden et al., 2007; Wagner, 2015). Accordingly, we termed it

a naive/memory-like module. The dysfunction module was

enriched for a CD8+ regulatory T cells (Treg) signature (Kim

et al., 2015), suggesting that mechanisms present within the
dysfunctional CD8+ T cell population are shared with T cells

that exhibit regulatory functions.

To test the relevance of our newly identifiedmodules to human

tumors, we compared our module scores to two signatures we

recently obtained from CD8+ TILs from melanoma patients by
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Figure 4. Identification of Gene Modules for T Cell Activation and Dysfunction

(A) Genes were projected onto both diagonal axes to determine a ranking of genes for their association with (1) dysfunction, (2) activation, (3) both dysfunction and

activation, (4) neither.

(B) The distribution of genes by their dysfunction and activation scores reveals genes associated to different extents with the dysfunction and/or activation gene

modules. Co-inhibitory receptors reported to be associated with both activation and dysfunction transcriptional profiles (e.g., PD-1, CTLA4, Tim3, Lag3) are seen

in the upper-right corner.

(C) Enrichments of different signatures for the different modules of the activation/dysfunction plot. Dashed line marks p = 0.05 significance threshold.

(D) Genes from an exhaustion and activation signature defined in a humanmelanoma study (Tirosh et al., 2016) separate on the Dysfunction4Activation axis we

have defined (as shown in A). Shown is the distribution of genes on the Dysfunction/Activation plot (left) and the Kolmogorov-Smirnov plot of the values of the

human signatures on the Dysfunction 4 Activation axis (Axis 1–2 in A) (KS p = 0.027).

See also Table S4.
single-cell RNA-seq (Tirosh et al., 2016). In human melanoma

TILs, we found evidence for a similar phenomenon with genes

in the dysfunction module in human TILs having higher scores

for the dysfunction module in our mouse TILs analysis compared

to genes in the activationmodule (p < 0.03, Kolmogorov-Smirnov

[KS] test, Figure 4D). Thus, the dysfunction module may be

distinguishable in human TILs and may be clinically relevant.

The Dysfunction and Activation Gene Modules Are
Uncoupled at the Single-Cell Level
The difference in transcriptional states of the bulk DN, SP, and

DP populations between WT and MT�/� could stem from either
1506 Cell 166, 1500–1511, September 8, 2016
changes in cell intrinsic states or from changes in the proportion

of cells exhibiting different transcriptional states. To test whether

the CD8+ TILs in vivo include cells that express only the dysfunc-

tion module, but not the activation module, we analyzed 1,061

CD8+ TILswith single-cell RNA-seq (516WT and 545MT�/� cells

that passed QC thresholds from 1,504 processed cells) (STAR

Methods). We then assigned each cell with ‘‘signature scores’’

based on the relative extent to which it expressed the different

module signatures (while controlling for the cell’s profile

complexity, a measure of quality) (STAR Methods).

The activation and dysfunction module scores were nega-

tively correlated across cells (Figure 5A), such that a higher
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Figure 5. The Dysfunction and Activation Transcriptional Programs Are Negatively Correlated at the Single-Cell Level

(A) Expression of the dysfunction module at the single-cell level is negatively correlated with expression of the activation module (left, r =�0.42) and of an in vivo

CD8+ activation signature (Sarkar et al., 2008) (right, r = �0.47).

(B) Expression of an in vivo CD8+ activation signature at the single-cell level is positively correlated with expression of (left to right) the activation module (r = 0.57),

the activation/dysfunction module (r = 0.79), a viral LCMV exhaustion signature (r = 0.85), and the cluster 2 genes (Figure 1B) (r = 0.68).

(C–E) A tSNE visualization (van der Maaten and Hinton, 2008) of the 1,061 single-cells analyzed, colored by (C) the partitioning into seven clusters (infomap), (D)

gene signatures of the four gene modules defined (by quantile), and (E) mouse type (WT or MT�/�).
(F) Association of different gene signatures with the single-cell clusters (XL-mHG test, threshold at top 30% of list). Dashed line marks p = 0.05 significance

threshold.

(G) Counts of cells from WT/MT�/� in the different clusters. Clusters significantly enriched for presence of WT (blue) or MT�/� cells (red) are marked. *p < 0.05,

**p < 0.01, ***p < 0.001 (hypergeometric test).

See also Figure S4.
expression of one module’s genes by a cell predicts lower

expression of the other module’s genes in the same cell.

Similarly, the dysfunction module score was also negatively

correlated with the in vivo CD8+ activation signature (Sarkar

et al., 2008). In contrast (Figure 5B), the expression of the

in vivo CD8+ activation signature (Sarkar et al., 2008) posi-

tively correlated with that of our annotated activation and

activation/dysfunction signatures, as well as with the expres-

sion of a previously annotated signature of viral exhaustion

(Doering et al., 2012) and our cluster 2 signature (Figure 1B).

These observed trends were present in both the WT and

MT�/� cells.

Next, unsupervised clustering of the CD8+ TILs (using

a k-nearest-neighbor graph followed by the Infomap clus-

tering algorithm [Rosvall and Bergstrom, 2008] as previously

described [Shekhar et al., 2016]; STAR Methods) partitioned

the cells into seven clusters (visualized and colored in Fig-

ure 5C). Cluster 7 was enriched for cells with high levels of
the activation module signature, whereas cluster 5 was en-

riched for cells with high expression of the dysfunction module

signature (Figures 5D and 5F). Indeed, cells in cluster 7

had higher expression of perforin and several granzymes

compared to those in cluster 5, suggesting better functional

potential (Figure S4; p < 10�8, Wilcoxon rank sum test).

