ONLINE-ONLY SUPPLEMENTARY MATERIAL

Bottle A, Mariscalco G, Shaw MA, Benedetto U, Saratzis A, Mariani S, Bashir M, Aylin P, Jenkins D, Oo AY, Murphy GJ; on behalf of the UK Aortic Forum. Unwarranted variation in the quality of care for patients with diseases of the thoracic aorta.

Supplemental Methods	Pag. 2
Data sources and study populations	2
Supplemental Tables	Pag. 4
Table S1. The RECORD statement - checklist of items, extended from STROBE statement	4
Table S2. MOOSE checklist for meta-analyses of observational studies	9
Table S3. PRISMA checklist of items to include when reporting a systematic review or meta-analysis	11
Table S4. List of ICD10 codes for the comorbidities used in the HES analysis	13
Table S5. PICOS criteria for inclusion and exclusion of studies into meta-analysis	15
Table S6. Risk factors for patients affected by thoracic aortic disease who received treatment and	16
for patients who received non-emergent rather than emergent treatment (HES cohort)	
Table S7. Risk factors for six-month mortality in patients receiving treatment for thoracic aortic disease	18
and in those not receiving any thoracic aortic treatment (HES cohort)	
Table S8. Baseline, operative and mortality details by most distal aortic segment (NACSA cohort)	20
Table S9. Hospital volume terciles by most distal aortic segment (calculated by mean 3 year	22
annual activity) (NACSA cohort)	
Table S10. Unadjusted and adjusted in-hospital mortality rates by aortic procedure and hospital	23
volume (NACSA cohort)	
Table S11. Characteristics of the studies included in the systematic review	24
Table S12. Study outcomes stratified by hospital and surgeon volume	33
Table S13. Study outcomes for study with defined a specific thoracic aortic program	35
Table S14. Quality assessment of observational studies according the New-Ottawa Scale	36
Table S15. List of variables included in the final multivariable model	37
Supplemental Figures	Pag. 39
Figure S1. Adjusted six-month mortality in patients affected by TAD receiving an operation	39
(treated) and in those who did not (untreated) by county (HES cohort)	
Figure S2. Centre activity by the most distal aortic segment (NACSA dataset)	40
Figure S3. Correlation between the hospital activity (number of cases) and in-hospital mortality	41
(NACSA dataset)	
Figure S4. PRISMA flow chart of search strategy	42
Figure S5. Funnel plots showing the absence of publication bias	43
Figure S6. Forest plot for high volume versus low volume hospitals on operative mortality according	44
to the primary aortic pathology (upper panel), and forest plot reporting risk adjusted estimates	
for high- versus low-volume hospitals on operative mortality according to the primary aortic	
pathology (lower panel)	
Figure S7. Forest plots comparing the effect of hospital volume for secondary outcomes	45
Figure S8. Forest plots comparing the effect of a multidisciplinary TAD program presence on outcomes	46
Figure S9. Forest plots comparing the effect of surgeon volume for hospital mortality and	47
secondary outcomes Cumulative forest plots by NOS	
Figure S10. Forest plots comparing the effect of hospital status on hospital mortality	48
Supplemental References	Pag. 49

This supplementary material has been provided by the authors to give readers additional information about their work.

Supplemental Methods

Data sources and study populations

Data were extracted from the HES and the NICOR NACSA registry, according to The REporting of studies Conducted using Observational Routinely collected health Data (RECORD) statement.¹ The need to obtain informed consent from patients was waived by the University of Leicester Research Governance Office since the identifiable information was either removed or pseudonymized. The study was approved by the NICOR NACSA Research Board (study reference 14-ACS-25).

HES cohort

Hospital Episodes Statistics is the national hospital administrative database for England and covers all admissions to public (NHS) hospitals in the country.² The data contain demographic, administrative and clinical information including procedures and operations. The database includes 20 diagnostic fields coded using ICD-10 and 24 procedure fields coded using the UK's own OPCS-4 system (Office of Population, Censuses and Surveys: Classification of interventions and procedures, 4th Revision). Admissions with a primary or secondary diagnosis code of TAD (ICD10 I710, I711, I712, I715, I716) or with a procedure for TAD repair (OPCS codes L181, L182, L191, L192, L201, L202, L208, L209, L211, L212, L273, L283, L221) were extracted for the financial years 2005/6 to 2010/11 inclusive (the most recent for which we had out-of-hospital deaths from the Office for National Statistics [ONS] files linked to HES) (Table S1 in the online-only Data Supplement). Using HES's anonymised patient identifier and admission dates, admissions were ordered chronologically by patient, with their first one between 2005/6 and 2010/11 flagged. After tracking back five years from this first TAD admission (back to 2000/1), patients were excluded if they had had a TAD admission or procedure during these five years. The remainder were considered index TAD admissions. We then tracked forward in time from these index admissions to capture any TAD procedures (surgery or endovascular procedures) within six months.

Outcomes of interest were: having an operation (surgical and/or endovascular) either during the index or within six months of it; having an elective rather than an emergency operation; post-operative mortality within six months; and mortality within six months in patients not having an operation. Death was defined as that in or out of hospital within six months of the index admission date.

For each patient, the postcode sector was mapped to a county via online look-ups between postcode sector and local authority and then local authority and county. "County" is actually unitary authority, but many retain their county names and we therefore refer to "county" throughout. Some had to be combined due to small numbers, finally leaving 40 counties (e.g., the Isle of Wight was merged with Hampshire).

NACSA cohort

Prospectively collected data for all adult patients undergoing major aortic surgery were extracted from the NICOR NACSA registry (version 4.1.2) on 20th November 2014. All surgical procedures included in the study were performed in England between the 1st of April 2007 and the 31st of March 2013 and constituted the "complete-case" dataset. NICOR manage the audit and receive clinical direction and strategy from the Society for Cardiothoracic Surgery in Great Britain and Ireland (SCTS).16 Reproducible cleaning algorithms were applied to the database.29,30 Briefly, duplicate records and non-adult cardiac surgery entries were removed, transcriptional discrepancies harmonised and clinical and temporal conflicts and extreme values corrected or removed. The output from the pre-processing is regularly checked by reporting data summaries back to individual units for local validation and inspection as part of the NACSA in the UK.³⁻⁷

For each operation, records on patient characteristics and demographics, comorbidities, intraoperative factors, and postoperative outcomes were collected. Administrative data were also extracted including: patient admission, procedure and discharge dates and responsible consultant surgeon. For each record, calibrated logistic EuroSCORE was calculated.⁸ Missing data were assumed to be absent for categorical variables or replaced with the mean value for continuous variables. Ejection fraction was the categorical variable with the highest incidence of missing data (3.5%). The proportions of missing data for continuous variables were: age, 0%; BMI, 3.6%; cardiopulmonary bypass time, 2.3%; and aortic cross clamp time, 2.9%. The primary outcome measure was in-hospital mortality, defined as death in hospital following the index surgical procedure and prior

to transfer from the cardiac surgery unit as per the definition used in the national audit. Therefore, records were excluded from the analysis if in-hospital mortality status was missing (n=32, 0.4%).

Operations were divided into four separate categories based on the operated segment most distal to the aortic valve included in the procedure, including the aortic root or ascending aorta, aortic arch, descending aorta, and the thoracoabdominal aorta. Elective, urgent or emergency procedures were all included. Where operational pathology was available, it was divided into three categories: aneurysm, dissection and "other", the latest containing the categories "trauma" and "other".

To complement the NACSA study we contacted the Society for Cardiothoracic Surgery Unit Representative for every cardiac surgery unit in England and asked 4 questions with respect to the current configuration of TAD services in their unit. The questions were: 1. Is there a dedicated Aortic Team? 2. Is there a specific on call rota for aortic emergencies? 3. Is there a hybrid operating theatre? 4. Is there a specific aortic multidisciplinary team (MDT) meeting recognized in the consultant job plans? Obtained data were cross-referenced with the NACSA data on aortic case-volume, complexity and outcomes. Statistical analysis

Supplemental Tables

Table S1. The RECORD statement – checklist of items, extended from the STROBE statement

	Item No.	STROBE items and Recommendation ⁹	Location in manuscript where items are	RECORD items and Recommendation ¹	Location in manuscript where items are reported (pag n)
Title and abstract					
	1	 (a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an 	1,2	RECORD 1.1: The type of data used should be specified in the title or abstract. When possible, the name of the databases used should be included.	1,2
		informative and balanced summary of what was done and what was found		RECORD 1.2: If applicable, the geographic region and timeframe within which the study took place should be reported in the title or abstract.	1,2
				RECORD 1.3: If linkage between databases was conducted for the study, this should be clearly stated in the title or abstract.	1,2
Introduction					
Background rationale	2	Explain the scientific background and rationale for the investigation being reported	3		3
Objectives	3	State specific objectives, including any prespecified hypotheses	3		3
Methods					
Study Design	4	Present key elements of study design early in the paper	3,4 Supplemental Material		
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4,5 Supplemental Material		
Participants	6	(a) Cohort study - Give the eligibility criteria, and the sources and methods		RECORD 6.1: The methods of study population selection (such as codes or	3,4 Supplemental Material

		of selection of participants. Describe		algorithms used to identify subjects) should	
		methods of follow-up		be listed in detail. If this is not possible, an	
		Case-control study - Give the eligibility		explanation should be provided.	
		criteria, and the sources and methods			
		of case ascertainment and control		RECORD 6.2: Any validation studies of the	
		selection. Give the rationale for the		codes or algorithms used to select the	
		choice of cases and controls		population should be referenced. If	
		Cross-sectional study - Give the		validation was conducted for this study and	
		eligibility criteria, and the sources and		not published elsewhere, detailed methods	
		methods of selection of participants		and results should be provided.	
				·	
		(b) Cohort study - For matched studies,		RECORD 6.3: If the study involved linkage of	
		give matching criteria and number of		databases, consider use of a flow diagram	
		exposed and unexposed		or other graphical display to demonstrate	
		Case-control study - For matched		the data linkage process, including the	
		studies, give matching criteria and the		number of individuals with linked data at	
		number of controls per case		each stage.	
Variables	7	Clearly define all outcomes,	3,4	RECORD 7.1: A complete list of codes and	3,4
		exposures, predictors, potential	Supplemental Material	algorithms used to classify exposures,	Supplemental Material
		confounders, and effect modifiers.		outcomes, confounders, and effect	
		Give diagnostic criteria, if applicable.		modifiers should be provided. If these	
				cannot be reported, an explanation should	
				be provided.	
Data sources/	8	For each variable of interest, give	3,4,		
measurement		sources of data and details of methods	Supplemental Material		
		of assessment (measurement).			
		Describe comparability of assessment			
		methods if there is more than one			
		group			
Bias	9	Describe any efforts to address	Supplemental Material		
		potential sources of bias			
Study size	10	Explain how the study size was arrived	3,4		
		at			

Quantitative	11	Explain how quantitative variables	3.4		
variables		were handled in the analyses. If	Supplemental Material		
		applicable, describe which groupings			
		were chosen and why			
Statistical methods	12	(a) Describe all statistical methods,	5,6		
		including those used to control for	Supplemental Material		
		confounding			
		(b) Describe any methods used to			
		examine subgroups and interactions			
		(c) Explain how missing data were			
		addressed			
		(d) <i>Cohort study</i> - If applicable, explain			
		how loss to follow-up was addressed			
		Case-control study - If applicable,			
		explain how matching of cases and			
		controls was addressed			
		Cross-sectional study - If applicable,			
		describe analytical methods taking			
		account of sampling strategy			
		(e) Describe any sensitivity analyses			
Data access and				RECORD 12.1: Authors should describe the	3-6
cleaning methods				extent to which the investigators had access	Supplemental Material
				to the database population used to create	
				the study population.	
				RECORD 12.2: Authors should provide	
				information on the data cleaning methods	
				used in the study.	
Linkage				RECORD 12.3: State whether the study	3,4
				included person-level, institutional-level, or	Supplemental Material
				other data linkage across two or more	
				databases. The methods of linkage and	
				methods of linkage quality evaluation	
				should be provided.	
Desults				1	
Kesuits	Γ		Γ		Γ
Participants	13	(a) Report the numbers of individuals	8-11	RECORD 13.1: Describe in detail the	8-11

		 at each stage of the study (<i>e.g.</i>, numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed) (b) Give reasons for non-participation at each stage. (c) Consider use of a flow diagram 		selection of the persons included in the study (<i>i.e.</i> , study population selection) including filtering based on data quality, data availability and linkage. The selection of included persons can be described in the text and/or by means of the study flow diagram.	
Descriptive data	14	 (a) Give characteristics of study participants (<i>e.g.</i>, demographic, clinical, social) and information on exposures and potential confounders (b) Indicate the number of participants with missing data for each variable of interest (c) Cohort study - summarise follow-up time (<i>e.g.</i>, average and total amount) 	8-11		
Outcome data	15	Cohort study - Report numbers of outcome events or summary measures over time Case-control study - Report numbers in each exposure category, or summary measures of exposure Cross-sectional study - Report numbers of outcome events or summary measures	8-11		
Main results	16	 (a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (e.g., 95% confidence interval). Make clear which confounders were adjusted for and why they were included (b) Report category boundaries when continuous variables were categorized (c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period 	8-11		
Other analyses	17	Report other analyses done—e.g.,	8-11		

		analyses of subgroups and interactions, and sensitivity analyses	Supplemental Material		
Discussion					
Key results	18	Summarise key results with reference to study objectives	12,13		
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias	13-15	RECORD 19.1: Discuss the implications of using data that were not created or collected to answer the specific research question(s). Include discussion of misclassification bias, unmeasured confounding, missing data, and changing eligibility over time, as they pertain to the study being reported.	13-15
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence	12,16		
Generalisability	21	Discuss the generalisability (external validity) of the study results	16		
Other Information					
Funding	22	Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based	17		
Accessibility of protocol, raw data, and programming code				RECORD 22.1: Authors should provide information on how to access any supplemental information such as the study protocol, raw data, or programming code.	Supplemental Material

Table S2. MOOSE Checklist for Meta-analyses of Observational Studies¹⁰

ltem N.	Recommendation				
Reporting of	background should include				
1	Problem definition	3			
2	Hypothesis statement	3			
3	Description of study outcome(s)	4,5, tab S5			
4	Type of exposure or intervention used	5, tab S5			
5	Type of study designs used	4,5			
6	Study population	5			
Reporting of	search strategy should include				
7	Qualifications of searchers (eg, librarians and investigators)	4,5			
8	Search strategy, including time period included in the synthesis and key words	4,5			
9	Effort to include all available studies, including contact with authors	Ref.#32			
10	Databases and registries searched	5 Ref.#32			
11	Search software used, name and version, including special features used (eg, explosion)	Ref.#32			
12	Use of hand searching (eg, reference lists of obtained articles)	Ref.#32			
13	List of citations located and those excluded, including justification	fig S4 Ref.#32			
14	Method of addressing articles published in languages other than English	Ref.#32			
15	Method of handling abstracts and unpublished studies	Ref.#32			
16	Description of any contact with authors	Ref.#32			
Reporting of methods should include					
17	Description of relevance or appropriateness of studies assembled for assessing the hypothesis to be tested	Ref.#32			
18	Rationale for the selection and coding of data (eg, sound clinical principles or convenience)	Ref.#32			
19	Documentation of how data were classified and coded (eg, multiple raters, blinding and interrater reliability)	Ref.#32			
20	Assessment of confounding (eg, comparability of cases and controls in studies where appropriate)	Ref.#32			
21	Assessment of study quality, including blinding of quality assessors, stratification or regression on possible predictors of study results	5 Ref.#32			
22	Assessment of heterogeneity	Supplement			
23	Description of statistical methods (eg, complete description of fixed or random effects models, justification of whether the chosen models account for predictors of study results, dose-response models, or cumulative meta-analysis) in sufficient detail to be replicated	Supplement			
24	Provision of appropriate tables and graphics	Supplement			
Reporting of	results should include				
25	Graphic summarizing individual study estimates and overall estimate	fig 4			

		fig S9-13
26	Table giving descriptive information for each study included	tab S11-13
27	Results of sensitivity testing (eg, subgroup analysis)	11,12
28	Indication of statistical uncertainty of findings	11,12
Reporting of	discussion should include	
29	Quantitative assessment of bias (eg, publication bias)	Supplement
30	Justification for exclusion (eg, exclusion of non-English language citations)	Ref.#32
31	Assessment of quality of included studies	tab S14
Reporting of	conclusions should include	
32	Consideration of alternative explanations for observed results	13,14
33	Generalization of the conclusions (ie, appropriate for the data presented and within the domain of the literature review)	16
34	Guidelines for future research	16
35	Disclosure of funding source	17,18

Section/topic	#	Checklist Item	Reported on Page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT			
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of what is already known.	3
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	tab V
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	4,5 Ref.#32
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	4,5 tab S5
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	4,5 Ref.#32
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	5 Ref.#32
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	2 Ref.#32
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	5 Ref.#32
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	Ref.#32
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	Ref.#32

Table S3. PRISMA checklist of Items to Include when Reporting a Systematic Review or Meta-analysis¹¹

13	State the principal summary measures (e.g., risk ratio, difference in means).	Supplement
14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	Supplement
15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	Supplement
16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	Supplement
17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	11,12
18	For each study, present characteristics for which data were extracted and provide the citations.	tab S11-13
19	Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).	tab S14
20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.	fig 4 tab S12-13
21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	fig 4 fig S9-13
22	Present results of any assessment of risk of bias across studies (see Item 15).	tab S14-15
23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	Supplement
		<u> </u>
24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., healthcare providers, users, and policy makers).	13
25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., incomplete retrieval of identified research, reporting bias).	14-16
26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	16
27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	17,18
	13 14 15 16 17 18 19 20 21 22 23 24 25 26 27	13State the principal summary measures (e.g., risk ratio, difference in means).14Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., 1) for each meta-analysis.15Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).16Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.7Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.18For each study, present characteristics for which data were extracted and provide the citations.19Present data on risk of bias of each study and, if available, any outcome level assessment (see item 12).20For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group (b) effect estimates and confidence intervals, ideally with a forest plot.212Present results of each meta-analysis done, including confidence intervals and measures of consistency.22Present results of any assessment of risk of bias across studies (see Item 15).23Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).24Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., heatthcare providers, users, and policy makers).25Discuss limitations at study and outcome level (e.g., risk of bias), and at review-level (e.g., inc