Consistent with these transcriptional signatures, cluster 5 is

significantly enriched with cells from WT, where we observed

T cell dysfunction, whereas cluster 7 is enriched for MT�/�

TILs, in which there is improved effector function (Figures 5E

and 5G). Thus, the dysfunction and activation transcriptional

signatures are enriched in different cells and the presence

of these modules in WT versus MT�/� CD8+ TILs is aligned

with the observed differences in their functional phenotypes.

Furthermore, cells expressing the activation versus dysfunc-

tion modules can indeed be distinguished, and CD8+ T cells

indeed exist in vivo that express our computationally derived

dysfunction module (Figure 4).
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Gata-3 Regulates Dysfunction in CD8+ TILs
To validate that members of the dysfunctional signature perform

important functions and to identify candidate transcription fac-

tors (TFs) that may be critical for inducing T cell dysfunction inde-

pendent of activation, we scored each TF that was consistently

differentially expressed across our datasets for its rank in the

four modules (Figures 5 and 6A). In the dysfunction module,

Gata-3, a zinc-finger transcription factor, was the top-ranking

transcription factor, followed by IKZF2, another zinc-finger TF,

from a TF family known to regulate lymphocyte development

(Kim et al., 2015), and then followed by SUDS3.

Several lines of evidence supported a role for Gata-3 in regu-

lating CD8+ TIL dysfunction. Genes bound by Gata-3 in nTregs

are enriched in both the dysfunction (p = 0.013, hypergeometric

test) and activation/dysfunction (p = 0.0056) module signatures;

of the TFs consistently differentially expressed across our data-

sets, Gata3 is the top-ranking TF member of the dysfunction

module (Figure 6A), and it is a member of cluster 2 (Figure 1B).

We therefore hypothesized that Gata-3 may be involved,

together with MT1 and MT2, in regulating CD8+ T cell dysfunc-

tion. We analyzed Gata-3-expressing CD8+ TILs from WT tu-

mor-bearing mice and found that Gata-3 is expressed on a

subpopulation of CD8+ Tim3+ TILs (Figure 6B), which upon stim-

ulation expressed significantly lower levels of interferon-g (IFN-g)

and IL-2, as well as significantly higher levels of IL-10 compared

to Gata-3� CD8+ TILs (Figure 6C). Thus, Gata-3+ CD8+ TILs

are dysfunctional, producing low levels of pro-inflammatory cy-

tokines and also actively producing the suppressive cytokine

IL-10.

To directly test the role of Gata-3 in regulating CD8+ T cell

dysfunction, we knocked out Gata-3 in naive CD8+ T cells using

a lentivirus CRISPR-Cas9-targeting approach. We transduced

single guide RNAs (sgRNAs), which were either non-targeting

controls or targeted Gata-3, along with CRISPR-Cas9-express-

ing lentiviruses (STAR Methods) into CD8+ T cells. We used

PMEL transgenic mice in which all T cells have a single tumor-

antigen-specific T cell receptor (TCR) with specificity for the

mouse homolog of the human premelanosome protein. PMEL

CD8+ T cells are normally ineffective at controlling growth of

B16F10melanoma tumors, such that perturbations that promote

tumor clearance can be readily discerned. We first determined

the efficiency of Gata-3 deletion by quantitative real-time

PCR (Figure 6D). Then, control or Gata-3-deleted PMEL CD8+

T cells were activated, and equal numbers of cells were trans-

ferred into WT mice with established B16F10 melanoma tumor.

Mice were then followed for tumor growth. Transfer of Gata-3-

deleted PMEL CD8+ T cells significantly delayed tumor growth

(Figure 6E). Furthermore, similar to MT�/� CD8+ T cells, the

loss of Gata-3 in CD8+ T cells did not alter the expression of

Tim-3 and PD-1 on CD8+ TILs (Figure 6F), but it improved

CD8+ T cell function with increased frequency of IFN-g+ and

IL-2+ cells (Figure 6G). Taken together, these data support a

role for Gata-3 as a regulator of T cell dysfunction.

CONCLUSIONS

Here, we combined computational, molecular, and functional

systems immunology to derive a distinct signature for T cell
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dysfunction that is uncoupled from T cell activation. Although

chronic activation is a pre-requisite to T cell dysfunction, our

data show that these two T cell states are separable transcrip-

tionally and genetically. Single-cell RNA-seq of TILs supports

our observation that T cells with either state exist in vivo. Impor-

tantly, the dysfunction and activation gene modules are consis-

tent with signatures in CD8+ TILs in human melanoma (Tirosh

et al., 2016), supporting their clinical relevance. The ability to

dampen the dysfunction gene module while not interfering with

the activation gene module of a T cell is highly desirable in the

setting of cancer or chronic viral infection. In contrast, the ability

to effectively engage the dysfunction gene module while damp-

ening the activation gene module is desirable in the setting of

autoimmunity.