Table S4. List of ICD-10 codes for the comorbidities used in the HES analysis

Code	Description
110-115	I10 Essential (primary) hypertension
Hypertensive	I11 Hypertensive heart disease
diseases	I12 Hypertensive renal disease
	I13 Hypertensive heart and renal disease
	I15 Secondary hypertension
120-125 Ischaemic	I20 Angina pectoris
heart diseases	I21 Acute myocardial infarction
	I22 Subsequent myocardial infarction
	123 Certain current complications following acute myocardial infarction
	I24 Other acute ischaemic heart diseases
	125 Chronic ischaemic heart disease
130-152 Other	134 Nonrheumatic mitral valve disorders
forms of heart	135 Nonrheumatic aortic valve disorders
disease	I36 Nonrheumatic tricuspid valve disorders
	137 Pulmonary valve disorders
160-169	I60 Subarachnoid haemorrhage
Cerebrovascular	l61 Intracerebral haemorrhage
diseases	162 Other nontraumatic intracranial haemorrhage
	163 Cerebral Infarction
	163.0 Cerebral infarction due to thrombosis of precerebral arteries
	163.1 Cerebral infarction due to emposism of precerebral afteries
	arterior
	dicerebral infarction due to thrombosis of cerebral arteries
	163.4 Cerebral infarction due to embolism of cerebral arteries
	163.5 Cerebral infarction due to unspecified occlusion or steposis of cerebral arteries
	163.6 Cerebral infarction due to cerebral venous thrombosis, nonpyogenic
	163.8 Other cerebral infarction
	163.9 Cerebral infarction, unspecified
	164 Stroke, not specified as haemorrhage or infarction
	I65 Occlusion and stenosis of precerebral arteries, not resulting in cerebral infarction
	166 Occlusion and stenosis of cerebral arteries, not resulting in cerebral infarction
	I67 Other cerebrovascular diseases
	I68 Cerebrovascular disorders in diseases classified elsewhere
	I69 Sequelae of cerebrovascular disease
170	I70.0 Atherosclerosis of aorta
Atherosclerosis	I70.1 Atherosclerosis of renal artery
	I70.2 Atherosclerosis of arteries of extremities
	I70.8 Atherosclerosis of other arteries
	170.9 Generalized and unspecified atherosclerosis
171 Aortic	I71.3 Abdominal aortic aneurysm, ruptured
Aneurysms not	I71.4 Abdominal aortic aneurysm, without mention of rupture
affecting the	171.8 Aortic aneurysm of unspecified site, ruptured
thoracic aorta	171.9 Aortic aneurysm of unspecified site, without mention of rupture
1/2 Other	172.0 Aneurysm and dissection of carotid artery
aneurysm and	172.1 Aneurysm and dissection of artery of upper extremity
dissection	172.2 Aneurysm and dissection of renal artery
(not affecting the	172.3 Aneurysm and dissection of artery of lower extremity
thoracic aorta)	172.5 Aneurysm and dissection of other proceedbral arteries
	172.8 Aneurysm and dissection of other specified arteries
	172.9 Aneurysm and dissection of unspecified site
173 Other	173.0 Raynaud syndrome
peripheral	173.1 Thromboangilitis obliterans [Ruerger]
vascular diseases	173.8 Other specified peripheral vascular diseases

	172 O Derinherel usseuler disease unspecified
	173.9 Peripheral vascular disease, unspecified
177 Other	177.6 Arteritis, unspecified
disorders of	177.8 Other specified disorders of arteries and arterioles
arteries and	177.2 Rupture of artery
arterioles	
179 Disorders of	179.0 Aneurysm of aorta in diseases classified elsewhere
arteries, arterioles	179.1 Aortitis in diseases classified elsewhere
and capillaries in	179.2 Peripheral angiopathy in diseases classified elsewhere
diseases classified	179.8 Other disorders of arteries, arterioles and capillaries in diseases classified
elsewhere	elsewhere
Q20-Q28	Q20 Congenital malformations of cardiac chambers and connections
Congenital	Q21 Congenital malformations of cardiac septa
malformations of	Q22 Congenital malformations of pulmonary and tricuspid valves
the circulatory	Q23 Congenital malformations of aortic and mitral valves
system	Q24 Other congenital malformations of heart
	Q25 Congenital malformations of great arteries
	Q26 Congenital malformations of great veins
	Q27 Other congenital malformations of peripheral vascular system
	Q28 Other congenital malformations of circulatory system
Q79.6 Ehlers-	
Danlos syndrome	
Q87 Other	Q87.4 Marfan syndrome
specified	Q87.5 Other congenital malformation syndromes with other skeletal changes
congenital	Q87.8 Other specified congenital malformation syndromes, not elsewhere classified
malformation	
syndromes	
affecting multiple	
systems	
J40-J44 Chronic	J40 Bronchitis, not specified as acute or chronic
obstructive	J41 Simple and mucopurulent chronic bronchitis
pulmonary	J42 Unspecified chronic bronchitis
disease	J43 Emphysema
	J44 Other chronic obstructive pulmonary disease
E10-E14 Diabetes	E10 Insulin-dependent diabetes mellitus
mellitus	E11 Non-insulin-dependent diabetes mellitus
	E12 Malnutrition-related diabetes mellitus
	E13 Other specified diabetes mellitus
	E14 Unspecified diabetes mellitus
E66 Obesity	
E78 Disorders of	
lipoprotein	
metabolism and	
other lipidaemias	

Table S5. PICOS criteria for inclusion and	l exclusion of studies into meta-analysis
--	---

Parameter	Inclusion criteria	Exclusion criteria
Patients	Adult patients affected by TAD	Patients affected by other cardiac diseases other than TAD
Intervention*	Open surgery or endovascular repair of TAD	Study without definition of volume activity
Comparator	Hospital volume activity	-
Outcomes	<u>Primary</u> : in-hospital/30-day mortality (all cause) <u>Secondary</u> : postoperative stroke; re-exploration for bleeding/tamponade; postoperative renal failure; length of hospitalization	Late mortality
Study design	Clinical randomised trials Controlled before-and-after studies Prospective and retrospective cohort studies Cross-sectional studies Case-control studies	Repeat publications of the same analysis or dataset Conference abstracts Editorials & opinion pieces Books or grey literature

Abbreviations: TAD, thoracic aortic disease.

* Main intervention/comparator; other intervention/comparator: surgeon volume (high- vs. low-volume); teaching hospital status (teaching vs. non-teaching); urban hospital status (urban vs. rural); aortic dedicated team presence (aortic team vs. no-aortic team); dedicated thoracic aortic surgery program (program vs. no program; presence of cardiothoracic unit along with hybrid room.

Table S6. Risk factors for patients affected by thoracic aortic disease who received treatment and forpatients who received non-emergent rather than emergent treatment (HES cohort)

		Receiving treatment		Receiving non-emergent	
Factor				rather than emergency	
				treatment	
	Value	OR (95% CI)	P-value	OR (95% CI)	P-value
Age	0-39	2.15 (1.82 to 2.53)	<.0001	0.68 (0.50 to 0.91)	0.01
	40-44	1.55 (1.27 to 1.90)	<.0001	1.12 (0.77 to 1.64)	0.5504
	45-49	1.36 (1.13 to 1.64)	0.0012	0.98 (0.68 to 1.40)	0.9022
	50-54	1.32 (1.12 to 1.56)	0.0011	0.98 (0.71 to 1.34)	0.8743
	55-59	1.35 (1.17 to 1.56)	<.0001	0.88 (0.67 to 1.16)	0.3626
	60-64	1.16 (1.01 to 1.32)	0.0315	0.87 (0.67 to 1.12)	0.2699
	65-69	1		1	
	70-74	0.84 (0.75 to 0.95)	0.0041	0.88 (0.70 to 1.10)	0.2626
	75-79	0.61 (0.54 to 0.69)	<.0001	0.85 (0.67 to 1.07)	0.1621
	80-84	0.29 (0.25 to 0.33)	<.0001	0.52 (0.39 to 0.68)	<.0001
	85-89	0.11 (0.09 to 0.14)	<.0001	0.29 (0.18 to 0.46)	<.0001
	90+	0.02 (0.01 to 0.04)	<.0001	0.37 (0.09 to 1.45)	0.1516
Sex	Female	1.04 (0.97 to 1.12)	0.2385	1.00 (0.87 to 1.15)	0.9975
	Male	1		1	
Year	2004	1.24 (1.09 to 1.40)	0.0009	0.88 (0.69 to 1.13)	0.3185
Year	2005	1.30 (1.15 to 1.47)	<.0001	0.84 (0.66 to 1.06)	0.1313
Year	2006	1.36 (1.20 to 1.53)	<.0001	0.75 (0.60 to 0.94)	0.0131
Year	2007	1.21 (1.07 to 1.35)	0.0014	0.83 (0.66 to 1.04)	0.1012
Year	2008	1.01 (0.90 to 1.13)	0.8694	0.97 (0.77 to 1.21)	0.7698
Year	2009	0.98 (0.87 to 1.09)	0.6823	0.93 (0.74 to 1.16)	0.5082
Year	2010	1		1	
Deprivation	1 (least	1		1	
Densitientien	deprived)	0.05 (0.06 += 4.04)	0.2544		0.0245
Deprivation	2	0.95 (0.86 to 1.04)	0.2541	1.05 (0.87 to 1.26)	0.6245
Deprivation	3	0.88 (0.79 to 0.97)	0.0093	0.74 (0.61 to 0.90)	0.0021
Deprivation	4 5 (mont	0.82 (0.73 to 0.91)	0.0001	0.83 (0.68 to 1.01)	0.0605
Deprivation	5 (most	0.09 (0.02 (0 0.78)	<.0001	0.61 (0.49 (0 0.76)	<.0001
Athorosclorosis	deprived)	1 /F /1 2/ to 1 69)	< 0001	$0.08 (0.74 \pm 0.1.20)$	0.9616
Cancor		1.43(1.24(0)1.06)	< 0001	1.35 (0.74 to 1.23)	0.0010
Congenital		1 17 (1 02 to 1 34)	0.0192	1.23(0.37 to 1.00)	< 0001
malformation		1.17 (1.03 (0 1.34)	0.0182	1.82 (1.45 (0 2.51)	<.0001
circulatory					
disorders					
COPD		0.64 (0.57 to 0.71)	<.0001	0.79 (0.63 to 0.98)	0.0332
Cerebrovascular		0.83 (0.73 to 0.94)	0.0025	0.86 (0.67 to 1.11)	0.2421
disease		,			-
Diabetes		0.82 (0.73 to 0.93)	0.0019	1.02 (0.80 to 1.30)	0.8775
Hypertension		1.04 (0.97 to 1.12)	0.3026	1.15 (1.00 to 1.33)	0.0444
Ischaemic heart		0.84 (0.78 to 0.91)	<.0001	1.38 (1.20 to 1.60)	<.0001
disease					
Lipid disorders		1.06 (0.97 to 1.15)	0.1928	1.57 (1.33 to 1.84)	<.0001
Other aneurysm		1.07 (0.86 to 1.34)	0.5549	0.86 (0.58 to 1.28)	0.4506
Other aortic		2.42 (2.24 to 2.63)	<.0001	1.32 (1.15 to 1.53)	0.0001
disease					
Disorders of		2.04 (1.05 to 2.77)	<.0001	0.30 (0.18 to 0.49)	<.0001
other arteries					
Other congenital		0.90 (0.72 to 1.12)	0.3464	3.17 (2.04 to 4.91)	<.0001
malformation					
Other IHD		1.41 (1.31 to 1.51)	<.0001	1.52 (1.33 to 1.74)	<.0001

Other PVD	0.90 (0.78 to 1.05)	0.1857	0.85 (0.64 to 1.14)	0.2802
Renal disease	0.58 (0.50 to 0.68)	<.0001	0.74 (0.55 to 1.00)	0.0466
Dissection	0.71 (0.66 to 0.77)	<.0001	0.06 (0.05 to 0.08)	<.0001

Abbreviations: CI, confidence interval; COPD, chronic pulmonary disease; HES, hospital episodes statistics; IHD, ischemic heart disease; OR, odds ratio; PVD, peripheral vascular disease.

Factor		Mortality in those		Mortality in those	
		receiving treatment		not receiving	
				treatment	
	Value	OR (95% CI)	p value	OR (95% CI)	p value
Age	0-39	0.75 (0.51 to 1.10)	0.1407	0.45 (0.33 to 0.61)	<.0001
Age	40-44	0.37 (0.20 to 0.67)	0.0011	0.70 (0.50 to 0.98)	0.0351
Age	45-49	0.41 (0.24 to 0.71)	0.0014	0.49 (0.35 to 0.67)	<.0001
Age	50-54	0.60 (0.39 to 0.93)	0.0211	0.57 (0.43 to 0.75)	<.0001
Age	55-59	0.77 (0.55 to 1.08)	0.1307	0.72 (0.58 to 0.90)	0.0039
Age	60-64	0.93 (0.69 to 1.26)	0.6272	0.89 (0.74 to 1.08)	0.2349
Age	65-69	1		1	
Age	70-74	1.12 (0.85 to 1.46)	0.4236	1.32 (1.14 to 1.54)	0.0003
Age	75-79	1.35 (1.03 to 1.77)	0.0272	1.66 (1.44 to 1.92)	<.0001
Age	80-84	1.57 (1.14 to 2.16)	0.0057	2.03 (1.77 to 2.34)	<.0001
Age	85+	2.72 (1.71 to 4.32)	<.0001	2.85 (2.47 to 3.28)	<.0001
sex	Female	0.96 (0.81 to 1.13)	0.6129	0.79 (0.74 to 0.85)	<.0001
sex	Male	1		1	
Year	2004	1.38 (1.02 to 1.85)	0.0343	1.70 (1.50 to 1.94)	<.0001
Year	2005	1.84 (1.39 to 2.44)	<.0001	1.65 (1.46 to 1.88)	<.0001
Year	2006	1.20 (0.90 to 1.59)	0.2115	1.40 (1.23 to 1.58)	<.0001
Year	2007	1.20 (0.91 to 1.58)	0.2048	1.21 (1.07 to 1.37)	0.0021
Year	2008	1.16 (0.87 to 1.53)	0.3118	1.13 (1.00 to 1.27)	0.0445
Year	2009	0.97 (0.73 to 1.29)	0.8283	1.03 (0.92 to 1.16)	0.5994
Year	2010	1		1	
Elective adm	No	0.29 (0.24 to 0.34)	<.0001	0.26 (0.23 to 0.28)	<.0001
Elective adm	Yes	1		1	
Deprivation	1 (least	1		1	
	deprived)				
Deprivation	2	1.11 (0.88 to 1.40)	0.3893	1.02 (0.91 to 1.14)	0.7717
Deprivation	3	1.18 (0.94 to 1.50)	0.1581	1.12 (1.00 to 1.25)	0.0413
Deprivation	4	1.20 (0.94 to 1.53)	0.1517	1.18 (1.05 to 1.32)	0.0047
Deprivation	5 (most	1.13 (0.86 to 1.49)	0.3757	1.11 (0.98 to 1.25)	0.0877
	deprived)				
Atherosclerosis		1.73 (1.27 to 2.35)	0.0005	1.17 (0.99 to 1.38)	0.0658
Cancer		1.72 (1.31 to 2.27)	0.0001	1.65 (1.49 to 1.83)	<.0001
Congenital		0.88 (0.62 to 1.24)	0.4621	0.70 (0.51 to 0.94)	0.0188
malformation					
circulatory					
disorders			0.0100		0001
COPD		1.37 (1.07 to 1.74)	0.0126	1.28 (1.17 to 1.40)	<.0001
Cerebrovascular		1.92 (1.50 to 2.46)	<.0001	1.25 (1.13 to 1.39)	<.0001
disease			0.4400		0.0545
Diabetes		1.25 (0.95 to 1.65)	0.1103	1.06 (0.94 to 1.18)	0.3545
Hypertension		0.85 (0.71 to 1.00)	0.0508	0.93 (0.86 to 1.00)	0.0557
Ischaemic neart		1.45 (1.22 to 1.72)	<.0001	0.81 (0.75 to 0.87)	<.0001
		0.77 (0.62 + 0.04)	0.0002	0 72 (0 66 +0 0 90)	< 0001
Other anothers			0.0092		<.0001
Other aneurysm			0.0265	1.09 (0.85 to 1.39)	0.0009
Utner aortic		1.17 (0.97 to 1.40)	0.0969	1.18 (1.07 to 1.29)	0.0008
uisease Disordors of			0.7054		0.0225
Disorders of		0.92 (0.52 to 1.64)	0.7854	1.02 (0.08 to 1.53)	0.9235
Other arteries			0 2022		0.000
other congenital		0.71 (0.38 to 1.34)	0.2933	0.08 (0.43 to 1.07)	0.096
mailormation				1	

Table S7. Risk factors for 6-month mortality in patients receiving treatment for thoracic aortic disease and in those not receiving any thoracic aortic treatment (HES cohort)

Other IHD	1.00 (0.85 to 1.18)	0.9932	1.15 (1.07 to 1.23)	0.0002
Other PVD	1.28 (0.93 to 1.78)	0.1332	1.44 (1.25 to 1.66)	<.0001
Renal disease	2.11 (1.56 to 2.85)	<.0001	1.55 (1.38 to 1.73)	<.0001
Dissection	1.07 (0.88 to 1.30)	0.509	1.83 (1.69 to 1.98)	<.0001

Abbreviations: Adm, admission; CI, confidence interval; COPD, chronic pulmonary disease; HES, hospital episodes statistics; IHD, ischemic heart disease; OR, odds ratio; PVD, peripheral vascular disease.