We find that the expression of co-inhibitory receptors can be

uncoupled from dysfunctional phenotype. Indeed, many co-

inhibitory receptors are not in the dysfunctionmodule but, rather,

are in the activation/dysfunction gene module. Thus, while co-

inhibitory receptors may set the stage for the development of

T cell dysfunction, eventually chronic engagement of the TCR

and co-inhibitory receptors must drive the cells to initiate a

distinct gene program for T cell dysfunction. It will be interesting

to see how a co-inhibitory receptor blockade alters the expres-

sion of the activation, dysfunction, and activation/dysfunction

modules in cells.

The uncoupling of the dysfunction module from the activation

module does not in itself determine any obvious relationship be-

tween the two modules or how they might be expressed in cells.

Our single-cell analysis of TILs revealed that, not only are the two

modules negatively correlated with each other, but they also can

be exclusively enriched in distinct populations of CD8+ T cells.

These findings suggest that, while dysfunctional T cells may

have arisen from activated T cells, they acquire a distinct func-

tional state with a transcriptional program that is no longer

dependent on the activation module. Nevertheless, the fact

that we observe enrichment for the activation and dysfunction

modules in different cells in our single-cell analysis does not

mean that our newly defined modules cannot be expressed in

the same cells. How these modules are expressed in individual

cells will best be discerned by examining cells throughout a

time course of tumor development. Such a study will shed light

on potential transitional T cell states.

Our data point to zinc regulation by metallothioneins and the

function of zinc-dependent transcription factors as key features

that lead to the development of the dysfunctional T cell pheno-

type. Interestingly, MT1 andMT2 are among the differentially ex-

pressed genes found in a signature of dysfunctional T cells from

chronic LCMV viral infection (Doering et al., 2012), as are several

zinc-finger-containing transcription factors. These observations

support a role for metallothioneins and zinc regulation in deter-

mining effector CD8+ T cell phenotype and that zinc dysregula-

tion may be at the core of the dysfunctional phenotype across

multiple chronic disease conditions. Indeed, zinc is an essential

metal required for the structure and function of more than 1,000

zinc-finger-containing proteins that include several families

of transcription factors (GATA, IKAROS, nuclear hormone re-

ceptors, Kruppel-like factors), RING-domain ubiquitin ligases,

serine-threonine kinases, and matrix metallopeptidases. Thus,
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Figure 6. Gata3 Drives the Dysfunctional State in CD8+ T Cells

(A) Gata3, a zinc-binding TF, ranks first in the dysfunction module of the TFs consistently differentially expressed across our datasets (black points).

(B and C) WT mice were implanted subcutaneously with B16F10 melanoma cells. TILs were isolated on day 15 and analyzed for Gata3 expression and T cell

function. (B) Representative flow cytometry data showing Gata3 expression gated on CD8+ TILs. (C) Cytokine expression of Gata3+ and Gata3� CD8+ TILs.

Statistical analysis was performed using paired Student’s t test. *p < 0.05, ***p < 0.001.

(D) Targeted deletion of Gata3 using CRISPR-Cas9 genome editing. Naive CD8+ T cells were sorted from pmel transgenic mice, infected with control or Gata3

lentivirus, and activated with plate-bound anti-CD3 and anti-CD28 antibodies in the presence of IL-2 (STAR Methods). Representative qPCR results showing

Gata3 mRNA level in control versus Gata3 lentivirus-targeted CD8+ T cells.

(E) 1 3 106 CRISPR-Cas9-targeted cells were transferred to WT mice (n = 5/group) bearing B16F10 melanoma tumors (day 5 post tumor grafting). Mean tumor

growth is shown. Data are representative of three independent experiments. Statistical analysis was performed using linear regression. **p < 0.01.

(F and G) TILs were isolated on day 21 after tumor cell injection and analyzed for Tim-3 and PD-1 expression (F) and cytokine production (G) by flow cytometry.
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one can envision how disruption of intracellular zinc availability

can impact the structure and activity of multiple proteins that

regulate cellular functions.

Consistent with this observation, our studies identify a novel

role for the zinc-finger transcription factor Gata-3 as a driver of

T cell dysfunction. Gata-3 has pleiotropic roles in immunity.

While it is best known for promoting type 2 immune responses,

Gata-3 has also been implicated in playing a role in T cell lineage

development, development of ILC2s, controlling CD8+ T cell pro-

liferation, and more recently in regulatory T cell function (Tinde-

mans et al., 2014). In the latter context, the role of Gata-3 in

CD8+ T cell dysfunction may reflect aspects of its role in promot-

ing regulatory functions in T cells. Identification of other factors

that co-operate with Gata-3 to drive the dysfunction program

in CD8+ T cells will pave the way for identification of the complete

ensemble of transcriptional regulators that induce T cell dysfunc-

tion distinct from other functional or differentiation states in

T cells.

Our newly identified dysfunction gene module shares some

features with a recently identified signature for Ly49+ CD8+

T cells that have a regulatory phenotype (Kim et al., 2015) but

not with the other annotated T cell signatures. Interestingly, the

stability of this Ly49+ CD8+ Treg population is dependent on He-

lios (IKZF2), a zinc-finger of the IKAROS family, and the second-

highest scoring TF (after Gata-3) of the TFs analyzed in our

dysfunction gene module. Together, these data suggest that

dysfunctional T cells may have adopted a regulatory program

to curb their activity in the face of antigen persistence and

chronic activation. Further annotation of genes in the dysfunction

module identified through our single-cell analysis will shed light

on the potential regulatory programs expressed by dysfunctional

CD8+ T cells.