Table S8. Baseline, operative a	nd mortality details b	y most distal aortic se	gment (NACSA cohort)
---------------------------------	------------------------	-------------------------	----------------------

Variables*	Root/Ascending Aorta (n = 6848)	Aortic Arch (n = 762)	Descending Aorta (n = 320)	Thoracoabdominal (n = 128)
Demographics				
Age at operation (years)	64 (51, 73)	68 (57, 74)	62 (45, 71)	63 (48, 70)
BMI (kg/m2)	26.9 (24.1, 30.1)	26.5 (23.8, 29.8)	26.1 (23.4, 29.3)	25.0 (21.8, 28.3)
Female gender	2216 (32.4)	308 (40.4)	117 (36.6)	50 (39.1)
Co-morbidities				
Unstable angina	332 (4.9)	29 (3.8)	7 (2.2)	4 (3.1)
NYHA ≥ III class	2075 (30.3)	165 (21.7)	58 (18.1)	18 (14.1)
MI within 90 days of operation	246 (3.6)	15 (2.0)	0 (0)	7 (5.5)
Previous cardiac surgery	984 (14.4)	121 (15.9)	113 (35.3)	34 (26.6)
Previous aortic surgery	199 (2.9)	59 (7.7)	60 (18.8)	17 (13.3)
Diabetes	487 (7.1)	44 (5.8)	14 (4.4)	8 (6.3)
Current smoker	749 (10.9)	90 (11.8)	46 (14.4)	22 (17.2)
Hypertension	4148 (60.6)	569 (74.7)	231 (72.2)	88 (68.8)
Creatinine > 200 (µmol/l)	190 (2.8)	22 (2.9)	7 (2.2)	5 (3.9)
History of renal dysfunction	106 (1.6)	19 (2.5)	6 (1.9)	3 (2.3)
History of pulmonary disease	783 (11.4)	111 (14.6)	47 (14.7)	33 (25.8)
History of stroke	558 (8.2)	80 (10.5)	19 (5.9)	4 (3.1)
Neurological dysfunction	252 (3.7)	38 (5.0)	14 (4.4)	2 (1.6)
Peripheral vascular disease	909 (13.3)	242 (31.8)	104 (32.5)	57 (44.5)
Non sinus cardiac rhythm	828 (12.1)	85 (11.2)	19 (5.9)	6 (4.7)
Triple vessel disease	318 (4.6)	35 (4.6)	6 (1.9)	12 (9.4)
Left main stem disease	138 (2.0)	8 (1.1)	2 (0.6)	4 (3.1)
Moderate LVEF (30-50%)	1418 (20.7	125 (16.4)	29 (9.1)	12 (9.4)
Poor LVEF (<30%)	308 (4.5)	17 (2.2)	3 (0.9)	0 (0)
PA systolic > 60mmHg	90 (1.3)	4 (0.5)	0 (0)	0 (0)
Pre-operative IV nitrates	324 (4.7)	60 (7.9)	19 (5.9)	8 (6.3)

Pre-operative IV inotropes	187 (2.7)	15 (2.0)	18 (5.6)	6 (4.7)	
Pre-operative ventilation	138 (2.0)	15 (2.0)	13 (4.1)	0 (0)	
Pre-operative cardiogenic shock	306 (4.5)	24 (3.2)	10 (3.1)	2 (1.6)	
Operative details					
Non-elective priority	2438 (35.6)	317 (41.6)	141 (44.1)	45 (35.2)	
Urgent priority	1076 (15.7)	127 (16.7)	64 (20.0)	28 (21.9)	
Emergency priority	1249 (18.2)	177 (23.2)	68 (21.3)	16 (12.5)	
Salvage priority	113 (1.7)	13 (1.7)	9 (2.8)	1 (0.8)	
Concomitant CABG operation	1334 (19.5)	122 (16.0)	12 (3.8)	14 (10.9)	
Concomitant valve operation	4963 (72.5)	326 (42.8)	24 (7.5)	6 (4.7)	
Concomitant 'other' operation	2320 (33.9)	188 (24.7)	99 (30.9)	39 (30.5)	
Dominant pathology					
Aneurysm	3800 (55.5)	410 (53.8)	138 (43.1)	74 (57.8)	
Dissection	1410 (20.6)	269 (35.3)	93 (29.1)	47 (36.7)	
Trauma	27 (0.4)	4 (0.5)	19 (5.9)	0 (0)	
'Other'	1113 (16.3)	58 (7.6)	58 (18.1)	5 (3.9)	
Data N/A	498 (7.3)	21 (2.8)	12 (3.8)	2 (1.6)	
CPB time (minutes)	157 (116, 216)	205 (152, 266)	184 (78, 260)	164 (110, 227)	
ACC time (minutes)	107 (79, 142)	112 (70, 156)	42 (0, 100)	27 (0, 117)	
Circulatory arrest time (minutes)	25 (18, 33)	28 (18, 46)	36 (28, 57)	27 (15, 42)	
Outcome					
In-hospital mortality	569 (8.3)	101 (13.3)	49 (15.3)	29 (22.7)	

Abbreviations: ACC, aortic cross clamp time; CABG, coronary artery bypass grafting; CPB, cardiopulmonary bypass; LVEF, left ventricle ejection fraction; N/A, not available; NACSA, National Adult Cardiac Surgery Audit; NYHA, New York Heart Association; PA, pulmonary artery.

*Numerical data are expressed as median and interquartile range (IQR); categorical data as absolute number (percentage).

Toutiles of activity.*	Low volume	Medium	volume	High volume
	(n = 1308)	(n = 2	159)	(n = 4591)
Category range for all aortic surgery	0 to 31 operations	32 to 52 o	perations	53 or more operations
Root / Ascending Aorta	1211 (92.6)	1798 (83.3)		3839 (83.6)
Aortic Arch	75 (5.7)	275 (12.7)		412 (9.0)
Descending Aorta	17 (1.3)	58 (2.7)		245 (5.3)
Thorocoabdominal Aorta	5 (0.4)	28 (1.3)		95 (2.1)
the later and the second s	Lower half activity Uppe		oper half activity	
Haij (mealan) of activity	(n = 2254)	(n = 2254)		(n = 5804)
Category range for all aortic surgery	0 to 38 operat	tions	39 o	r more operations
Root / Ascending aorta	1964 (87.1)		4884 (84.2)
Aortic Arch	214 (9.5)		548 (9.4)	
Descending Thoracic Aorta	44 (2.0)			276 (4.8)
Thorocoabdominal Aorta	32 (1.4)			96 (1.7)

Table S9. Hospital volume tertiles by most distal aortic segment (calculated by mean 3 year annual activity) (NACSA cohort)

Abbreviations: NACSA, National Adult Cardiac Surgery Audit.

*Data are expressed in absolute numbers (percentage).

Tables S10. Unadjusted and adjusted in-hospital mortality rates by aortic procedure and hospital volume (NACSA cohort)*

	Low volume	Medium volume	High volume
Root / Ascending Aorta			
Observed mortality rate (%)	10.7	8.3	7.4
Unadjusted odds ratio (95% CI)	Reference	0.76 (0.60, 0.96)	0.67 (0.54, 0.83)
Adjusted odds ratio (95% CI)	Reference	0.75 (0.57, 0.98)	0.65 (0.51, 0.83)
Aortic Arch			
Observed mortality rate (%)	13.1	13.2	13.4
Unadjusted odds ratio (95% CI)	Reference	1.01 (0.52, 1.97)	1.02 (0.54, 1.93)
Adjusted odds ratio (95% CI)	Reference	1.28 (0.61, 2.65)	1.27 (0.63, 2.55)
Descending Aorta			
Observed mortality rate(%)	20.0	28.1	11.8
Unadjusted odds ratio (95% CI)	Reference	1.56 (0.50, 4.87)	0.53 (0.19, 1.53)
Adjusted odds ratio (95% CI)	Reference	2.36 (0.64, 8.76)	0.75 (0.23, 2.48)
Thorocoabdominal Aorta			
Observed mortality rate (%)	14.3	28.6	22.6
Unadjusted odds ratio (95% CI)	Reference	2.40 (0.41, 14.11)	1.75 (0.36, 8.44)
Adjusted odds ratio (95% CI)	Reference	2.28 (0.35, 14.65)	2.19 (0.42, 11.50)

Abbreviations: CI, confidence interval; NACSA, National Adult Cardiac Surgery Audit.

*Hospital volume was calculated by mean of the last 3 year annual activity and subdivided for tertiles of activity.

Table S11. Characteristics of the studies included in the systematic review

Study (Author, Year)	Design	Country (Source)*	Sample size	Study period	Inclusion criteria	Exclusion criteria	Outcomes	Aortic centre configuration	Hospital Volume Threshold
Shaffer et al, ¹² 2015	Retrospective cohort study, Multicenter	USA (MEDPAR)	5578	1999-2010	Open descending thoracic aorta and thoracoabdominal repair		Postoperative survival	No	(cases/yr) LV:<50† MV: 50-200 HV:>200
Shaffer et al, ¹³ 2015	Retrospective cohort study, Multicenter	USA (MEDPAR)	11996	2005-2010	TEVAR		Postoperative survival	No	LV:<20† MV: 20-99 HV:≥100
Bhatt et al, ¹⁴ 2015	Retrospective cohort study, Multicenter	USA (NIS)	105	2000-2011	TEVAR in adult aortic coarctation		Vascular complications (vascular injury, hemorrhage requiring transfusion, aortic dissection, arteriovenous fistula, accidental puncture, other vascular complications), any cardiac complications, open vascular/cardiac surgery, stroke/TIA, any respiratory complications, PE/DVT, anaesthetic complications, infection	NO	LV:<3 HV:≥3
Brat et al, ¹⁵ 2015	Retrospective cohort study, Monocenter	Czech Republic (Inst.Dat.)	30	1999-2013	Elective aortic arch aneurysm	Acute operation and aortic dissection	30-day/in-hospital mortality, postop complications (permanent/transient neurological deficit,	No	NA

		1			1				
							haemodialysis,		
							reoperation for		
							bleeding,		
							postoperative blood		
							loss, intubation), LOS		
Grau et al, ¹⁶	Retrospective	USA	54	2002-2013	Acute type A		In-hospital mortality,	Yes	NA
2015	case	(Inst.Dat.)			aortic dissection		postop complications		
	controlled,						(cardiac arrest,		
	Monocenter						stroke, ARF,		
							reoperation for		
							bleeding, AF,		
							prolonged		
							intubation), LOS,		
Lenos et al, ¹⁷	Retrospective	Germany	162	2002-2013	Acute type A		30-day/in-hospital	No	NA
2015	cohort study,	(Inst.Dat.)			aortic dissection		mortality, 90-day		
	Monocenter						mortality, new		
							permanent		
							neurological deficit,		
							adverse outcome		
Iribarne et al, ¹⁸	Retrospective	USA	1230	2005-2008	Acute aortic	Non-emergent	In-hospital mortality,	No	LV: ≤ 5
2015	cohort study,	(NIS)			dissection	pts, pts<18 yr,	postop complications		MV: 6-10
	Multicenter					TEVAR	(AMI, stroke, ARF,		HV: >10
							pneumonia,		
							septicaemia), LOS,		
							discharge disposition,		
							hospitalization costs		
Murzi et al, ¹⁹	Retrospective	Italy	867	2003-2013	Aortic root,	Descending	In-hospital mortality,	No	NA
2015	cohort study,	(Inst.Dat.)			ascending and	and thoraco-	postop complications		
	Monocenter				aortic arch	abdominal	(AMI, stroke, ARF,		
					surgery	aortic surgery	reoperation for		
							bleeding, pneumonia,		
							pulmonary		
							complications,		
							delirium, postop		
							aortic dissection,		
							postop AF, renal		
							dysfunction,		
							infective. AV block.		

							septicaemia, myocardial infarction)		
Andersen et al, ²⁰ 2014	Retrospective case controlled, Monocenter	USA (Inst.Dat.)	128	1999-2011	Acute type A aortic dissection	latrogenic dissection	30-day/in-hospital mortality, 30 day/in- hospital postop complications (AMI, stroke, ARF, reoperation for bleeding, prolonged ventilation, delayed sternum closure, DSWI, new-onset dialysis, tracheostomy), surgeon-specific mortality rates, LOS, postoperative survival	Yes	NA
Sales et al, ²¹ 2014	Retrospective case controlled, Monocenter	Brazil (Inst.Dat.)	332	2003-2010	Thoracic aortic surgery, TAAA surgery		In-hospital mortality, postop complications (AMI, stroke, ARF, reopening for bleeding, pneumonia, mediastinitis, AV block, arrhythmia, sepsis, myocardial ischemia, pleural effusion, low cardiac output), LOS	Yes	NA
Weiss et al, ²² 2014	Retrospective cohort study, Multicenter	USA (OSHPD)	1188	1995-2010	ΤΑΑΑ	TAA, AAA, pts < 18 yr	In-hospital mortality, postop complications (AMI, stroke, ARF, prolonged intubation, ARDS, infection, sepsis, paraplegia)	No	LV: <9 HV: ≥9
Patel et al, ²³ 2013	Retrospective cohort study,	USA (MEDPAR)	7071	2004-2007	TAA-descending (intact)	TAA ruptured, TAAA, aortic	30-day mortality, postop complication	No	Open surgery:

	Multicenter					dissection, ascending aortic aneurysm, concomitant cardiac procedures, use of cardioplegia, use of HCA	(ARF, reopening for bleeding, cardiac, infectious, pulmonary, graft), 1- /3-/5-year postoperative survival		LV: ≤8 HV:>8 <i>TEVAR:</i> LV: ≤8 HV:>8
Arnaoutakis et al, ²⁴ 2013	Retrospective cohort study, Multicenter	USA (NIS)	1865	2005-2009	TAAA (intact)	Ruptured- traumatic- mycotic- syphilitic aneurysms, patients <18 yr or pts > 99 yr	In-hospital mortality, postop complications (cardiac, AMI, nervous, ARF, bleeding, paralysis, respiratory, digestive, visceral vascular, bowel resection, renal, seroma, wound, infectious), hospital charges	No	LV: 1 MV: 1-5 HV: 5-33
Chikwe et al, ²⁵ 2013	Retrospective cohort study, Multicenter	USA (NIS)	5184	2003-2008	Acute aortic dissection	Lack of surgeon identification	In-hospital mortality‡	No	Lowest:<3 Low:>3-8 High:>8-13 Highest:>13
Goodney et al, ²⁶ 2013	Retrospective cohort study, Multicenter	USA (MP/Sf & MDf)	15305	1998-2007	TAA-Descending	Aortic dissection, TAA ascending, TAAA, use of CPB with HCA, debranching procedures, procedures to extend endovascular landing zone	30-day mortality, 1- year mortality and 5- year mortality	No	<i>Open</i> <i>surgery:</i> Lowest: 1-4 LV: 5-8 MV: 9-15 HV: 16-46 Highest:>46 <i>TEVAR:</i> Lowest: 0-1 LV: 2-3 MV: 4-8 HV: 9-17 Highest:>18

Soppa et al, ²⁷ 2013	Retrospective cohort study, Monocenter	UK (Inst.Dat.)	163	2005-2011	Aortic root dilatation	Marfan	In-hospital mortality, postop complications (stroke, temporary hemofiltration, reopening for bleeding), LOS, follow-up (late dilatation, late reoperations, late death)	Yes	NA
Tsagakis et al, ²⁸ 2013	Retrospective cohort study, Monocenter	Germany (Inst.Dat.)	124	2004-2011	Acute type A aortic dissection	Pts died preoperatively	30-day mortality, postop complications (stroke, temporary hemofiltration, reopening for bleeding, malperfusion, laparotomy, peripheral surgery)	Yes	NA
Hughes et al, ²⁹ 2013	Retrospective cohort study, Multicenter	USA (STS)	13358	2004-2007	TAA-ascending/ Aortic root	Aortic dissection, non-elective cases	30-day/in-hospital mortality, postop complications (stroke, ARF, reopening for bleeding, prolonged ventilation)	No	Lowest:<6 Low: 6-13 MV:13-30 HV: 30-100
Sakata et al, ³⁰ 2012	Retrospective cohort study, Multicenter	Japan (JATS)	14095	2005-2009	Acute type A aortic dissection		30-day mortality	No	Lowest:1-4 Low: 5-9 MV: 10-14 High: 15-19 Highest: ≥20
Chavanon et al, ³¹ 2011	Retrospective cohort study, Monocenter	France (Inst.Dat.)	380	1990-2009	Acute type A aortic dissection	latrogenic dissection, chronic dissection, recurrent dissection	In-hospital mortality	Yes	NA

Gopaldas et al, ³²	Retrospective	USA	923	2006-2008	TAA-descending	Vasculitis,	In-hospital mortality,	No	LV§
2010	cohort study,	(NIS)			(ruptured)	connective	postop complications		ΗV
	Multicenter					tissue	(hemopericardium,		
						disorders,	open cardiac		
						aortic	massage, procedure-		
						dissection,	related		
						concomitant	complications, deep		
						aneurysm,	venous thrombosis,		
						patients	infections,		
						treated with	mediastinitis,		
						both open	neurologic		
						surgery and	complications,		
						TEVAR	pneumothorax,		
							respiratory		
							complications, renal		
							complications,		
							disposition), LOS		
Harris et al, ³³	Retrospective	USA	101	2003-2009	Acute aortic	latrogenic	In-hospital mortality,	Yes	NA
2010	case	(Inst.Dat.)			dissection	dissection	time from		
	controlled,						presentation or		
	Monocenter						diagnosis to OR		
Davies et al, ³⁴	Retrospective	USA	621	2007-2008	Acute aortic	IMH, aortic	In-hospital mortality,	Yes	NA
2010	case	(Inst.Dat.)			dissection,	ulcers, chronic	postop complications		
	controlled,				symptomatic TAA	aneurysms	(AMI, ARF,		
	Monocenter				and TAAA, AAA	and	respiratory failure,		
						dissections	pulmonary		
							embolisms,		
							pneumonia,		
							cardiovascular		
							accident, spinal cord		
							ischemia, arrhythmia,		
							bowel ischemia,		
							blood transfusion		
							units [n],		
							coagulopathy), LOS,		
2-							time to therapy		
Gazoni et al, ³⁵	Retrospective	USA	731	2004-2007	Elective		30-day/in-hospital	No	LV: ≤39
2010	cohort study,	(NIS)			TAA+TAAA		mortality, postop		HV: ≥83

Miunto et al ³⁶	Multicenter		2975	2002 2005	Thorpsis partia		complications (stroke, ARF, reopening for bleeding, prolonged ventilation, pneumonia), LOS, hospital discharge		
2009	cohort study, Multicenter	JACVSD)	2875	2003-2005	surgery including combined CABG, valve surgery or other surgical operations	nospitals <5 procedures/yr, center with incomplete submission data	mortality	NO	LV: 3-20¶ MV: 20-40 HV: >40
Schermerhorn et al, ³⁷ 2008	Retrospective cohort study, Multicenter	USA (NIS)	2549	1988-2003	TAA-descending	TAAA, AA, use of cardioplegia, hypothermia, cardiac surgery debranching of epiaortic vessels, intrathoracic bypass, pts<18yr	In-hospital mortality, postop complications (cardiac, stroke, ARF, respiratory, neuro non-stroke), LOS	No	LV: 1 [1,1]** MV: 2 [2,3] HV: 4 [3,25]
Knipp et al, ³⁸ 2007	Retrospective cohort study, Multicenter	USA (NIS)	3013	1995-2003	Acute type A aortic dissection		In-hospital mortality	No	LV: <1 MV: 1-2.5 HV: >2.5
Kazui et al, ³⁹ 2007	Retrospective cohort study, Multicenter	Japan (JATS)	10097	2000-2004	Acute type A aortic dissection		30-day mortality	No	Lowest:1-4 Low: 5-9 MV: 10-14 High: 15-19 Highest: ≥20
Rigberg et al, ⁴⁰ 2006	Retrospective cohort study, Multicenter	USA (OSHPD)	1010	1991-2002	ΤΑΑΑ	Aortic dissections	30-day mortality, 31- 365 days mortality, 1- year mortality	No	LV: 1 MV: 2-7 MV: 7-14

Narayan et al, ⁴¹	Retrospective	UK	296	1992-2003	Ascending and		30-day/in-hospital	No	NA
2004	cohort study,	(Inst.Dat.)			aortic arch (+		mortality, postop		
	Monocenter				concomitant		complications (IABP,		
					cardiac surgeries)		reopening for		
							bleeding, rewiring,		
							neurological		
							complication		
							[transient,		
							permanent], renal		
							complication), LOS, 1-		
							/3-year postoperative		
							survival		
Cowan et al, ⁴²	Retrospective	USA	1542	1988-1998	ТААА	ΤΑΑΑ	In-hospital mortality,	No	LV: 1
2003	cohort study,	(NIS)			(intact)	ruptured,	postop complications		[1,3]**
	Multicenter					aortic	(cardiac, ARF,		MV: 4 [2,9]
						dissections	pulmonary, urinary		HV: 12
							tract, hemorrhage),		[5,31]
							LOS		
Derrow et al, ⁴³	Retrospective	USA	2934	1993-1997	TAAA (intact),	ΤΑΑΑ	In-hospital mortality,	No	LV§
2001	cohort study,	(NIS)	(TAAA,		renal artery	ruptured	postop		HV
	Multicenter		n=540)		bypass, chronic		complications, LOS,		
					mesenteric		discharge disposition,		
					ischemia		hospital charges		
Albrink et al, ⁴⁴	Retrospective	USA	30	1986-1990	Blunt thoracic		In-hospital mortality,	Yes	NA
1994	case	(Inst.Dat.)			aortic transection		postop complications		
	controlled,						(ARF, paraplegia,		
	Monocenter						pneumonia/sepsis,		
							paraparesia,		
							recurrent laryngeal		
							nerve injury,		
							arrhythmia,		
							chylothorax)		

Abbreviations: AAA, abdominal aortic aneurysm; AF, atrial fibrillation; AMI, acute myocardial infarction; ARDS, acute respiratory distress syndrome; ARF, acute renal failure; AV, atrio-ventricular; CPB, cardiopulmonary bypass; DSWI, deep sternal wound infection; DVT, deep venous thrombosis; HCA, hypothermic circulatory arrest; HV, high volume hospital; IABP, intra-aortic balloon pump; IMH, intramural hematoma; Inst.Dat., Institutional Database; LOS, length of stay; LV, low volume hospital; MV, medium volume hospital; NA, not available; OR, operating room; PE, pulmonary embolism; TAA, thoracic aorta aneurysm; TAAA, thoracoabdominal aneurysm; TEVAR, thoracic endovascular aortic repair.

*Data source: JATS=Japanese Association for Thoracic Surgery. JACVSD=Japan Adult Cardiovascular Surgery Database. MEDPAR=Medicare Provider Analysis and Review. MP/Sf & MDf=Medicare Physician/Supplier file and Medicare Denominator file. NIS=Nationwide Inpatient Sample. OSHPD=California Office of Statewide Health Planning and Development. STS-ACSD=Society of Thoracic Surgeons Adult Cardiac Surgery Database. VCSQI=Virginia Cardiac Quality Initiative.

[†]Volume activity defined over the entire study period.

\$Major postoperative complications listed, but no comparison was made with reference to the hospital or surgeon volume or hospital location or teaching status.

§Not specified the threshold (cases/year); general definition of LV (vs MV) vs HV hospital only.

¶Low volume thoracic aortic center performing <5 case/yr excluded (n=2 hospitals).</pre>

**Defined as median [range] of cases.

Table S12. Study outcomes stratified by hospital and surgeon volume

Study (Author Year)	Hiį	gh-Volume (HV)	2	Lo	ow-Volume (LV)	2	Morta	lity (%)	Re-exp blee tampor	loration ding/ ade (%)	Strok	ke (%)	Acute failu	e renal re (%)	Periop MI	erative (%)	LOS	(days)
(Author) reary	Age (yr)	Female (%)	Pts	Age (yr)	Female (%)	Pts	HV	LV	HV	LV	HV	LV	HV	LV	HV	LV	HV	LV
Hospital volume																		
Iribarne et al, ¹⁸ 2015	58.7 (16.2)	33.1	124	59.5 (14.6)	32.6	798	12.1	23.4*			9.7	9.5	20.2	30.3*	0.8	5.5*	13.9 (11.7)	14.9 (15.4)
Weiss et al, ²² 2014		49.2	479		42.6	709	20.4	25.2			7.9	2.6*	28.4	22.4*	12.5	13.0*		
Patel et al, ²³ 2013 (open repair)	72 (8.1)	49.0	1772	72 (8.1)	51.0	1782	11.0	15*	17.0	16.0			20.0	17.0				
Patel et al, ²³ 2013 (TEVAR)	75 (7.9)	42.0	1758	75 (7.7)	43.0	1759	5.5	3.9	13.0	11.0			6.9	5.3				
Chikwe et al, ²⁵ 2013			1379			1312	16.4	27.4*										
Hughes et al, ²⁹ 2013	59.9	29.2	3404	60.9	30.9	3331	3.4	5.8*			1.9	2.3	4.6	5.7				
Sakata et al, ³⁰ 2012			2779			3051	9,7	16.1*										
Gazoni et al, ³⁵ 2010	62.5		515	61.0		216	3.7	8.3*	5.4	7.9	4.8	1.4*	4.5	8.3			8.5 (10.1)	11.6 (17.0)*
Miyata et al, ³⁶ 2009	69 (58-75)	30.9	1398	69 (61-75)	36.4	481	4.4	9.6*										
Schermerhorn et al, ³⁷ 2008	68 (18-92)	42.2	1262	68 (21-89)	43.1	685	15.5	21.7*			3.2	2.3	9.8	10.8			19 (1-330)	15 (15-176)*
Kazui et al, ³⁹ 2007			541			3085	7.9	18.5*										

Cowan et al, ⁴² 2003	68.3 (9.2)	42.0	506	68.5 (9.9)	40.0	569	15.0	27.3*	10.3	14.8			13.0	12.3*				
Derrow et al, ⁴³ 2001	69.5 (8.8)		403	69.2 (5.9)		17	18.2	25.0									19.3 (18.9)	21.9 (20.1)
Surgeon Volume																		
Lenos et al, ¹⁷ 2015	62 (15)	34.7	75	63 (14)	32.2	87	4.0	21.8*			2.7	11.5*						
Murzi et al, ¹⁹ 2014		27.6	460		31.7	407	3.7	2.2	9.6	11.3	2.6	2.5	8.7	10.1	2.2	1.5		
Andersen et al, ²⁰ 2014	54 (14)	28.0	72	58 (15)	30.0	56	2.8	33.9*	4.2	33.9*	5.6	12.5	16.7	26.8	1.4	1.8	12 (12)	10 (12)
Chikwe et al, ²⁵ 2013			938			1130	17.0	27.5*										
Narayan et al, ⁴¹ 2004	64 (52-72)	29.2	130	60 (47-68)	29.5	166	10.8	13.9	7.7	7.8	3.8	4.8						
Albrink at al, ⁴⁴ 1994	36.1	13.0	15	35.9	17.0	12	7.0	50*					6.7	41.7*				

Abbreviations: LV, low volume; LOS, length of hospital stay; HV, high volume; SD, standard deviation; TEVAR, thoracic endovascular aortic repair.

Values are expressed as mean (±SD) or median (with interquartile range or normal range) for numerical variables, and percentage for categorical variables

*P-value <0.05 for comparison between LV *versus* HV hospital/surgeon.

Study	Post-T	horacic Pro	gram	Pre-Tho	oracic Prog	ram	Mor (%	tality 6)	Re-explo bleed tampona	oration ling/ ade (%)	Str (1	oke %)	Acute failu	e renal re (%)	Myoc infarct	ardial ion (%)	LC (da	DS Iys)
(Author, Year)	Age	Female %	Pts	Age	Female %	Pts	Post	Pre	Post	Pre	Post	Pre	Post	Pre	Post	Pre	Post	Pre
Grau et al, ¹⁶ 2015	62 (12)	22.7	38	63 (12)	50*	16	7.9	12.5	21.2	6.3	2.6	6.3	7.9	6.3			8.2 (6)	13.5 (11)*
Andersen et al, ²⁰ 2014	54 (14)	28.0	72	58 (15)	30.0	56	2.8	33.9*	4.2	19.6*	5.6	12.5	16.7	26.8	1.4	1.8	12 (12)	10 (12)
Sales et al, ²¹ 2014	60 (15)	49.0	175	56 (13)*	51.0	157	9.7	23*	14.3	20.4	4.6	10.9*	2.3	1.9	1.7	1.9	14.8 (14.2)	14.4 (12.8)
Davies et al, ³⁴ 2010	69 (12)	28.0	173	70 (13)	23.0	133	6.0	4.0			9	7	21	14	2	2	10 (6)	11 (8)
Harris et al, ³³ 2010	64 (17)	48.0	71	64 (18)	27.0	30	26.8	33.3										
Albrink et al, ⁴⁴ 1994	36.1	13.0	15	35.9	17.0	12	7.0	50*					6.7	41.7*				

Table S13. Study outcomes for study with defined a specific thoracic aortic program

Abbreviations: LOS, length of hospital stay; SD, standard deviation.

Values are expressed as mean (\pm SD) for the numerical variables, and percentage for the categorical variables.

*P-value <0.05 for comparison between pre-thoracic and post-thoracic program introduction.

Table S14. Quality	y assessment of observat	tional studies according	to the Newcastle-Ottawa Scale
--------------------	--------------------------	--------------------------	-------------------------------

Study* (Author, Year)	Selection	Comparability	Outcome	Exposure	Total
Cohort Studies					
Schaffer et al, ¹² 2015	4	2	3	-	9
Schaffer et al, ¹³ 2015	4	2	3	-	9
Bhatt et al, ¹⁴ 2015	4	2	3	-	9
Brat et al, ¹⁵ 2015	2	1	1	-	4
Lenos et al, ¹⁷ 2015	3	2	2	-	7
Iribarne et al, ¹⁸ 2015	4	2	2	-	8
Murzi et al, ¹⁹ 2014	4	0	1	-	5
Weiss et al, ²² 2014	4	0	2	-	6
Patel et al, ²³ 2013	4	2	2	-	8
Arnaoutakis et al, ²⁴ 2013	4	1	2	-	7
Chikwe et al, ²⁵ 2013	4	1	2	-	7
Goodney et al, ²⁶ 2013	4	2	2	-	8
Soppa et al, ²⁷ 2013	4	2	3	-	9
Tsagakis et al, ²⁸ 2013	3	0	1	-	4
Hughes et al, ²⁹ 2013	4	2	2	-	8
Sakata et al, ³⁰ 2012	4	1	2	-	7
Chavanon et al, ³¹ 2011	3	0	2	-	6
Gopaldas et al, ³² 2010	4	2	2	-	8
Gazoni et al, ³⁵ 2010	4	2	2	-	8
Miyata et al, ³⁶ 2009	4	1	2	-	7
Schermerhorn et al, ³⁷ 2008	4	2	2	-	8
Knipp et al, ³⁸ 2007	4	1	2	-	7
Kazui et al, ³⁹ 2007	4	1	2	-	7
Rigberg et al, ⁴⁰ 2006	4	2	3	-	9
Narayan et al, ⁴¹ 2004	3	2	2	-	7
Cowan et al, ⁴² 2003	4	2	3	-	9
Derrow et al, ⁴³ 2001	4	0	2	-	6
Mean score	3.8	1.4	2.1	-	7.3
Case Controlled Studies					
Grau et al, ¹⁶ 2015	2	2	-	3	7
Andersen et al, ²⁰ 2014	2	2	-	3	7
Sales et al, ²¹ 2014	2	0	-	2	4
Harris et al, ³³ 2010	2	2	-	3	7
Davies et al, ³⁴ 2010	2	2	-	3	7
Albrink et al, ⁴⁴ 1994	1	1	-	1	3
Mean score	1.8	1.5	-	2.5	5.8

*A study can be awarded a maximum of 4 points for the Selection category, 2 points for the comparability category and 3 points for the Outcome/Exposure categories. Therefore the maximum points a study can obtain is 9 which indicates a high quality study.

Table S15. List of variables included in the final multivariable model

Study* (Author, Year)	Adjustement perorfemed	Variables included in the final model	Reference	Adjusted OR (95% CI)
Iribarne et al, ¹⁸ 2015	Binary logistic regression	Charlson comorbidity score*	LV	0.47 (0.27 to 0.82)
Weiss et al, ²² 2014	Binary logistic regression	Age, sex, race, admission year, Charlson comorbidity index*, aneurysm rupture, elective repair, HV centers with ≥ 9 cases per year	LV	0.40 (0.17 to 0.96)
Hughes et al, ²⁹ 2013	Binary logistic regression	Age, LVEF, BSA, serum creatinine, time trend, active endocarditis, need for dialysis, atrial fibrillation, female gender, hypertension, immunosuppressive treatment, presence of an IABP, inotrope use, peripheral vascular disease, unstable angina (no myocardial infarction<7 days), left main disease, aortic stenosis, aortic insufficiency, mitral stenosis, mitral insufficiency, tricuspid insufficiency, chronic lung disease, cerebrovascular disease or cerebrovascular accident, diabetes, number of diseased coronary vessels, MI, race, admission status, congestive heart failure, NYHA class, reoperation, and concomitant CABG	LV	0.42 (0.31 to 0.58)
Chikwe et al, ²⁵ 2013	Binary logistic regression (4 distinct model including: i) annual thoracic aortic dissection surgeon volume; ii) annual thoracic aortic dissection institution volume; iii) annual total cardiac surgeon volume; iv) annual total cardiac institution volume)	Age, sex, race, payer status, anemia, coagulopathy, congestive heart failure, chronic pulmonary disease, obesity, renal failure, cerebrovascular disease, hypertension, peripheral vascular disease, valve disorders, diabetes, ischemic heart disease, previous cardiac surgery, concomitant CABG, smoking history, hospital location, hospital bed size, and teaching status, annual thoracic annual thoracic aortic dissection surgeon volume, the second model included annual thoracic aortic dissection institution volume, the third model included annual total cardiac surgeon volume, and the fourth model included annual total cardiac institution volume	HV	2.21 (1.72 to 2.86)
Patel et al, ²³ 2013	Binary logistic regression	n/a	HV (open repair)	1.4 (1.1 to 1.8)
Gazoni et al, ³⁵ 2010	Binary logistic regression	n/a	LV	0.41 (0.18 to 0.92)

Miyata et al, ³⁶ 2009	Hierarchical mixed-effects logistic regression model	clinical risk factors, procedure year, clinical events (beta-blocker usage), range of replacement (root, ascending, arch, distal aorta, descending, thoracoabdominal, abdominal) hospital procedural volume, and surgeon volume were set as fixed effects, and sites were used as random intercepts	LV	0.989
Shermerhorn et al, ³⁷ 2008	Binary logistic regression with and without comorbidities	Comorbidities	HV	1.3 (1.1 to 1.6)
Cowan et al, ⁴² 2003	Binary logistic regression	n/a	HV	2.2 (1.6 to 3.1)

Abbreviations: BSA, body surface area; CABG, coronary artery bypass grafting; CI, confidence interval; HV, high volume; IABP, intra-aortic balloon pump; LV, low volume; n/a, not available; NYHA, New York Heart Association; OR, Odds ratio.

*List of variables defined in Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chron Dis 1987;40:373-83.

Figure S1. Adjusted six-month mortality in patients affected by TAD receiving an operation (treated) and in those who did not (untreated) by county (HES cohort)

Abbreviations: adj, adjusted; TAD, thoracic aortic disease.