Our findings refine our current definition of the dysfunctional

T cell state by providing precise molecular resolution of the

distinct gene programs associated with T cell dysfunction versus

activation. The presence of our newly defined gene modules

in T cells isolated from human melanoma tissue indicates the

robustness of our findings and opens the door for the identifica-

tion of novel ‘‘druggable’’ targets for the treatment of cancer and

other chronic diseases.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Rat anti-PD-1 (clone: RMP1-30) Biolegend Cat#109109; RRID: AB_572016

Anti-Tim3 (clone: 5D12) Generated in house N/A

Rat anti-IL-2 (clone: JES6-5H4) Biolegend Cat#503807; RRID: AB_315301

Anti-TNF-a (clone: MP6-XT22) eBioscience Cat#117321; RRID: AB_10670212

Anti-IFN-g (clone: XMG-1.2) Biolegend Cat#505829; RRID: AB_10897937

Mouse anti-Granzyme B (clone: GB11) Biolegend Cat#515405; RRID: AB_515405

Rat anti-CD8 (clone: 53-6.7) Biolegend Cat#100731; RRID: AB_893427

Chemicals, Peptides, and Recombinant Proteins

Zinpyr-1 Santa Cruz Cat#sc-213182

Fixable viability dye eFluor506 eBioscience Cat#65-0866

Gp100 Genscript Cat#RP20344

Critical Commercial Assays

High Sensitivity DNA Kit (Bioanalyzer) Agilent Cat#5067-4626

Qubit dsDNA, High Sensitivity 500rxn Thermo Fisher Scientific Cat#Q32854

Nextera XT Sample Preparation Kit Illumina Cat#FC-131-1096

NextSeq 500 high output kit V2, 75 cycles Illumina Cat#FC-404-2005

Deposited Data

Data files for CD8+ populations, Microarray This paper GEO: GSE86042

Data files for bulk RNA sequencing This paper GEO: GSE86042

Data files for single-cell RNA sequencing This paper GEO: GSE86042

LCMV exhaustion signature Doering et al., 2012 GEO: GSE41867

CD8+ Ly49+Treg signature Kim et al., 2015 GEO: GSE73015

Experimental Models: Cell Lines

MC38-OVA Mark Smyth N/A

CT26 ATCC Cat#CRL-2638; RRID: CVCL_7256

B16-F10 ATCC Cat#CRL-6475; RRID: CVCL_0159

Experimental Models: Organisms/Strains

Balb/c Jackson Laboratory Cat#000651; RRID: IMSR_JAX:000651

C57BL/6 Jackson Laboratory Cat#000664; RRID: IMSR_JAX:000664

PMEL Jackson Laboratory Cat#005023; RRID: MMRRC_005023-UCD

OTI Jackson Laboratory Cat#003831; RRID: MMRRC_003831-UCD

MT�/� (backcrossed to C57BL/6 in house) Jackson Laboratory Cat#002211; RRID: IMSR_JAX:002211

Recombinant DNA

SMARTER TSO (with LNA, 10 mM)) Exiqon 50-AAGCAGTGGTATCAACGCAGAGTACrGrG+G-30

PCR oligonucleotide primer (10 mM) IDT 50-AAGCAGTGGTATCAACGCAGAGT-30

Reverse Transcription DNA oligonucleotide

primer (RNase-free, 100 mM)

IDT 50-AAGCAGTGGTATCAACGCAGAGTACT(30)VN-30

Sequence-Based Reagents

Gata3 CRISPR guide sequence Designed in house 50 - GGTATCCTCCGACCCACCACG

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms

GenePattern Reich et al., 2006 http://software.broadinstitute.org/cancer/software/genepattern/

COMBAT Johnson et al., 2007 http://www.bu.edu/jlab/wp-assets/ComBat/Download.html

Bowtie Langmead et al., 2009 http://bowtie-bio.sourceforge.net/index.shtml

RSEM Li and Dewey, 2011 http://deweylab.github.io/RSEM/

XL-mHG Wagner, 2015 https://github.com/flo-compbio/xlmhg
CONTACT FOR REAGENT AND RESOURCE SHARING

Requests of reagents should be directed to Ana C. Anderson at acanderson@partners.org.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
6–8 week old female Balb/c, C57BL/6, pMEL, and OTI transgenic mice were purchased from the Jackson Laboratory. Mice deficient

in metallothionein 1 and 2 (MT�/�) were purchased from the Jackson Laboratory and backcrossed onto the C57BL/6 background for

5 generations andwere confirmed to be > 97%congenic with C57BL/6 by SNP analysis. All mice were housed under SPF conditions.

All experiments involving laboratory animals were performed under protocols approved by the Harvard Medical Area Standing Com-

mittee on Animals (Boston, MA).

Tumor Experiments
CT26 andB16F10were purchased fromATCC.MC38-Ovawas generously provided byMark Smyth. CT26 andMC38-Ova (1x106) or

B16F10 (5x105) were implanted subcutaneously into the right flank. Tumor size was measured in two dimensions by caliper and is

expressed as the product of two perpendicular diameters. For adoptive transfer tumor experiments, naive (CD8+CD62L+CD44lo)

T cells from PMEL (for CRISPR-Cas9 targeting experiments) or OT-1 (for overexpression of MT) transgenic mice were isolated by

cell sorting (BDFACS Aria) and activated by 2ug/ml each of plate-bound anti-CD3 and anti-CD28 antibodies for 48 hr, rested for

3 days, and then reactivated with 1ug/ml of anti-CD3 and antiCD28 antibodies for 2 days prior to transfer into recipient mice. Retro-

viral and lentiviral infections of primary T cells were optimized and experiments were performed as described in the respective figure

legends. Briefly, retrovirus was used to spin-infect T cells one day after activation and lentivirus was used to infect T cells twice, at

16 hr prior to activation and at 4 hr post activation. Targeting efficiency of retrovirus was determined bymeasuring GFP expression in

both control and MT overexpressing cultures; whereas effective CRISPR-Cas9-mediated deletion of the target gene using lentivirus

was determined by qPCR.

METHOD DETAILS

Isolation and Analysis of TILs
TILs were isolated by dissociating tumor tissue in the presence of collagenase D (2.5 mg/ml) for 20 min prior to centrifugation on a

discontinuous Percoll gradient (GE Healthcare). Isolated cells were then used in various assays of T cell function. Cells were cultured

in DMEM supplemented with 10% (vol/vol) FCS, 50 mM 2-mercaptoethanol, 1 mM sodium pyruvate, nonessential amino acids,

L-glutamine and 100 U/ml penicillin and 100 mg/ml streptomycin.

Flow Cytometry

Single cell suspensions were stained with antibodies against surface molecules. CD4 (RM4-5), CD8 (53-6.7), and PD-1 (RMP1-30)

antibodies are purchased from BioLegend. Tim-3 (5D12) antibody was generated in house. Fixable viability dye eF506 (eBioscience)

was used to exclude dead cells. For intra-cytoplasmic cytokine staining, cells were stimulated with 12-myristate 13-acetate (PMA)

(50ng/ml, Sigma-Aldrich, MO), ionomycin (1mg/ml, Sigma-Aldrich, MO) in the presence of Brefeldin A (Golgiplug, BD Bioscience) for

four hours prior to staining with antibodies against surface proteins followed by fixation and permeabilization and staining with an-

tibodies against IL-2 (JES6-5H4), TNF-a (MP6-XT22) (eBioscience), IFN-g (XMG-1.2), and Granzyme B (GB11) (Biolegend). For mea-

surement of intracellular zinc, cells were stained with 1 mM Zinpyr-1 (Santa Cruz) in PBS for 20 min at 37deg, washed with media,

followed by regular surface staining. All data were collected on a BD LsrII (BD Biosciences) and analyzed with FlowJo software

(Tree Star).

Proliferation Assays

Tumor draining lymph nodes and tumor infiltrating lymphocytes were harvested and incubated with or without tumor specific antigen

(gp100, 5 mM) for four consecutive days and cell proliferation was measured by 3H incorporation assay.
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Generation of Lentiviral Constructs and CRISPR-Cas9 Targeting
The initial guide sequences were selected based on the exon structure of target genes and ranked by the repertoire of potential

off-target sites to select designs that minimize the possibility of off-target cleavage. The guides were then cloned into CRISPR-

Cas9 vectors via golden-gate cloning as described previously (Cong et al., 2013). The final guide sequence selected for Gata3 is:

50 – GGTATCCTCCGACCCACCACG. The vector used is a lenti-viral vector, pCKO_2, bearing mammalian-codon-optimized SaCas9

linked to puromycin selection cassette (Ran et al., 2015; Shalem et al., 2014), and an sgRNA-expression cassette that has beenmodi-

fied to enhance RNA expression. The constructs were sequence verified and then tested to screen for the efficiency of each guide

using a mouse T-lymphocyte cell line, EL4 (ATCC) before moving on to lentiviral production. To quantify the genomic modification

induced by the CRISPR-Cas9 system, genomic DNAwas extracted using QuickExtract Solution (Epicenter), as described previously

(Cong et al., 2013). Indel formation was measured by either SURVEYOR nuclease assay (IDT DNA) or targeted deep sequencing as

described previously (Cong et al., 2013). Briefly, the genomic region around the CRISPR-Cas9 targeting site was amplified, and then

subject to either SURVEYOR nuclease digestion following re-annealing or re-amplified to add on Illumina P5/P7 adapters with barc-

odes for deep-sequencing analysis using the MiSeq sequencing system (Illumina).

After screening of guides in cell lines, the top-ranked guides based on their targeting efficiency were used for viral production.

293FT cells (Thermo Fisher) were maintained as recommended by the manufacturer in 150mm plates. For each transfection,

10 mg of pVSVG envelope plasmid, 15 mg of pDelta packaging plasmids, and 20 mg of pCKO_2 vector carrying the construct of in-

terest were used. The transfection was either carried out using lipofectamine 2000 (Thermo Fisher) following the manufacturer’s rec-

ommendations, or with PEI, where 5:1 ratio of PEI solution was added to the DNAmixture, and incubated for 5 min before adding the

final complex onto cells. After incubation for 16 hr, 20ml of fresh warmmedia was applied to replace the old growth media. Virus was

harvested between 48h and 72h post transfection by taking the supernatant and pelleting cell debris via centrifugation. The viral

particles were then filtered through a 0.45 mm filtration system (Millipore), and then either directly used as purified supernatant, or

concentrated further with 15ml Amicon concentrator (Millipore). Lentiviral vectors were titered by real-time qPCR using a customized

probe against the transgene.