Figure S2. Centre activity by the most distal aortic segment (NACSA dataset)

Figure S3. Correlation between the hospital activity (number of cases) and in-hospital mortality (NACSA dataset)

For the regression line in the root and ascending category, $r^2=0.13$, in the aortic arch category $r^2=0.01$. Because of the small number in each sub-groups, and for the purposes of the present analysis descending thoracic and thoracoabdominal procedures were grouped together, leaving a r^2 value of 0.07. In all of the categories, the OLS regression lines indicate that a trend towards decreasing mortality was observed in centres with HV activity. Abbreviations: HV, high volume (centre); OLS=ordinary least squares.

Figure S4. PRISMA flow chart of search strategy¹¹

Figure S6. Forest plot for high-volume *versus* low-volume hospitals on operative mortality according to the primary aortic pathology (upper panel), and forest plot reporting risk adjusted estimates for high-*versus* low-volume hospitals on operative mortality according to the primary aortic pathology (lower panel)

Г

Study	High Volume L Events Total Eve	ow Volume ents Total	Odds Ratio (95%Cl)) OR 95%Cl	W(fixed) V	V(random)
Pathology = ADA						
Iribarne, 201518	15 124	187 798		0.45[0.26; 0.79]	2.3%	3.89
Chikwe, 2013 ²⁵	226 1379	359 1312		0.52[0.43; 0.63]	16.3%	12.89
Sakata, 2012 ³⁰	270 2779	491 3051	1	0.56[0.48; 0.66]	22.3%	13.9%
Kazui, 2007 ³⁹	43 541	571 3085		0.38[0.27; 0.53]	8.3%	8.09
Fixed effect model	4823	8246	T	0.51[0.46;0.57]	49.2%	
Random effects mode Heterogeneity: I ² =36.9%,	el τ ² =0.009, P=0.191,			0.50[0.43;0.59]		38.5%
Pathology = ADA+Ane	urysm					
Miyata, 2009 ³⁶	62 1398	46 481		0.44[0.30; 0.65]	3.5%	6.39
Fixed effect model	1398	481		0.44[0.30;0.65]	3.5%	-
Random effects mode	2			0.44[0.30;0.65]		6.3%
Heterogeneity: not applie	cable for a single stud	dy				
Pathology = Aneurysm	1	217 700		0 27[0 27, 0 50]	8.0%	9 60
Weiss, 201422	6/ 4/9	21/ /09		0.37[0.27; 0.50]	8.0%	8.0%
Hugnes, 2013-9	114 3404	194 3331		0.30[0.44; 0.71]	10.0%	10.9%
Carapi 201035	10 51772	20/ 1/82		0.70[0.58; 0.85]	1 20/	12.57
Charmarharn 200937	106 1060	10 210		0.42[0.22; 0.82]	1.3% 0 = 0/	2.9%
Cowon 200242	190 1707	166 660		0.00[0.52; 0.84]	8.0%	10.8%
Cowall, 2005	70 500	155 509		0.47 [0.53, 0.04]	0.0%	0.07
Eived offect model	75 405 92/1	4 1/ 7200	-	0.72[0.23; 2.27]	0.3%	1.17
Random effects mode	3	7505	-	0 54[0 45:0 66]	47.370	55 29
Heterogeneity: I ² =62.7%,	τ ² =0.039, P=0.013,			0.04[0140,0100]		0012
Fixed effect model Bandom effects mode	14562	16036	♦	0.54[0.50;0.58]	100%	100%
Heterogeneity 12-E2 / +2	 2=0.02 P=0.015			0.02[0.40,0.00]		100/
		Favours	0.5 1 2 s High Volume Favour	s Low Volume		
Study	Log[Odds Ratio]	Favours	0.5 1 2 s High Volume Favour Odds Ratio (95%CI)	s Low Volume	W(fixed) \	W(random
Study	Log[Odds Ratio]	Favour:	0.5 1 2 s High Volume Favour Odds Ratio (95%Cl)	s Low Volume	W(fixed) \	W(random
Study Pathology = ADA	Log[Odds Ratio]	Favour:	0.5 1 2 s High Volume Favour Odds Ratio (95%Cl)) OR 95%Cl	W(fixed) \	W(random
Study Pathology = ADA Iribarne, 2015 ¹⁸	Log[Odds Ratio]	Favour:	0.5 1 2 s High Volume Favour Odds Ratio (95%Cl)	 S Low Volume OR 95%Cl 0.47 [0.27; 0.81] 0.45 [0.24, 0.52] 	W(fixed) \	W(random 8.6%
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵	Log[Odds Ratio] -0.76 -0.80	Favour: SE 0.28 0.14	0.5 1 2 s High Volume Favour Odds Ratio (95%Cl)	 S Low Volume OR 95%Cl 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 	W(fixed) V 4.1% 16.2%	W(random 8.69 14.2%
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model	Log[Odds Ratio] -0.76 -0.80	Favour: SE 0.28 0.14	0.5 1 2 s High Volume Favour Odds Ratio (95%CI)	 S Low Volume OR 95%Cl 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 	W(fixed) V 4.1% 16.2% 20.3%	W(random 8.69 14.2%
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model	Log[Odds Ratio] -0.76 -0.80	Favour: SE 0.28 0.14	0.5 1 2 s High Volume Favour Odds Ratio (95%CI)	 OR 95%CI 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 	W(fixed) V 4.1% 16.2% 20.3%	W(random 8.69 14.29 22.89
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: I ² =0%, r ² =0	Log[Odds Ratio] -0.76 -0.80 0, P=0.898,	Favours	0.5 1 2 s High Volume Favour Odds Ratio (95%Cl)	 OR 95%Cl 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 	W(fixed) V 4.1% 16.2% 20.3%	W(random 8.69 14.2% 22.8 %
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: I ² =0%, τ ² =0 Pathology = ADA+Aneu	Log[Odds Ratio] -0.76 -0.80 0, P=0.898,	Favour: SE 0.28 0.14	0.5 1 2 s High Volume Favour Odds Ratio (95%Cl)	 S Low Volume OR 95%Cl 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 	W(fixed) V 4.1% 16.2% 20.3%	W(random 8.69 14.29 22.8 9
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: I ² =0%, t ² =0 Pathology = ADA+Aneu Miyata, 2009 ³⁶	Log[Odds Ratio] -0.76 -0.80 0, P=0.898, urysm -0.01	Favour: 0.28 0.14	0.5 1 2 s High Volume Favour Odds Ratio (95%CI)	 S Low Volume OR 95%Cl 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.99 [0.63; 1.55] 0.99 [0.63; 1.55] 	W(fixed) V 4.1% 16.2% 20.3%	W(random 8.69 14.29 22.8 9 10.49
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: I ² =0%, t ² =0 Pathology = ADA+Aneu Miyata, 2009 ³⁶ Fixed effect model	Log[Odds Ratio] -0.76 -0.80 0, P=0.898, urysm -0.01	Favour: 0.28 0.14	0.5 1 2 s High Volume Favour Odds Ratio (95%CI)	 S Low Volume OR 95%Cl 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.49 [0.63; 1.55] 0.99 [0.63; 1.55] 	W(fixed) V 4.1% 16.2% 20.3% 6.0% 6.0%	W(random 8.69 14.2% 22.8 % 10.4%
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: I ² =0%, t ² =0 Pathology = ADA+Aneu Miyata, 2009 ³⁶ Fixed effect model Random effects model	Log[Odds Ratio] -0.76 -0.80 0, P=0.898, urysm -0.01	Favours 0.28 0.14 0.23	0.5 1 2 s High Volume Favour Odds Ratio (95%CI)	 S Low Volume OR 95%Cl 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.99 [0.63; 1.55] 0.99 [0.63; 1.55] 0.99 [0.63; 1.55] 	W(fixed) V 4.1% 16.2% 20.3% 6.0% 6.0%	W(random 8.69 14.29 22.89 10.49 10.49
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: P ² =0%, τ ² =0 Pathology = ADA+Aneu Miyata, 2009 ³⁶ Fixed effect model Random effects model Heterogeneity: not applica	Log[Odds Ratio] -0.76 -0.80 0, P=0.898, urysm -0.01 able for a single stud	Favour: SE 0.28 0.14 0.23 /y	O.5 1 2 s High Volume Favour Odds Ratio (95%Cl)	 S Low Volume OR 95%Cl 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.99 [0.63; 1.55] 0.99 [0.63; 1.55] 0.99 [0.63; 1.55] 	W(fixed) V 4.1% 16.2% 20.3% 6.0% 6.0%	W(random 8.69 14.2% 22.8% 10.4% 10.4%
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: I ² =0%, t ² =0 Pathology = ADA+Aneu Miyata, 2009 ³⁶ Fixed effect model Random effects model Heterogeneity: not applica Pathology = Aneurysm Mixing 2014 ²²	Log[Odds Ratio] -0.76 -0.80 0, P=0.898, urysm -0.01 able for a single stud	Favours 0.28 0.14 0.23 0.23	O.5 1 2 s High Volume Favour Odds Ratio (95%CI)	 S Low Volume OR 95%CI 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.99 [0.63; 1.55] 0.99 [0.63; 1.55] 0.99 [0.63; 1.55] 	W(fixed) V 4.1% 16.2% 20.3% 6.0% 6.0%	W(random 8.69 14.2% 22.8% 10.4% 10.4%
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: P ² =0%, τ ² =0 Pathology = ADA+Aneu Miyata, 2009 ³⁶ Fixed effect model Random effects model Heterogeneity: not applica Pathology = Aneurysm Weiss, 2014 ²²	Log[Odds Ratio] -0.76 -0.80 0, <i>P=0.898</i> , urysm -0.01 able for a single stud -0.92	Favours SE 0.28 0.14 0.23 /y 0.44	O.5 1 2 s High Volume Favour Odds Ratio (95%Cl)	 S Low Volume OR 95%Cl 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.99 [0.63; 1.55] 	W(fixed) V 4.1% 16.2% 20.3% 6.0% 6.0%	W(random 8.69 14.2% 22.8% 10.4% 10.4% 4.99
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: I ² =0%, τ ² =0 Pathology = ADA+Aneu Miyata, 2009 ³⁶ Fixed effect model Random effects model Heterogeneity: not applica Pathology = Aneurysm Weiss, 2014 ²² Hughes, 2013 ²⁹	Log[Odds Ratio] -0.76 -0.80 0, <i>P=0.898,</i> urysm -0.01 able for a single stud -0.92 -0.87	Favours SE 0.28 0.14 0.23 /y 0.44 0.15	O.5 1 2 s High Volume Favour Odds Ratio (95%Cl)	 N OR 95%Cl 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.99 [0.63; 1.55] 	W(fixed) V 4.1% 16.2% 20.3% 6.0% 6.0% 1.6% 14.1%	W(random 8.69 14.2% 22.8% 10.4% 10.4% 4.99 13.7%
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: I ² =0%, t ² =0 Pathology = ADA+Aneu Miyata, 2009 ³⁶ Fixed effect model Random effects model Random effects model Heterogeneity: not application Pathology = Aneurysm Weiss, 2014 ²² Hughes, 2013 ²⁹ Patel, 2013 ²³	Log[Odds Ratio] -0.76 -0.80 b, <i>P=0.898</i> , srysm -0.01 able for a single stud -0.92 -0.87 -0.34	Favours 0.28 0.14 0.23 0.23 0.23 0.23 0.23 0.23 0.23	O.5 1 2 s High Volume Favour Odds Ratio (95%Cl)	 S Low Volume OR 95%Cl 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.99 [0.63; 1.55] 0.91 [0.55] 	W(fixed) V 4.1% 16.2% 20.3% 6.0% 6.0% 1.6% 14.1% 18.8%	W(random 8.69 14.2% 22.8% 10.4% 10.4% 4.99 13.7% 14.6%
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: I ² =0%, t ² =0 Pathology = ADA+Aneu Miyata, 2009 ³⁶ Fixed effect model Random effects model Random effects model Heterogeneity: not application Pathology = Aneurysm Weiss, 2014 ²² Hughes, 2013 ²⁹ Patel, 2013 ²³ Gazoni, 2010 ³⁵	Log[Odds Ratio] -0.76 -0.80 b, P=0.898, urysm -0.01 able for a single stud -0.92 -0.87 -0.34 -0.34 -0.89	Favours SE 0.28 0.14 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.24 0.15 0.13 0.42 	O.5 1 2 s High Volume Favour Odds Ratio (95%Cl)	 S Low Volume OR 95%Cl 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.99 [0.63; 1.55] 0.91 [0.55; 0.92] 0.41 [0.18; 0.94] 	W(fixed) V 4.1% 16.2% 20.3% 6.0% 6.0% 1.6% 14.1% 18.8% 1.8%	W(random 8.69 14.2% 22.8% 10.4% 10.4% 10.4% 13.7% 14.6% 5.2%
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: I ² =0%, r ² =0 Pathology = ADA+Aneu Miyata, 2009 ³⁶ Fixed effect model Random effects model Heterogeneity: not application Pathology = Aneurysm Weiss, 2014 ²² Hughes, 2013 ²³ Gazoni, 2010 ³⁵ Shermerhorn, 2008 ³⁷	Log[Odds Ratio] -0.76 -0.80 b, P=0.898, urysm -0.01 able for a single stud -0.92 -0.87 -0.34 -0.34 -0.89 -0.26	Favours SE 0.28 0.14 0.23 V 0.23 V 0.23 V 0.23 V 0.23 V 0.23 V 0.23 V 0.14	O.5 1 2 s High Volume Favour Odds Ratio (95%Cl)	 S Low Volume OR 95%Cl 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.99 [0.63; 1.55] 0.91 [0.55; 0.92] 0.41 [0.18; 0.94] 0.77 [0.62; 0.96] 	W(fixed) V 4.1% 16.2% 20.3% 6.0% 6.0% 1.6% 14.1% 18.8% 1.8% 26.3%	W(random 8.69 14.2% 22.8% 10.4% 10.4% 10.4% 4.99 13.7% 14.6% 5.29 15.4%
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: I ² =0%, t ² =0 Pathology = ADA+Aneu Miyata, 2009 ³⁶ Fixed effect model Random effects model Heterogeneity: not applica Pathology = Aneurysm Weiss, 2014 ²² Hughes, 2013 ²⁹ Patel, 2013 ²³ Gazoni, 2010 ³⁵ Shermerhorn, 2008 ³⁷ Cowan, 2003 ⁴²	Log[Odds Ratio] -0.76 -0.80 0, P=0.898, urysm -0.01 able for a single stud -0.92 -0.87 -0.34 -0.89 -0.26 -0.80	Favours Favours SE 0.28 0.14 0.23 V 0.23 V 0.44 0.15 0.13 0.42 - 0.11 0.17	O.5 1 2 s High Volume Favour Odds Ratio (95%Cl)	 S Low Volume OR 95%Cl 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.99 [0.63; 1.55] 	W(fixed) V 4.1% 16.2% 20.3% 6.0% 6.0% 6.0% 1.6% 14.1% 18.8% 1.8% 26.3% 11.0%	W(random 8.69 14.2% 22.8% 10.4% 10.4% 10.4% 13.7% 14.6% 5.29 15.4% 12.9%
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: I ² =0%, t ² =0 Pathology = ADA+Aneu Miyata, 2009 ³⁶ Fixed effect model Random effects model Heterogeneity: not applico Pathology = Aneurysm Weiss, 2014 ²² Hughes, 2013 ²⁹ Patel, 2013 ²⁹ Gazoni, 2013 ²⁵ Shermerhorn, 2008 ³⁷ Cowan, 2003 ⁴² Fixed effect model	Log[Odds Ratio] -0.76 -0.80 0, P=0.898, arysm -0.01 able for a single stud -0.92 -0.87 -0.34 -0.89 -0.26 -0.80	Favours 5 SE 0.28 0.14 0.23 (y) 0.23 (y) 0.23 (y) 0.23 (y) 0.23 (y) 0.23 (y) 0.24 0.15 0.13 0.42 0.11 0.17 ())	0.5 1 2 s High Volume Favour Odds Ratio (95%Cl)	 N R 95%Cl 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.99 [0.63; 1.55] 	W(fixed) V 4.1% 16.2% 20.3% 6.0% 6.0% 6.0% 1.6% 14.1% 18.8% 1.8% 26.3% 11.0% 73.7%	W(random 8.69 14.2% 22.8% 10.4% 10.4% 10.4% 13.7% 13.7% 14.6% 5.29 15.4% 12.9%
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: I ² =0%, t ² =0 Pathology = ADA+Aneu Miyata, 2009 ³⁶ Fixed effect model Random effects model Heterogeneity: not applico Pathology = Aneurysm Weiss, 2014 ²² Hughes, 2013 ²⁹ Patel, 2013 ²⁹ Patel, 2013 ²⁹ Shermerhorn, 2008 ³⁷ Cowan, 2003 ⁴² Fixed effect model Random effects model	Log[Odds Ratio] -0.76 -0.80 0, P=0.898, arysm -0.01 able for a single stud -0.92 -0.87 -0.34 -0.89 -0.26 -0.80	Favours SE 0.28 0.14 0.23 0/y 0.44 0.15 0.13 0.42 0.11 0.17	O.5 1 2 s High Volume Favour Odds Ratio (95%Cl)	 N R 95%CI 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.49 [0.63; 1.55] 0.99 [0.63; 1.55] 	W(fixed) V 4.1% 16.2% 20.3% 6.0% 6.0% 6.0% 1.6% 14.1% 18.8% 14.1% 18.8% 14.1% 18.8% 11.0% 73.7%	W(random 8.69 14.29 22.89 10.49 10.49 13.79 14.69 13.79 15.49 15.49 12.99 66.8 9
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: I ² =0%, t ² =0 Pathology = ADA+Aneu Miyata, 2009 ³⁶ Fixed effect model Random effects model Heterogeneity: not applica Pathology = Aneurysm Weiss, 2014 ²² Hughes, 2013 ²³ Gazoni, 2010 ³⁵ Shermerhorn, 2008 ³⁷ Cowan, 2003 ⁴² Fixed effect model Random effects model Random effects model Heterogeneity: I ² =71%, t ² =	Log[Odds Ratio] -0.76 -0.80 b, P=0.898, srysm -0.01 able for a single stud -0.92 -0.87 -0.34 -0.89 -0.26 -0.80	Favours 0.28 0.14 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.24 0.15 0.13 0.42 0.11 0.17	O.5 1 2 s High Volume Favour Odds Ratio (95%Cl)	 OR 95%Cl 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.99 [0.63; 1.55] 	W(fixed) V 4.1% 16.2% 20.3% 6.0% 6.0% 1.6% 14.1% 18.8% 1.8% 26.3% 11.0% 73.7%	W(random 8.69 14.29 22.89 10.49 10.49 10.49 13.79 14.69 5.29 15.49 12.99 66.8 9
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: I ² =0%, t ² =0 Pathology = ADA+Aneu Miyata, 2009 ³⁶ Fixed effect model Random effects model Heterogeneity: not applico Pathology = Aneurysm Weiss, 2014 ²² Hughes, 2013 ²⁹ Patel, 2013 ²⁹ Patel, 2013 ²⁹ Gazoni, 2013 ²⁵ Shermerhorn, 2008 ³⁷ Cowan, 2003 ⁴² Fixed effect model Random effects model Heterogeneity: I ² =71%, t ² = Fixed effect model	Log[Odds Ratio] -0.76 -0.80 0, P=0.898, urysm -0.01 able for a single stud -0.92 -0.87 -0.34 -0.89 -0.26 -0.80	Favours SE 0.28 0.14 0.23 /y 0.44 0.15 0.13 0.42 0.11 0.17	O.5 1 2 s High Volume Favour Odds Ratio (95%Cl)	 N OR 95%CI 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.99 [0.63; 1.55] 0.91 [0.52; 0.65] 	W(fixed) V 4.1% 16.2% 20.3% 6.0% 6.0% 6.0% 1.6% 14.1% 18.8% 14.1% 18.8% 14.1% 18.8% 26.3% 11.0% 73.7%	W(random 8.69 14.29 22.89 10.49 10.49 10.49 13.79 14.69 15.49 15.49 12.99 66.8 9
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: I ² =0%, τ ² =0 Pathology = ADA+Aneu Miyata, 2009 ³⁶ Fixed effect model Random effects model Heterogeneity: not applico Pathology = Aneurysm Weiss, 2014 ²² Hughes, 2013 ²⁹ Patel, 2013 ²³ Gazoni, 2010 ³⁵ Shermerhorn, 2008 ³⁷ Cowan, 2003 ⁴² Fixed effect model Random effects model Heterogeneity: I ² =71%, τ ² = Fixed effect model Random effects model	Log[Odds Ratio] -0.76 -0.80 0, P=0.898, urysm -0.01 able for a single stud -0.92 -0.87 -0.34 -0.89 -0.26 -0.80	Favours I SE 0.28 0.14 0.23 0.23 /y 0.44 0.15 0.13 0.42 - 0.11 0.17	O.5 1 2 s High Volume Favour Odds Ratio (95%Cl)	 S Low Volume OR 95%CI 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.49 [0.63; 1.55] 0.99 [0.63; 1.55] 0.55 [0.42; 0.72] 0.59 [0.52; 0.65] 0.56 [0.42; 0.70] 	W(fixed) V 4.1% 16.2% 20.3% 6.0% 6.0% 6.0% 1.6% 14.1% 18.8% 1.8% 26.3% 11.0% 73.7%	W(random 8.69 14.2% 22.8% 10.4% 10.4% 10.4% 1.3.7% 14.6% 5.29 15.4% 12.9% 66.8%
Study Pathology = ADA Iribarne, 2015 ¹⁸ Chikwe, 2013 ²⁵ Fixed effect model Random effects model Heterogeneity: I ² =0%, τ ² =0 Pathology = ADA+Aneu Miyata, 2009 ³⁶ Fixed effect model Random effects model Heterogeneity: not applica Pathology = Aneurysm Weiss, 2014 ²² Hughes, 2013 ²³ Gazoni, 2010 ³⁵ Shermerhorn, 2008 ³⁷ Cowan, 2003 ⁴² Fixed effect model Random effects model Heterogeneity: I ² =71%, τ ² = Fixed effect model Random effects model	Log[Odds Ratio] -0.76 -0.80 b, P=0.898, urysm -0.01 able for a single stud -0.92 -0.87 -0.34 -0.89 -0.26 -0.80	Favours I SE 0.28 0.14 0.23 0.23 /y 0.44 0.15 0.13 0.11 0.17	O.5 1 2 s High Volume Favour Odds Ratio (95%Cl)	 OR 95%Cl 0.47 [0.27; 0.81] 0.45 [0.34; 0.59] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.45 [0.35; 0.58] 0.49 [0.63; 1.55] 0.99 [0.63; 1.55] 0.50 [0.53; 0.56] 0.51 [0.52; 0.65] 0.56 [0.45; 0.70] 	W(fixed) V 4.1% 16.2% 20.3% 6.0% 6.0% 1.6% 14.1% 18.8% 14.1% 18.8% 14.1% 18.8% 14.1% 18.8% 11.0% 73.7%	W(random 8.69 14.29 22.89 10.49 10.49 10.49 13.79 14.69 5.29 15.49 12.99 66.89 1009

Abbreviations: ADA, acute aortic dissection; CI, confidence interval; OR, odds ratio.

Figure S7. Forest plots comparing the effect of hospital volume for secondary outcomes

	high vo	lume	low vo	lume	Odds Ratio					
Study	Events	Total	Events	Total	1.	OR	95	%-CI	W(fixed)	W(random
1	10		70	700		4.00	10.54	4 0 01	40.50	10.10
ibarne 2015	12	124	76	798	1	1.02	[0.54;	1.93]	13.5%	19.4%
Veiss 2014 22	26	479	22	709	1	1.79	[1.00;	3.20]	12.3%	21.2%
lughes 2013 ²⁹	67	3404	78	3331		0.84	[0.60;	1.16]	56.6%	29.6%
Gazoni 2010 33	25	515	3	216	÷	- 3.62	[1.08; 1	2.13]	2.9%	8.8%
Shermerhorn 2008 37	40	1262	16	685		1.37	[0.76;	2.46]	14.7%	21.0%
Fixed effect model		5784		5739	-	1.14	[0.91;	1.43]	100%	
Random effects model					4	1.29	10.85	1.951		100%

RE-EXPLORATION FOR BLEEDING/TAMPONADE

	high vol	ume	low vo	lume	Odds Ratio				
Study	Events 1	Total E	Events	Total	6.1	OR	95%-CI	W(fixed)	W(random)
Hughes 2013 ²³ Patel 2013 ²³ Gazoni 2010 ³⁵ Cowan 2003 ⁴²	349 3 301 1 28 66	3404 1772 515 506	429 285 17 70	3331 1782 216 569		0.77 1.07 0.67 1.07	[0.67; 0.90] [0.90; 1.28] [0.36; 1.26] [0.75; 1.53]	55.2% 33.5% 3.2% 8.1%	35.5% 33.5% 10.3% 20.7%
Fixed effect model Random effects model Heterogeneity: l ² =68.5%	ε , τ²=0.03, F	6197 P=0.02	32	5898	0.5 1 2	0.89 0.91	[0.80; 1.00] [0.72; 1.15]	100% 	 100%

RENAL FAILURE

	high vo	olume	low vo	olume	Odds Ratio				
Study	Events	Total	Events	Total		OR	95%-CI	W(fixed)	W(random)
Iribarne 2015 ¹⁸ Weiss 2014 ²²	25 93	124 479	242 193	798 709		0.58 0.64	[0.36; 0.92] [0.49; 0.85]	6.7% 16.3%	11.5% 15.8%
Hughes 2013 29 Patel 2013 23	155 355	3404 1772	191 303	3331 1782		0.78	[0.63; 0.97]	23.9% 31.3%	17.2% 18.3%
Gazoni 2010 35	23	515	18	216		0.51	[0.27; 0.97]	3.1%	8.3%
Cowan 2003 42	66	506	70	569		1.07	[0.75; 1.53]	7.4%	13.8%
Fixed effect model Random effects model	I	8062		8090	-0	0.91 0.82	[0.82; 1.01] [0.65; 1.04]	100% 	 100%
Heterogeneity: I ² =77.6%	6, τ ² =0.07	, P=0.0	002						
					0.5 1 2				

Figure S8. Forest plots comparing the effect of a multidisciplinary TAD program presence on outcomes

MORTALITY									
	Postpro	gram	Pre prog	gram	Odds Ratio				
Study	Events	Fotal	Events	Total	: 1	OR	95%CI	W(fixed) V	V(random)
0 004.515				40			10.00.0.001	0.00/	40.494
Grau 201510	3	38	2	16		0.60	[0.09; 3.99]	3.3%	12.1%
Andersen, 201420	2	12	19	56		0.06	[0.01; 0.25]	26.1%	15.1%
Sales, 2014 ²¹	17	1/5	36	157		0.36	[0.19; 0.67]	43.1%	23.5%
Davies, 201034	10	173	5	133		1.57	[0.52; 4.71]	6.7%	19.0%
Harris, 201033	19	71	10	30	<u>;=</u>	0.73	[0.29; 1.84]	13.0%	20.7%
Albrink, 199444	1	15	6	12		0.07	[0.01; 0.73]	7.8%	9.5%
Fixed effect model		544		404	÷	0.40	[0.27; 0.59]	100%	
Random effects mod	el				\Rightarrow	0.38	[0.16; 0.93]		100%
Heterogeneity: I=69.8%,	r ² =0.79, P=0	.0054			· · · · · · · · · · · · · · · · · · ·				
					01 01 1 10 10	0			
						•			
STROKE									
	Postprog	gram	Pre prog	gram	Odds Ratio				
Study	Events	Total	Events	Total		OR	95%CI	W(fixed) V	V(random)
								-	-
Grau 201516	1	- 38	1	16		0.41	[0.02; 6.91]	4.8%	5.4%
Andersen, 2014 ²⁰	4	72	7	56		0.41	[0.11; 1.48]	25.8%	26.3%
Sales 2014 ²¹	8	175	17	157		0.39	[0 17 0 94]	59.4%	57.2%
Davies 201034		173		133		0.00	[3.11, 0.04]	0.0%	0.0%
Harrie 201033		74		30				0.0%	0.0%
Albrick 400444		45		40		0.40	10.00.0.001	40.0%	0.0%
Albrink, 1994**	2	15	3	12	ſ.	0.46	[0.06; 3.35]	10.0%	11.0%
Fixed offect model		644		404	-	0.44	10 24- 0 791	40.0%	
Pixed effectimodel		044		404	Ť.	0.41	[0.21; 0.70]	100%	40.0%
Randomenectsmod						0.41	[0.21; 0.79]		100%
Heterogeneity: #=0%, f*=	0, P=09992								
					0.1 0.5 1 2 10				
RE-EXPLORATION	FOR BLE	EDIN	NG/TAN	иро	VADE				
	Postoro	aram	Prepro	uram	Odds Ratio				
Study	Events	Total	Events	Total		OR	95% CI	W(fixed)	W(random)
-									. ,
Grau 201516	8	38	1	16	<u>†</u> +	-4.00	[0.46; 35.01]	1.6%	9.3%
Andersen, 2014 ²⁰	3	72	11	56		0.18	[0.05; 0.67]	17.0%	18.7%
Sales, 201421	25	175	32	157		0.65	[0.37: 1.16]	41.6%	37.3%
Davies, 201034	16	173	27	133		0.40	0.21: 0.781	39.8%	34.6%
Harris 201033		71		30	2		[]	0.0%	0.0%
Albrink 199444		15		12	5			0.0%	0.0%
					2			0.070	0.070
Fixed effect model		544		404	\$	0.52	[0.35; 0.77] 100%	
Random effects mod	el				\sim	0.51	[0.24; 1.07]		100%
Heterogeneity: I ² =57.7%,	r²=0.29, P=0	.0693			· · · · · · · · · · · · · · · · · · ·				
					0.1 0.5 1 2 10				
RENAL FAILURE					0.1 0.5 1 2 10				
RENAL FAILURE	Postar	area	Propro		0.1 0.5 1 2 10				
RENAL FAILURE	Postpro	gram	Pre pro	gram	0.1 0.5 1 2 10 Odds Ratio	0.0	05% CI	14/6	
RENAL FAILURE	Post pro Events	gram Total	Pre prog Events	gram Total	0.1 0.5 1 2 10 Odds Ratio	OR	95%CI	W(fixed)	W(random)
RENAL FAILURE	Post pro Events	gram Total	Pre prog Events	gram Total	0.1 0.5 1 2 10 Odds Ratio	OR	95%CI	W(fixed)	W(random)
RENAL FAILURE Study Grau 2015 ¹⁶	Post pro Events	gram Total 38	Pre prog Events	gram Total 16	0.1 0.5 1 2 10 Odds Ratio	OR 1.29	95%CI	W(fixed) 4.2%	W(random) 8.5%
RENAL FAILURE Study Grau 2015 ¹⁶ Andersen, 2014 ²⁰	Post pro Events	gram Total 38 72	Pre prog Events	gram Total 16 56	0.1 0.5 1 2 10 Odds Ratio	OR 1.29 0.76	95%CI [0.12; 13.38] [0.18; 3.20]	W(fixed) 4.2% 13.8%	W(random) 8.5% 18.8%
RENAL FAILURE Study Grau 2015 ¹⁶ Andersen, 2014 ²⁰ Sales, 2014 ²¹	Post pro Events	gram Total 38 72 175	Pre prog Events	gram Total 16 56 157	0.1 0.5 1 2 10 Odds Ratio	OR 1.29 0.76 1.20	95%CI [0.12; 13.38] [0.18; 3.20] [0.26; 5.45]	W(fixed) 4.2% 13.8% 10.0%	W(random) 8.5% 18.8% 17.4%
RENAL FAILURE Study Grau 2015 ¹⁶ Andersen, 2014 ²⁰ Sales, 2014 ²¹ Davies, 2010 ³⁴	Post pro Events	gram Total 38 72 175 173	Pre prog Events	gram Total 16 56 157 133	0.1 0.5 1 2 10 Odds Ratio	OR 1.29 0.76 1.20 1.58	95%Cl [0.12; 13.38] [0.18; 3.20] [0.26; 5.45] [0.86; 2.90]	W(fixed) 4.2% 13.8% 10.0% 55.2%	W(random) 8.5% 18.8% 17.4% 46.8%
RENAL FAILURE Study Grau 2015 ¹⁶ Andersen, 2014 ²⁰ Sales, 2014 ²¹ Davies, 2010 ³⁴ Harris, 2010 ³³	Post pro Events	gram Total 38 72 175 173 71	Pre prog Events	gram Total 16 56 157 133 30	0.1 0.5 1 2 10	OR 1.29 0.76 1.20 1.58	95%Cl [0.12; 13.38] [0.18; 3.20] [0.26; 5.45] [0.86; 2.90]	W(fixed) 4.2% 13.8% 10.0% 55.2% 0.0%	W(random) 8.5% 18.8% 17.4% 46.8% 0.0%
RENAL FAILURE Study Grau 2015 ¹⁶ Andersen, 2014 ²⁰ Sales, 2014 ²¹ Davies, 2010 ³⁴ Harris, 2010 ³³ Albrink, 1994 ⁴⁴	Post pro Events 7 3 4 4 36 1	gram Total 38 72 175 173 71 15	Pre prog Events 1 4 3 19 5	gram Total 16 56 157 133 30 12	0.1 0.5 1 2 10	OR 1.29 0.76 1.20 1.58 0.10	95%Cl [0.12; 13.38] [0.18; 3.20] [0.26; 5.45] [0.86; 2.90] [0.01; 1.03]	W(fixed) 4.2% 13.8% 10.0% 55.2% 0.0% 16.8%	W(random) 8.5% 18.8% 17.4% 46.8% 0.0% 8.5%
RENAL FAILURE Study Grau 2015 ¹⁸ Andersen, 2014 ²⁰ Sales, 2014 ²¹ Davies, 2010 ³⁴ Harris, 2010 ³³ Albrink, 1994 ⁴⁴	Post pro Events 7 3 4 4 36 1	gram Total 38 72 175 173 71 15	Pre prog Events 1 4 3 19 5	gram Total 16 56 157 133 30 12	0.1 0.5 1 2 10	OR 1.29 0.76 1.20 1.58 0.10	95%Cl [0.12; 13.38] [0.18; 3.20] [0.26; 5.45] [0.86; 2.90] [0.01; 1.03]	W(fixed) 4.2% 13.8% 10.0% 55.2% 0.0% 16.8%	W(random) 8.5% 18.8% 17.4% 46.8% 0.0% 8.5%
RENAL FAILURE Study Grau 2015 ¹⁶ Andersen, 2014 ²⁰ Sales, 2014 ²¹ Davies, 2010 ³⁴ Harris, 2010 ³³ Albrink, 1994 ⁴⁴ Fixed effectmodel	Post pro Events 3 4 36 1	gram Total 38 72 175 173 71 15 544	Pre prog Events 1 4 3 19 5	gram Total 16 56 157 133 30 12 404	0.1 0.5 1 2 10	OR 1.29 0.76 1.20 1.58 0.10 1.17	95%Cl [0.12; 13.38] [0.18; 3.20] [0.26; 5.45] [0.86; 2.90] [0.01; 1.03] [0.72; 1.89]	W(fixed) 4.2% 13.8% 10.0% 55.2% 0.0% 16.8% 100%	W(random) 8.5% 18.8% 17.4% 46.8% 0.0% 8.5%
RENAL FAILURE Study Grau 2015 ¹⁵ Andersen, 2014 ²⁰ Sales, 2014 ²¹ Davies, 2010 ³⁴ Harris, 2010 ³³ Albrink, 1994 ⁴⁴ Fixed effect model Random effects model	Post pro Events 3 4 36 1	gram Total 38 72 175 173 71 15 544	Pre prog Events 7 1 4 3 19 5	gram Total 16 56 157 133 30 12 404	0.1 0.5 1 2 10	OR 1.29 0.76 1.20 1.58 0.10 1.17 1.02	95%Cl [0.12; 13.38] [0.18; 3.20] [0.26; 5.45] [0.86; 2.90] [0.01; 1.03] [0.72; 1.89] [0.49; 2.11]	W(fixed) 4.2% 13.8% 10.0% 55.2% 0.0% 16.8% 100%	W(random) 8.5% 18.8% 17.4% 46.8% 0.0% 8.5% 100%
RENAL FAILURE Study Grau 2015 ¹⁶ Andersen, 2014 ²⁰ Sales, 2014 ²¹ Davies, 2010 ³⁴ Harris, 2010 ³³ Albrink, 1994 ⁴⁴ Fixed effect model Random effects mod Heterogeneity: <i>P</i> =27.9%,	Post pro Events 3 4 4 36 1 el r ² =0.19, P=0	gram Total 38 72 175 173 71 15 544	Pre prog Events	gram Total 16 56 157 133 30 12 404	0.1 0.5 1 2 10	OR 1.29 0.76 1.20 1.58 0.10 1.17 1.02	95%Cl [0.12; 13.38] [0.18; 3.20] [0.26; 5.45] [0.86; 2.90] [0.01; 1.03] [0.72; 1.89] [0.49; 2.11]	W(fixed) 4.2% 13.8% 10.0% 55.2% 0.0% 16.8% 100% 	W(random) 8.5% 18.8% 17.4% 46.8% 0.0% 8.5% 100%
RENAL FAILURE Study Grau 2015 ¹⁶ Andersen, 2014 ²⁰ Sales, 2014 ²¹ Davies, 2010 ³⁴ Harris, 2010 ³³ Albrink, 1994 ⁴⁴ Fixed effect model Random effects mod Heterogeneity: P=27.9%,	Post pro Events 3 4 36 1 el r ² =0.19, P=0	gram Total 38 72 175 173 71 15 544	Pre prog Events	gram Total 16 56 157 133 30 12 404	0.1 0.5 1 2 10	OR 1.29 0.76 1.20 1.58 0.10 1.17 1.02	95%Cl [0.12; 13.38] [0.18; 3.20] [0.26; 5.45] [0.86; 2.90] [0.01; 1.03] [0.72; 1.89] [0.49; 2.11]	W(fixed) 4.2% 13.8% 10.0% 55.2% 0.0% 16.8% 100% 	W(random) 8.5% 18.8% 17.4% 46.8% 0.0% 8.5%
RENAL FAILURE Study Grau 2015 ¹⁶ Andersen, 2014 ²⁰ Sales, 2014 ²¹ Davies, 2010 ³⁴ Harris, 2010 ³³ Albrink, 1994 ⁴⁴ Fixed effect model Random effects mod Heterogeneity: P=27.9%,	Post pro Events 3 4 36 1 el r ² =0.19, P=0	gram Total 38 72 175 173 71 15 544	Pre prog Events	gram Total 16 56 157 133 30 12 404	0.1 0.5 1 2 10 Odds Ratio	OR 1.29 0.76 1.20 1.58 0.10 1.17 1.02	95%Cl [0.12; 13.38] [0.18; 3.20] [0.26; 5.45] [0.86; 2.90] [0.01; 1.03] [0.72; 1.89] [0.49; 2.11]	W(fixed) 4.2% 13.8% 10.0% 55.2% 0.0% 16.8% 100% 	W(random) 8.5% 18.8% 17.4% 46.8% 0.0% 8.5% 100%