For all primary T cell experiments, the efficacy of the CRISPR-Cas9 lentiviral vectors was first tested by transducing in vitro primary

mouse T cell culture, followed by cleavage measurement and qPCR detection of target gene knock-down. The most efficient viral

constructs were then used for downstream experiments.

RNA Processing
Microarray Processing and Analysis

Samples consisting of naive (CD62LhiCD44low) and effector/memory (CD62LlowCD44hi) CD8+ cells from non-tumor-bearing Balb/c

mice, CD8+Tim3-PD1- (DN) TILs, CD8+Tim3-PD1+(SP), and CD8+Tim3+PD1+ (DP) TILs were loaded on Affymetrix GeneChip Mouse

Genome 430 2.0 Arrays.

Individual.CEL files were RMA normalized and merged to an expression matrix using the ExpressionFileCreator of GenePattern

with default parameters (Reich et al., 2006). COMBAT (Johnson et al., 2007) was used to correct for batch effects (samples were

generated in three batches), and probe intensity values below 20 or above 20,000 were collapsed to 20 and 20,000, respectively.

Gene-specific intensities were then computed by taking for each gene j and sample i the maximal probe value observed for that

gene: yij = max(pi j s.t. pi in set_probes_gene_j), and samples were transferred to log-space by taking log2(intensity). Differentially

expressed genes were annotated as genes with either (1) an FDR-corrected ANOVA p-value smaller or equal to 0.01 computed

across the DN, SP and DP subpopulations and a fold-change of at least 1.3 between any of the three subpopulations, or (2) a

fold-change of at least 2 between any of the three subpopulations. Fold-change between each two subpopulations was computed

as the minimum between the fold-changes of the medians and the means of the subpopulation samples. A differential-expression

rank was computed for each gene as the mean between the gene’s ranking based on its ANOVA p-value and its ranking based

on fold-change. Clusters of differentially expressed genes were generated by k-means clustering (Hartigan-Wong algorithm, run

in R) to 10 clusters of the scaled median values of the five sample types clustered over: DN, SP, DP, EffMem and naive CD8. Enrich-

ment analysis for each cluster with MSigDB v5.0 (Subramanian et al., 2005) gene sets was computed as the hypergeometric p-value

for the overlap between the cluster and the gene set of interest, out of the differentially expressed gene list. P-values for enrichment

were FDR-corrected.

Population RNA-Seq Processing and Normalization

We profiled RNA from DP, SP, and DN from four WT and fiveMT�/� male mice in two batches (batch #1: 2 WT, 2MT�/�, batch #2: 2

WT, 3MT�/�). Samples were processed with SMART-Seq2 (Picelli et al., 2013), reads were aligned to themousemm9 transcriptome

using Bowtie (Langmead et al., 2009), and expression abundance TPM estimates were obtained using RSEM parameters (Li and

Dewey, 2011). Three samples were excluded from further analysis due to poor sequencing quality, and three additional samples

were excluded due to being strong outliers on the first three principle components of the initial PCA (generated as described in

next section; a trend similar to PC2 of Figure 3B, but not significant, was observed on PC4 prior to the latter sample exclusion).

Each gene of each sample was assigned the value of log2(TPM+1). COMBAT (Johnson et al., 2007) was used to correct for batch

effects, and was followed by Quantile Normalization to account for variability in library sizes.
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To profile the RNA of in vitro activated CD8+ T cells, we isolated naive CD8+ cells from non-tumor-bearing C57BL/6 mice and acti-

vated themwith anti-CD3 and anti-CD28 in vitro. Samples were processed with the SMART-Seq2 protocol (Picelli et al., 2013), map-

ped to mm9 with Bowtie (Langmead et al., 2009) and TPM values were computed by RSEM (Li and Dewey, 2011).

Single-Cell RNA-Seq

For single-cell RNA-Seq experiments, TILs from B16 melanomas were collected in 96-well plates, incorporating a population-well

and an empty well in each plate as controls, and were processed from the four WT mice (two plates per mouse; total of eight WT

plates) and five MT�/� mice (one plate each from two of the mice (MT�/� 1,2) and two plates each from three of the mice (MT�/�

4,5,6)); total of eight MT�/� plates). Samples were produced in 2 biological batches (batch #1: WT1,2, MT�/� 1,2,3, batch #2:

WT3,4, MT�/� 4,5,6), and processed in 4 sequencing batches, where each sequencing batch consisted of two WT plates and two

MT�/� plates.

Cells were sorted into 96-well plates with 5 ml lysis buffer comprised of Buffer TCL (QIAGEN 1031576) plus 1% 2-mercaptoethanol

(Sigma 63689). Following sorting, plates were spun down for one minute at 3,000 rpm and immediately frozen at �80�C. For prep-
aration of single-cell libraries we thawed the cells and purified them with 2.2x RNAClean SPRI beads (Beckman Coulter Genomics)

without final elution (Shalek et al., 2013). The RNA captured beads were air-dried and processed immediately for cDNA synthesis.We

performed SMART-seq2 following the published protocol (Picelli et al., 2013) with minor modifications in the reverse transcription

(RT) step (MSK and AR, in preparation). We made a 25ml reaction mix for each PCR and performed 21 cycles for cDNA amplification.

We used 0.25ng cDNA of each cell and one-fourth of the standard Illumina NexteraXT reaction volume in both the tagmentation and

final PCR amplification steps.We pooled plates to 384 single-cell libraries, and sequenced 503 25 paired-end reads using a single kit

on the NextSeq500 5 instrument.

QUANTIFICATION AND STATISTICAL ANALYSIS

Population RNA-Seq Analysis
Principal Component Analysis

PCA was run on the centered expression matrix (as obtained in the previous section) of the 4,155 genes with mean expression R 3

and a fold-change of at least 1.5 between at least one pair of samples. To investigate the association of the PCs with CD8+ T cell

activation, the profiles from naive and in vitro stimulated CD8+ T cells were quantile-normalized together with the samples by which

the PCAwas produced (above), and overlaid onto the PCA (following subtraction of the gene-specific values used for centering of the

PCA-generating dataset).

Computing a Dysfunction and Activation Score and the Annotation of Dysfunction and Activation Related Gene

Modules and Gene Signatures

Each gene was assigned an ‘‘activation score’’ defined as the correlation of the gene’s expression across the samples with the PC1

values, computed over the MTKO samples. Additionally, each gene was assigned a ‘‘dysfunction score’’ to be (�1) times the corre-

lation of the gene’s expression across the samples with the PC2 values, computed over the WT samples. These two scores placed

the gene on the Activation / Dysfunction plot as shown in Figure 4A.We included in this analysis the 7,592 genes that had an assigned

log2(TPM+1) expression value R 4, in at least two of the samples. Following placement on the Activation / Dysfunction plot, each

gene was assigned two rankings: on the Dysfunction4 Activation axis, and on the ActivationyDysfunction4 Neither axis, by pro-

jecting each point onto the x = (-y) and x = y axes, respectively. We defined four rankings of the 7,592 genes, each ranking represent-

ing the association of these genes with one of the following: (1) dysfunction (and not activation): by the (�1)*x values of the x = (-y)

projection (ranking from the Dysfunction corner to the Activation corner), (2) activation (and not dysfunction): by the x values of the

x = (-y) projection (3) activation and dysfunction: by the x values of the x = y projection, and (4) neither: by the (�1)*x values of the x = y

projection.

To check for statistically significant association of different expression signatureswith these four rankings (dysfunction / activation /

activationydysfunction / neither) we used the XL-mHG test (Eden et al., 2007; Wagner, 2015) to test for enrichment at the tops of the

different ranked lists (one test for each module), requiring that the minimal number of genes in an enriched set to be 5 (X = 5) and that

the proportion of the ranked list to be considered in the enrichment portion be at most 30% of the list (L = 30%). Our reported sig-

nificance results are robust to a variety of XL-mHGparameters, including the completely unconstrained ranked test (X = 0; L = 100%).

From each of the four rankings, we annotated a gene signature of 100 genes, defining gene signatures for: (1) dysfunction (and not

activation), (2) activation (and not dysfunction), (3) activation and dysfunction; and (4) neither. Each signature was defined to be the

top-most ranked genes of the relevant ranking, which fulfilled the following constraints: all genes included in the Dysfunction signa-

ture had a dysfunction score of R 0.3, all genes included in the Activation signature had an activation score of R 0.3 and all genes

included in the Activation/Dysfunction signature had activation and dysfunction scores R 0.3.

Single-Cell RNA-Seq Analysis
Paired reads were mapped to mouse annotation mm10 using Bowtie (Langmead et al., 2009) (allowing a maximum of one mismatch

in seed alignment, and suppressing reads that hadmore than 10 valid alignments), TPMswere computed using RSEM (Li and Dewey,

2011), and log2(TPM+1) values were used for subsequent analyses.
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We filtered out low quality cells and cell doublets, maintaining for subsequent analysis the 1,061 cells (516WT and 545MT�/�) that
had (1) 1,500-6,000 detected genes (defined by at least one mapped read), (2) at least 100,000 reads mapped to the transcriptome,

and (3) at least 20% of the reads mapped to the transcriptome. We restricted the genes considered in subsequent analyses to be the

9,863 genes expressed at log2(TPM+1)R2 in at least twenty of the cells.

PCA of the Gene-by-Cell matrix revealed PC1 to be highly correlated with the cells’ gene-counts (Gaublomme et al., 2015), and it

was therefore excluded from subsequent analyses to reduce technical bias. We chose PCs 2-7 for subsequent analysis due to a drop

in the proportion of variance explained following PC7. To visualize cell-to-cell variation we used tSNE (van der Maaten and Hinton,

2008) to generate a two-dimensional non-linear embedding.

To obtain clusters of cells similar in their expression patterns, cells were clustered using the infomap algorithm (Rosvall and Berg-

strom, 2008) which was ran on the binary k-nearest-neighbor graph, where k = 70 (Shekhar et al., 2016).

P-values for enrichment of each cluster with a given gene signature were computed by ranking the cells by their cell-specific-gene-

signature-scores (see below), and computing the XL-mHG test (X = 5; L = 30% of ranked cell list) to generate a p value for the enrich-

ment of cells from the given cluster at the top of the ranked list.