Figure S9. Forest plots comparing the effect of surgeon volume for hospital mortality and secondary outcomes

MORTALITY						
	High volume I	Low volume	Odds Ratio			
Study	Events Total E	vents Total	11	OR 95%CI V	V(fixed)W(random	ר)
Lenos 201517	3 75	12 87	+	0.26 [0.07; 0.96]	3.6% 13.2%	6
Andersen 2014 ²⁰	2 72	19 56 -		0.06 [0.01; 0.25]	7.0% 11.6%	6
Murzi 2014 ¹⁹	11 425	4 328		2.15 [0.68; 6.82]	1.5% 14.5%	6
Chikwe 201325	160 938	311 1130	+	0.54 [0.44 0.67]	78.9% 21.8%	6
Narayan 200441	14 130	23 166	+++	0.75 [0.37; 1.52]	6.1% 18.5%	6
Albrink 199444	1 15	6 12 -		0.07 [0.01; 0.73]	2.1% 7.0%	6
Fixed effect mode	1690	1858	4	0.55 [0.45; 0.66]	100%	-
Random effects m	odel		\Rightarrow	0.54 [0.26; 1.13]	100%	
Heterogeneity?‡77.29	%, ?=0.65, P=0.0002	Г				
		0.0	1 0.1 1 10	100		
STROKE						
STROKE			Odde Patio			
Study	High volume Events Total F	Low volume vents Total	OUUS RALIO	OR 95%CLV	V(fixed)W(random	1)
,			_			·
Lenos 201517	2 75	10 87 -		0.21 [0.04; 1.00]	25.6% 13.2%	6
Andersen 2014 ²⁰	4 /2	/ 56		0.41 [0.11; 1.48]	21.1% 17.4%	0
Murzi 201419 Murzi 201419	3 35	6 79		1.14 [0.27; 4.85]	9.6% 14.6%	6
Chikwe, 201325	. 938	. 1130			0.0% 0.0%	
Narayan 2004 ⁴¹	10 130	10 166		1.30 [0.52; 3.22]	23.0% 26.5%	6
Albrink 199444	2 15	3 12		0.46 [0.06; 3.35]	8.2% 8.9%	
Fixed effect mode	el 1690	1858	4	0.81 [0.49; 1.32]	100%	
Random effects m	nodel		\Rightarrow	0.79 [0.42; 1.51]	100%)
Heterogeneity?#30.1	%, ?=0.19, P=0.2094			-		
			01 051 2	10		
DE EVELOPATION E	OR RECEDING		DE			
RE-EXPLORATION F	OR BLEEDING	TAMPONA	DE Odda Patio			
RE-EXPLORATION F	OR BLEEDING, High volume I Events Total E	TAMPONA Low volume Events Total	DE Odds Ratio	OR 95%CI V	V(fixed)W(random	1)
RE-EXPLORATION F	OR BLEEDING, High volume I Events Total E	TAMPONA Low volume vents Total	DE Odds Ratio	OR 95%CI V	V(fixed)W(random	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰	OR BLEEDING, High volume I Events Total E	TAMPONA Low volume Events Total	DE Odds Ratio	OR 95%CI V	V(fixed)W(random 0.0% 0.0% 19.8% 16.1%	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹	OR BLEEDING, High volume I Events Total E . 75 3 72 33 425	TAMPONA Low volume vents Total . 87 11 56 - 29 328	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1%	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹	OR BLEEDING, High volume I Events Total E 3 72 33 425 11 35	TAMPONA Low volume vents Total . 87 11 56 - 29 328 17 79	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5%	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵	OR BLEEDING, High volume I Events Total E 3 72 33 425 11 35 938	TAMPONA Low volume vents Total . 87 11 56 - 29 328 17 79 . 1130	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0%)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹	OR BLEEDING, High volume I Events Total E 3 72 33 425 11 35 . 938 10 130 46	TAMPONA Low volume vents Total . 87 11 56 - 29 328 17 79 . 1130 13 166	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0%	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴	OR BLEEDING, High volume I Events Total E 3 72 33 425 11 35 . 938 10 130 . 15	TAMPONA Low volume vents Total . 87 11 56 29 328 17 79 . 1130 13 166 . 12	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0%)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effectmode	OR BLEEDING, High volume I Events Total E 3 72 33 425 11 35 938 10 130 . 15	/TAMPONA Low volume vents Total . 87 11 56 - 29 328 17 79 . 1130 13 166 . 12 1858	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31] 0.85 [0.58; 1.23]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0% 100%	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m	CR BLEEDING, High volume I Events Total E 3 72 33 425 11 35 . 938 10 130 . 15 el 1690 model	Ampona Low volume vents Total . 87 11 56 29 328 17 79 . 1130 13 166 . 12 1858	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31] 0.85 [0.58; 1.23] 0.81 [0.41; 1.60]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0% 100% 100%	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity: ² F60.7 ⁵	CR BLEEDING, High volume I Events Total E 3 72 33 425 11 35 . 938 10 130 . 15 el 1690 nodel %, ?=0.28, P=0.0543	Ampona Low volume vents Total . 87 11 56 29 328 17 79 . 1130 13 166 . 12 1858	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31] 0.85 [0.58; 1.23] 0.81 [0.41; 1.60]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0% 100% 100%	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity: ² F60.75	CR BLEEDING, High volume I Events Total E 3 72 33 425 11 35 . 938 10 130 . 15 el 1690 model %,?=0.28, P=0.0543	TAMPONA Low volume vents Total . 87 11 56 29 328 17 79 . 1130 13 166 . 12 1858	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31] 0.85 [0.58; 1.23] 0.81 [0.41; 1.60]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0% 100% 100%	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity?F60.75	OR BLEEDING, High volume I Events Total E 3 72 33 425 11 35 . 938 10 130 . 15 el 1690 model %, ?=0.28, P=0.0543	TAMPONA Low volume vents Total . 87 11 56 29 328 17 79 . 1130 13 166 . 12 1858	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31] 0.85 [0.58; 1.23] 0.81 [0.41; 1.60]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0% 100% 100%	a)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity:*F60.75	OR BLEEDING, High volume I Events Total E 3 72 33 425 11 35 938 10 130 15 1690 nodel %, ?=0.28, P=0.0543	/TAMPONA Low volume vents Total . 87 11 56 29 328 17 79 . 1130 13 166 . 12 1858	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31] 0.85 [0.58; 1.23] 0.81 [0.41; 1.60]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0% 100% 100%	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity: ³ F60.75	CR BLEEDING, High volume I Events Total E . 75 3 72 33 425 11 35 . 938 10 130 . 15 el 1690 model %,?=0.28, P=0.0543	/TAMPONA Low volume vents Total . 87 11 56 29 328 17 79 . 1130 13 166 . 12 1858 Low volume vents Total	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31] 0.85 [0.58; 1.23] 0.81 [0.41; 1.60]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0% 100% 100% V(fixed)W(random	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity:*F60.75 RENAL FAILURE Study Lence 201517	CR BLEEDING, High volume I Events Total E . 75 3 72 33 425 11 35 . 938 10 130 . 15 el 1690 model %, ?=0.28, P=0.0543 High volume I Events Total E	/TAMPONA Low volume vents Total 	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31] 0.85 [0.58; 1.23] 0.81 [0.41; 1.60] 10 OR 95%CI V	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0% 100% 100% V(fixed)W(random	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity: ² F60.75 RENAL FAILURE Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰	CR BLEEDING, High volume I Events Total E . 75 3 72 33 425 11 35 . 938 10 130 . 15 High volume I Events Total E . 75 4 72	/TAMPONA Low volume vents Total . 87 11 56 29 328 17 79 . 1130 13 166 . 12 1858 Low volume vents Total . 87 4 56	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31] 0.85 [0.58; 1.23] 0.81 [0.41; 1.60] 10 OR 95%CI V 0.76 [0.18; 3.20]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0% 100% 100% V(fixed)W(random 0.0% 0.0% 12.2% 17.1%	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity: ² ≠ 60.75 RENAL FAILURE Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹	CR BLEEDING, High volume I Events Total E . 75 3 72 33 425 11 35 . 938 10 130 . 15 High volume I Events Total E . 75 4 72 26 425	/TAMPONA Low volume vents Total . 87 11 56 29 328 17 79 . 1130 13 166 . 12 1858 Low volume vents Total . 87 4 56 15 328	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31] 0.85 [0.58; 1.23] 0.81 [0.41; 1.60] 10 OR 95%CI V 0.76 [0.18; 3.20] 1.36 [0.71; 2.61]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0% 100% 100% 100% 100% 100% 12.2% 17.1% 45.5% 41.3%	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity: ² ≠ 60.75 RENAL FAILURE Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹	CR BLEEDING, High volume I Events Total E . 75 3 72 33 425 11 35 . 938 10 130 . 15 High volume I Events Total E . 75 4 72 26 425 14 35	/TAMPONA Low volume vents Total . 87 11 56 29 328 17 79 . 1130 13 166 . 12 1858 Low volume vents Total . 87 4 56 15 328 26 79	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31] 0.85 [0.58; 1.23] 0.81 [0.41; 1.60] 10 OR 95%CI V 0.76 [0.18; 3.20] 1.36 [0.71; 2.61] 1.36 [0.60; 3.10]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0% 100% 100% 100% V(fixed)W(random 0.0% 0.0% 12.2% 17.1% 45.5% 41.3% 27.4% 33.9%	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity: ² ≠ 60.7 ² RENAL FAILURE Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹	CR BLEEDING, High volume I Events Total E . 75 3 72 33 425 11 35 . 938 10 130 . 15 High volume I Events Total E . 75 4 72 26 425 14 35 . 938	/TAMPONA Low volume vents Total . 87 11 56 29 328 17 79 . 1130 13 166 . 12 1858 Low volume vents Total . 87 4 56 15 328 26 79 . 1130	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31] 0.85 [0.58; 1.23] 0.81 [0.41; 1.60] 10 OR 95%CI V 0.76 [0.18; 3.20] 1.36 [0.70; 2.61] 1.36 [0.60; 3.10]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0% 100% 100% 100% V(fixed)W(random 0.0% 0.0% 12.2% 17.1% 45.5% 41.3% 27.4% 33.9% 0.0% 0.0%	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity: ² ≠ 60.75 RENAL FAILURE Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴	CR BLEEDING, High volume I Events Total E . 75 3 72 33 425 11 35 . 938 10 130 . 15 High volume I Events Total E . 75 4 72 26 425 14 35 . 938 . 130 . 15	/TAMPONA Low volume vents Total . 87 11 56 29 328 17 79 . 1130 13 166 . 12 1858 Low volume vents Total . 87 4 56 15 328 26 79 . 1130 . 166 5 12 -	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31] 0.85 [0.58; 1.23] 0.81 [0.41; 1.60] 10 OR 95%CI V 0.76 [0.18; 3.20] 1.36 [0.71; 2.61] 1.36 [0.60; 3.10] 0.10 [0.01; 1.03]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0% 100% 100% 100% 100% 100% 12.2% 17.1% 45.5% 41.3% 27.4% 33.9% 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity?F60.73 RENAL FAILURE Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴	CR BLEEDING, High volume I Events Total E 3 72 33 425 11 35 938 10 130 15 1690 nodel %, ?=0.28, P=0.0543 High volume I Events Total E . 75 4 72 26 425 14 35 . 938 . 130 1 15	TAMPONA Low volume ivents Total . 87 11 56 29 328 17 79 . 1130 13 166 . 12 1858 Low volume ivents Total . 87 4 56 15 328 26 79 . 1130 . 166 5 12	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31] 0.85 [0.58; 1.23] 0.81 [0.41; 1.60] 10 OR 95%CI V 0.76 [0.18; 3.20] 1.36 [0.71; 2.61] 1.36 [0.60; 3.10] 0.10 [0.01; 1.03]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0% 100% 100% V(fixed)W(random 0.0% 0.0% 12.2% 17.1% 45.5% 41.3% 27.4% 33.9% 0.0% 0.0% 0.0% 0.0% 14.9% 7.7%	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity?F60.73 RENAL FAILURE Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effectmode	CR BLEEDING, High volume I Events Total E . 75 3 72 33 425 11 35 . 938 10 130 . 15 . 1690 nodel %, ?=0.28, P=0.0543 High volume I Events Total E . 75 4 72 26 425 14 35 . 938 . 130 1 15 . 15 . 938 . 10 . 15 . 1690 . 15 . 15 . 15 . 1690 . 15 . 10 . 15 . 15 . 10 . 15 . 15 . 10 . 15 . 10 . 15 . 15 . 15 . 10 . 15 . 15 . 15 . 10 . 15 . 15 . 15 . 10 . 15 . 15	/TAMPONA Low volume vents Total . 87 11 56 29 328 17 79 . 1130 13 166 . 12 1858 Low volume vents Total . 87 4 56 15 328 26 79 . 1130 . 166 5 12 - 1858	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31] 0.85 [0.58; 1.23] 0.81 [0.41; 1.60] 10 OR 95%CI V 0.76 [0.18; 3.20] 1.36 [0.71; 2.61] 1.36 [0.60; 3.10] 0.10 [0.01; 1.03] 1.10 [0.70; 1.74]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0% 100% 100% V(fixed)W(random 0.0% 0.0% 12.2% 17.1% 45.5% 41.3% 27.4% 33.9% 0.0% 0.0% 0.0% 0.0% 14.9% 7.7% 100%	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity?F60.73 RENAL FAILURE Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity	CR BLEEDING, High volume I Events Total E . 75 3 72 33 425 11 35 . 938 10 130 . 15 . 1690 nodel %, ?=0.28, P=0.0543 High volume I Events Total E . 75 4 72 26 425 14 35 . 938 . 130 1 15 . 938 . 130 . 15 . 1690 nodel . 75 . 75 . 75 . 938 . 1690 . 15 . 938 . 130 . 15 . 1690 . 15 . 938 . 130 . 15 . 938 . 15 . 15 . 938 . 130 . 15 . 16 . 1690 . 105 . 1	/TAMPONA Low volume vents Total . 87 11 56 29 328 17 79 . 1130 13 166 . 12 1858 Low volume vents Total . 87 4 56 15 328 26 79 . 1130 . 166 5 12 - 1858	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31] 0.85 [0.58; 1.23] 0.81 [0.41; 1.60] 10 OR 95%CI V 0.76 [0.18; 3.20] 1.36 [0.71; 2.61] 1.36 [0.60; 3.10] 0.10 [0.01; 1.03] 1.01 [0.51; 2.01]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0% 100% 100% V(fixed)W(random 0.0% 0.0% 12.2% 17.1% 45.5% 41.3% 27.4% 33.9% 0.0% 0.0% 14.9% 7.7% 100% 100%	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity: ² F60.73 RENAL FAILURE Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity: ² F39.73	CR BLEEDING, High volume I Events Total E . 75 3 72 33 425 11 35 . 938 10 130 . 15 . 1690 nodel %, ?=0.28, P=0.0543 High volume I Events Total E . 75 4 72 26 425 14 35 . 938 . 130 1 15 . 938 . 130 . 15 . 1690 nodel %, ?=0.19, P=0.1739	/TAMPONA Low volume vents Total . 87 11 56 29 328 17 79 . 1130 13 166 . 12 1858 Low volume vents Total . 87 4 56 15 328 26 79 . 1130 . 166 5 12 - 1858	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31] 0.85 [0.58; 1.23] 0.81 [0.41; 1.60] 10 OR 95%CI V 0.76 [0.18; 3.20] 1.36 [0.71; 2.61] 1.36 [0.60; 3.10] 0.10 [0.01; 1.03] 1.01 [0.51; 2.01]	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0% 100% 100% V(fixed)W(random 0.0% 0.0% 12.2% 17.1% 45.5% 41.3% 27.4% 33.9% 0.0% 0.0% 14.9% 7.7% 100% 100%	1)
RE-EXPLORATION F Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity: ² F60.73 RENAL FAILURE Study Lenos 2015 ¹⁷ Andersen 2014 ²⁰ Murzi 2014 ¹⁹ Chikwe, 2013 ²⁵ Narayan 2004 ⁴¹ Albrink 1994 ⁴⁴ Fixed effect mode Random effects m Heterogeneity: ² F39.73	CR BLEEDING, High volume I Events Total E . 75 3 72 33 425 11 35 . 938 10 130 . 15 ef 1690 nodel %, ?=0.28, P=0.0543 High volume I Events Total E . 75 4 72 26 425 14 35 . 938 . 130 1 15 ef 1690 nodel %, ?=0.19, P=0.1739	/TAMPONA Low volume vents Total . 87 11 56 - 29 328 17 79 . 1130 13 166 . 12 1858 Low volume vents Total . 87 4 56 15 328 26 79 . 1130 . 166 5 12 - 1858	DE Odds Ratio	OR 95%CI V 0.18 [0.05; 0.67] 0.87 [0.52; 1.46] 1.67 [0.68; 4.08] 0.98 [0.42; 2.31] 0.85 [0.58; 1.23] 0.81 [0.41; 1.60] 10 OR 95%CI V 0.76 [0.18; 3.20] 1.36 [0.71; 2.61] 1.36 [0.60; 3.10] 0.10 [0.01; 1.03] 1.01 [0.51; 2.01] 100	V(fixed)W(random 0.0% 0.0% 19.8% 16.1% 50.5% 34.1% 12.0% 24.5% 0.0% 0.0% 17.6% 25.3% 0.0% 0.0% 100% 100% V(fixed)W(random 0.0% 0.0% 12.2% 17.1% 45.5% 41.3% 27.4% 33.9% 0.0% 0.0% 14.9% 7.7% 100% 100%	1)

Figure S10. Forest plots comparing the effect of hospital status on hospital mortality

MORTALITY						
Study	Teaching Hospital Events Total	Non-teaching Events Total	Odds Ratio	OR 95%CI	W(fixed) W	(random)
Chikwe 2013 ²⁵ Patel 2013 ²³ Derrow 2001 ⁴³	819 4054 379 3161 77 338	303 1130 47 393 33 202	-	0.69[0.59; 0.80] 1.00[0.73; 1.39] — 1.51[0.96; 2.37]	78.2% 15.2% 6.6%	38.6% 33.1% 28.3%
Fixed effect mo Random effect Heterogeneity: I ² =8	odel 7553 s model 4.6%, r²=0.13, P=0.0015	1725	0.5 1 2	0.79[0.70; 0.90] 0.98[0.63; 1.51]	100% 	 100%

Study	Urban Hospi Events To	ital F tal	Rural Ho Events	spital Total		Odds Ratio	OR	95%CI	W(fixed)	W(random)
Chikwe, 2013 ²⁵ Derrow, 2001 ⁴³	1100 110	5044 538	4 22 3 0	140 2			1.50 - 1.29	[0.94; 2.37] [0.06; 27.05]	97.7% 2.3%	97.8% 2.2%
Fixed effect mode Random effects m Heterogeneity: I*=0%	l nodel 1 ² =0, P=0,9246	5582	2	142			 1.49 1.49	[0.95; 2.35] [0.95; 2.35]	100% 	- 100%
					0.1	0.5 1 2				

Supplemental References

- Benchimol EI, Smeeth L, Guttmann A, Harron K, Moher D, Petersen I, Sørensen HT, von Elm E, Langan SM; RECORD Working Committee. The REporting of studies Conducted using Observational Routinely-collected health Data (RECORD) statement. *PLoS Med.* 2015;12:e1001885. doi:10.1371/journal.pmed.1001885.
- 2. http://www.hscic.gov.uk/hes. Accessed June 30, 2015.
- Bridgewater B, Keogh B, Kinsman R, Walton P. The Society for Cardiothoracic Surgery in Great Britain & Ireland: the Sixth National Adult Cardiac Surgical Database Report. Henley-on-Thames, UK: Dendrite Clinical Systems Ltd, 2009. Available at: http://www.scts.org/_userfiles/resources/SixthNACSDreport2008withcovers.pdf. Accessed June 30, 2015.
- 4. http://www.ucl.ac.uk/nicor/audits/adultcardiac/documents/datasets/NACSAdatasetV4.1.2.
- 5. Accessed April 30, 2015.
- 6. http://www.ucl.ac.uk/nicor/audits/adultcardiac/documents/datasets/nacsacleaning10.3. Accessed April 30, 2015.
- Hickey GL, Grant SW, Cosgriff R, Dimarakis I, Pagano D, Kappetein AP, Bridgewater B. Clinical registries: governance, management, analysis and applications. *Eur J Cardiothorac Surg.* 2013;44:605-14. doi:10.1093/ejcts/ezt018.
- 8. Roques F, Michel P, Goldstone AR, Nashef SA. The logistic EuroSCORE. *Eur Heart J.* 2003;24:881-2. doi:10.1016/S0195-668X(02)00799-6.
- 9. von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandenbroucke JP; STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *BMJ.* 2007;335:806-8. doi:10.1136/bmj.39335.541782.AD.
- Stroup DF, Berlin JA, Morton SC, Olkin I, Williamson GD, Rennie D, Moher D, Becker BJ, Sipe TA, Thacker SB. Metaanalysis of observational studies in epidemiology: a proposal for reporting. Meta-analysis Of Observational Studies in Epidemiology (MOOSE) group. JAMA. 2000;283:2008-12. doi:10.1001/jama.283.15.2008.
- 11. Moher D, Liberati A, Tetzlaff J, Altman DG; PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ*. 2009;339:b2535. doi:10.1136/bmj.b2535.
- 12. Schaffer JM, Lingala B, Fischbein MP, Dake MD, Woo YJ, Mitchell RS, Miller DC. Midterm outcomes of open descending thoracic aortic repair in more than 5,000 Medicare patients. *Ann Thorac Surg.* 2015;100:2087-94. doi: 10.1016/j.athoracsur.2015.06.068.
- 13. Schaffer JM, Lingala B, Miller DC, Woo YJ, Mitchell RS, Dake MD. Midterm survival after thoracic endovascular aortic repair in more than 10,000 Medicare patients. *J Thorac Cardiovasc Surg.* 2015;149:808-20. doi: 10.1016/j.jtcvs.2014.10.036.
- 14. Bhatt P, Patel NJ, Patel A, Sonani R, Patel A, Panaich SS, Thakkar B, Savani C, Jhamnani S, Patel N, Patel N, Pant S, Patel S, Arora S, Dave A, Singh V, Chothani A, Patel J, Ansari M, Deshmukh A, Bhimani R, Grines C, Cleman M, Mangi A, Forrest JK, Badheka AO. Impact of hospital volume on outcomes of endovascular stenting for adult aortic coarctation. *Am J Cardiol.* 2015;116:1418-24. doi: 10.1016/j.amjcard.2015.07.066.
- 15. Brat R, Gaj J, Barta J. Early and mid-term outcomes of the aortic arch surgery: experience from the low-volume centre. *J Cardiothorac Surg.* 2015;10:31. doi: 10.1186/s13019-015-0229-6.
- 16. Grau JB, Kuschner CE, Ferrari G, Wilson SR, Brizzio ME, Zapolanski A, Yallowitz J, Shaw RE. Effects of a protocolbased management of type A aortic dissections. *J Surg Res.* 2015;197:265-9. doi: 10.1016/j.jss.2015.04.018.
- 17. Lenos A, Bougioukakis P, Irimie V, Zacher M, Diegeler A, Urbanski PP. Impact of surgical experience on outcome in surgery of acute type A aortic dissection. *Eur J Cardiothorac Surg.* 2015;48:491-6. doi: 10.1093/ejcts/ezu454.
- Iribarne A, Milner R, Merlo AE, Singh A, Saunders CR, Russo MJ. Outcomes following emergent open repair for thoracic aortic dissection are improved at higher volume centers. J Card Surg. 2015;30:74-9. doi:10.1111/jocs.12470.
- Murzi M, Miceli A, Di Stefano G, Cerillo AG, Kallushi E, Farneti P, Solinas M, Glauber M. Enhancing quality control and performance monitoring in thoracic aortic surgery: a 10-year single institutional experience. *Eur J Cardiothorac Surg.* 2015;47:608-15. doi:10.1093/ejcts/ezu249.

- 20. Andersen ND, Ganapathi AM, Hanna JM, Williams JB, Gaca JG, Hughes GC. Outcomes of acute type a dissection repair before and after implementation of a multidisciplinary thoracic aortic surgery program. *J Am Coll Cardiol.* 2014;63:1796-803. . doi:10.1016/j.jacc.2013.10.085.
- 21. Sales Mda C, Frota Filho JD, Aguzzoli C, Souza LD, Rösler AM, Lucio EA, Leães PE, Pontes MR, Lucchese FA. Aortic Center: specialized care improves outcomes and decreases mortality. *Rev Bras Cir Cardiovasc.* 2014;29:494-504. doi: 10.5935/1678-9741.20140122.
- 22. Weiss A, Anderson JA, Green A, Chang DC, Kansal N. Hospital volume of thoracoabdominal aneurysm repair does not affect mortality in California. *Vasc Endovascular Surg.* 2014;48:378-82. doi:10.1177/1538574414540344.
- 23. Patel VI, Mukhopadhyay S, Ergul E, Aranson N, Conrad MF, Lamuraglia GM, Kwolek CJ, Cambria RP. Impact of hospital volume and type on outcomes of open and endovascular repair of descending thoracic aneurysms in the United States Medicare population. *J Vasc Surg.* 2013;58:346-54. doi:10.1016/j.jvs.2013.01.035.
- 24. Arnaoutakis DJ, Propper BW, Black JH 3rd, Schneider EB, Lum YW, Freischlag JA, Perler BA, Abularrage CJ. Racial and ethnic disparities in the treatment of unruptured thoracoabdominal aortic aneurysms in the United States. *J Surg Res.* 2013;184:651-7. doi:10.1016/j.jss.2013.03.018.
- 25. Chikwe J, Cavallaro P, Itagaki S, Seigerman M, Diluozzo G, Adams DH. National outcomes in acute aortic dissection: influence of surgeon and institutional volume on operative mortality. *Ann Thorac Surg.* 2013;95:1563-9. doi:10.1016/j.athoracsur.2013.02.039.
- 26. Goodney PP, Brooke BS, Wallaert J, Travis L, Lucas FL, Goodman DC, Cronenwett JL, Stone DH. Thoracic endovascular aneurysm repair, race, and volume in thoracic aneurysm repair. *J Vasc Surg.* 2013;57:56-63. doi:10.1016/j.jvs.2012.07.036.
- 27. Soppa G, Abdulkareem N, Smelt J, Van Besouw JP, Jahangiri M. High-volume practice by a single specialized team reduces mortality and morbidity of elective and urgent aortic root replacement. *Aorta (Stamford).* 2013;1:40-4. doi: 10.12945/j.aorta.2013.13.001.
- Tsagakis K, Konorza T, Dohle DS, Kottenberg E, Buck T, Thielmann M, Erbel R, Jakob H. Hybrid operating room concept for combined diagnostics, intervention and surgery in acute type A dissection. *Eur J Cardiothorac Surg.* 2013;43:397-404. doi:10.12945/j.aorta.2013.13.001.
- 29. Hughes GC, Zhao Y, Rankin JS, Scarborough JE, O'Brien S, Bavaria JE, Wolfe WG, Gaca JG, Gammie JS, Shahian DM, Smith PK. Effects of institutional volumes on operative outcomes for aortic root replacement in NorthAmerica. *J Thorac Cardiovasc Surg.* 2013;145:166-70. doi:10.1016/j.jtcvs.2011.10.094.
- 30. Sakata R, Kuwano H, Yokomise H. Hospital volume and outcomes of cardiothoracic surgery in Japan: 2005-2009 national survey. *Gen Thorac Cardiovasc Surg.* 2012;60:625-38. doi:10.1007/s11748-012-0128-x.
- 31. Chavanon O, Baguet JP, Albaladéjo P, Blin D, Vanzetto G. Direct admission to the operating room: an efficient strategy for patients with diagnosed or highly suspected acute type A aortic dissection. *Can J Cardiol.* 2011;27:685-91. doi:10.1016/j.cjca.2011.01.014.
- 32. Gopaldas RR, Dao TK, LeMaire SA, Huh J, Coselli JS. Endovascular versus open repair of ruptured descending thoracic aortic aneurysms: a nationwide risk-adjusted study of 923 patients. *J Thorac Cardiovasc Surg.* 2011; 142:1010-8. doi:10.1016/j.jtcvs.2011.08.014.
- 33. Harris KM, Strauss CE, Duval S, Unger BT, Kroshus TJ, Inampudi S, Cohen JD, Kapsner C, Boland LL, Eales F, Rohman E, Orlandi QG, Flavin TF, Kshettry VR, Graham KJ, Hirsch AT, Henry TD. Multidisciplinary standardized care for acute aortic dissection: design and initial outcomes of a regional care model. *Circ Cardiovasc Qual Outcomes*. 2010;3:424-30. doi:10.1161/CIRCOUTCOMES.109.920140.
- 34. Davies MG, Younes HK, Harris PW, Masud F, Croft BA, Reardon MJ, Lumsden AB. Outcomes before and after initiation of an acute aortic treatment center. *J Vasc Surg.* 2010;52:1478-85. doi:10.1161/CIRCOUTCOMES.109.920140.
- 35. Gazoni LM, Speir AM, Kron IL, Fonner E, Crosby IK. Elective thoracic aortic aneurysm surgery: better outcomes from high-volume centers. *J Am Coll Surg.* 2010;210:855-9. doi:10.1016/j.jamcollsurg.2010.01.013.
- Miyata H, Motomura N, Ueda Y, Tsukihara H, Tabayashi K, Takamoto S. Toward quality improvement of thoracic aortic surgery: estimating volume-outcome effect from nationwide survey. *Eur J Cardiothorac Surg.* 2009;36:517-21. doi:10.1016/j.ejcts.2009.03.020.
- 37. Schermerhorn ML, Giles KA, Hamdan AD, Dalhberg SE, Hagberg R, Pomposelli F. Population-based outcomes of open descending thoracic aortic aneurysm repair. *J Vasc Surg.* 2008;48:821-7. doi:10.1016/j.jvs.2008.05.022.

- 38. Knipp BS, Deeb GM, Prager RL, Williams CY, Upchurch GR Jr, Patel HJ. A contemporary analysis of outcomes for operative repair of type A aortic dissection in the United States. *Surgery.* 2007;142:524-8. doi:10.1016/j.surg.2007.012.
- 39. Committee for Scientific Affairs, Kazui T, Osada H, Fujita H. An attempt to analyze the relation between hospital surgical volume and clinical outcome. *Gen Thorac Cardiovasc Surg.* 2007;55:483-92. doi:10.1007/s11748-007-0172-0.
- 40. Rigberg DA, McGory ML, Zingmond DS, Maggard MA, Agustin M, Lawrence PF, Ko CY. Thirty-day mortality statistics underestimate the risk of repair of thoracoabdominal aortic aneurysms: a statewide experience. *J Vasc Surg.* 2006;43:217-22. doi:10.1016/j.jvs.2005.10.070.
- 41. Narayan P, Caputo M, Rogers CA, Alwair H, Mahesh B, Angelini GD, Bryan AJ. Early and mid-term outcomes of surgery of the ascending aorta/arch: is there a relationship with caseload? *Eur J Cardiothorac Surg.* 2004;25:676-82. doi: 10.1016/j.ejcts.2004.01.011.
- 42. Cowan JA Jr, Dimick JB, Henke PK, Huber TS, Stanley JC, Upchurch GR Jr. Surgical treatment of intact thoracoabdominal aortic aneurysms in the United States: hospital and surgeon volume-related outcomes. *J Vasc Surg.* 2003;37:1169-74. doi:10.1016/S0741-5214(03)00085-5.
- 43. Derrow AE, Seeger JM, Dame DA, Carter RL, Ozaki CK, Flynn TC, Huber TS. The outcome in the United States after thoracoabdominal aortic aneurysm repair, renal artery bypass, and mesenteric revascularization. *J Vasc Surg.* 2001;34:54-61. doi: 10.1067/mva.2001.115596.
- 44. Albrink MH, Rodriguez E, England GJ, McKeown PP, Hurst JM, Rosemurgy AS 2nd. Importance of designated thoracic trauma surgeons in the management of traumatic aortic transection. *South Med J.* 1994;87:497-501.