Single-Cell Gene Signature Scoring

As an initial step, genes were binned into six bins based on their mean expression across cells, and into six (separate) bins based on

their variance of expression across cells. Given a gene signature (list of genes), a cell-specific signature score was computed for each

cell as follows: First, 1,000 random gene lists were generated, where each instance of a random gene-list was generated by sampling

(with replacement) for each gene in the gene-list a gene that is equivalent to it with respect to the mean and variance bins it was

placed in. Then, the sum of gene expression in the given cell was computed for all gene-lists (given the 1,000 random lists generated)

and the z-score of the original gene-list for the generated 1,000 sample distribution is returned. For gene-signatures consisting of an

upregulated and downregulated set of genes, two z-scores were obtained separately, and the downregulated associated z-score

was subtracted from the upregulated generated z-score.

Generation of Gene Signatures from the Literature
For the CD8+ in vivo activation signature, we used the intersection of the sets of genes published in Sarkar et al. (Sarkar et al., 2008)

as (1) DE between effector and naive, (2) DE between effector and memory.

For the LCMV exhaustion (viral exhaustion) signature, we identified differentially expressed genes between the acute and chronic

conditions for each time point in (Doering et al., 2012), as genes significantly different under an FDR-corrected t test (p < 0.05) and that

had a fold-change in expressionR 2. The exhaustion set was taken as the union of the Day 15 DE genes and the Day 30 DE genes.

For the CD8+ Ly49+Treg signature, gene expression measurements for Ly49+ and Ly49- CD8+ T cells (two replicates each) were

downloaded from GEO: GSE73015 (Kim et al., 2015). Differentially expressed genes were determined as genes with (1) a mean fold-

changeR 1.5 and (2) a fold-changeR 1.3 between the smallest sample from the upregulated condition and the largest sample of the

downregulated condition.

For the in vitro activation signature, differentially expressed genes were determined as genes with (1) a mean fold-changeR 2 and

(2) a fold-change R 1.3 between the smallest sample from the upregulated condition and the largest sample of the downregulated

condition.

For the naiveCD8+ T cell signature, a signaturewas compiled from 26MSigDB (v5.0, c7) (Subramanian et al., 2005) gene signatures

identified as upregulated in naive CD8+ T cells when compared to effector, memory, or exhausted CD8+ T cells at various time points

(Table S5). The 28 genes present in at least 10 of the analyzed sets were selected for this signature.

For the memory CD8+ T cell signature, we compiled 13 MSigDB (v5.0, c7) (Subramanian et al., 2005) gene signatures identified as

upregulated in memory CD8+ T cells when compared to naive, effector or exhausted CD8+ T cells at various time points (Table S5).

The 23 genes present in at least 6 of the analyzed sets were selected for this signature.

DATA AND SOFTWARE AVAILABILITY

Data Resources
The data generated in this paper has been deposited in the Gene Expression Omnibus (GEO) under accession number GEO:

GSE86042.

Integrated and normalized expression measurements of naive, effector/memory and TILs subpopulations: Table S1.
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Supplemental Figures

Figure S1. Expression Trends of CD8+ TILs Clusters, Related to Figure 1

Each of the ten clusters obtained (see Figure 1B) had a different expression trend across the five subpopulations. See Table S1 for expression values and cluster

assignments of genes and Table S2 for MSigDB enrichments of the different clusters.
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Figure S2. Metallothionein Expression, Zinc Dysregulation, and Effector Function in CD8+ TILs, Related to Figure 2

(A) Expression of MT1 and MT2 as determined by qPCR in sorted CD8+ TILs isolated from mice bearing CT26 colon carcinoma and B16 melanoma tumors.

(B) WT and MT�/� TILs were stained with Zinpyr-1 for measuring free Zn followed by cell surface staining and analyzed by flow cytometry. C) Granzyme

expression in WT and MT�/� CD8+ TILs.



Figure S3. Overlay of Naive and In Vitro Activated CD8+ T Cell Transcriptomes on PC1 and PC2, Related to Figure 3

Naive CD8+CD62LhiCD44low were isolated from C57BL/6 mice by cell sorting and stimulated in vitro with plate bound anti-CD3/anti-CD28. On day 3, cells were

harvested and following RNA sequencing where overlaid onto the PCA plot generated from the DN, SP and DP subpopulations of WT and MT�/� TILs (STAR

Methods).
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Figure S4. Cytokine and Effector Molecule Expression in Single-Cell Clusters 7 and 5, Related to Figure 5

Centered and normalized RNA levels are shown for different cytokines or effector molecules (rows) for each of the cells (columns) in clusters 5 and 7 from the

single-cell analysis of Figure 5. To correct for differences in library complexity between cells and allow a comparison at the single-gene level, expression levels for

all genes and cells analyzed (Figure 5) were normalized by partitioning cells into 10 bins by their library complexity and conducting a median-normalization

procedure for each gene, as previously described (Gaublomme et al., 2015). IL2, GZMD andGZME are not included in this analysis because they did not pass the

required expression thresholds to be included in the overall single-cell analysis (STAR Methods). *p < 0.05, ***p < 0.001. Overall p value for cytokine/effector

molecule signature was p < 10�8, (Wilcoxon rank sum test).
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