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S1 FILE. PROOFS OF THEOREMS

We will first prove two lemmas relating to the situation where the cumulative dis-

tribution used for the PIT-trap has been misspecified, but in such a way that PIT-

residuals remain identically distributed.

Lemma 1. Let U = F (Y )Q + F (Y −)(1 − Q) be the probability integral transform

but where the cumulative distribution F (y) may have been misspecified, and the true

distribution function is G(y) = h {F (y)} for some function h(·).

Then

P (U ≤ u) = h(u)

Proof. For simplicity we will consider the continuous case only, the proof follows via

a similar method in the discrete case. Let u = F (y) be the observed value of the

probability integral transform residual. Then:

P (U ≤ u) = P {F (Y ) ≤ F (y)} = P (Y ≤ y) = G(y) = h {F (y)} = h(u)

Lemma 1 is used directly in the proof of Lemma 2 below.

Lemma 2. Consider a set of n random variables Y1, . . . , Yn with distribution func-

tion Gi(y) for Yi. A PIT-trap sample Y ∗
1 , . . . , Y

∗
n is computed using a (possibly

misspecified) set of cumulative distributions, denoted Fi(y) for Yi.
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If Gi(y) = h {Fi(y)} for some function h(·), then for each i:

P∗(Y
∗
i ≤ y) = Gi(y)

Proof.

P∗(Y
∗
i ≤ y) = P∗ {Fi(Y

∗) ≤ Fi(y)} = P∗ {U∗
i ≤ Fi(y)}

=
n∑

i=1

1

n
P {Ui ≤ Fi(y)}

since the bootstrap sample U∗
i is drawn at random with replacement from the set

of observed PIT-residuals.

= h {Fi(y)} from Lemma 1

= Gi(y)

Lemma 2 shows that if probability integral transform residuals are identically dis-

tributed, then the Y ∗
i preserve the marginal distribution of the Yi.

Proof of Theorem 1

We will prove Theorem 1 by showing that asymptotically, the conditions of Lemma 2

are satisfied.

First note that if θ̂ is
√
n-consistent for θ then provided that Fj(y; θ̂,xi) is twice

differentiable with respect to θ then Fj(y; θ̂,xi) = Fj(y;θ,xi) +Op(n
−1/2).

Hence, up to a term Op(n
−1/2), Fj(y; θ̂,xi) satisfies the conditions of Lemma 2

(where h(·) is the identity function). By Lemma 2, PIT-trap values follow the true

cumulative distribution function Fj(y;θ,xi), up to a term no larger than O(n−1/2).
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Note: While this argument uses the result that the Fj(y; θ̂,xi) approximate the true

distribution Fj(y;θ,xi), we can relax this assumption along the lines of Lemma 1

such that there is only the requirement that the PIT-residuals are (asymptotically)

identically distributed, P (Uij ≤ u) = h(u) for each (i, j). Thus the PIT-trap can

preserve the marginal distribution of the data under certain forms of model mis-

specification.

Proof of Theorem 3

The proof follows via the usual Edgeworth expansion approach in ?.

If T = g(Y) admits an Edgeworth expansion then:

P (T ≤ t) = Φ(t) + n−1/2p1(t)φ(t) + n−1p2(t)φ(t) +O(n−3/2)

where p1(t) is an odd polynomial function of the skewness of T , p2(t) is an even

polynomial function of the skewness and kurtosis of T , and these moments are eval-

uated with respect to the distribution of the matrix of data y, which is characterized

by its margins F (y;θ,xi), and the correlation between PIT-residuals var(Ui) = Σ.

If Y is discrete then the same type of expansion applies, but only at continuity-

corrected points and not at all t (?).

Under the same assumptions, the distribution of the PIT-trap statistic T ∗ = g(Y∗)

under resampling admits a similar Edgeworth expansion:

P∗(T
∗ ≤ t) = Φ(t) + n−1/2p̂1(t)φ(t) + n−1p̂2(t)φ(t) +Op(n

−3/2)

where p̂1(t) and p̂2(t) are evaluated with respect to PIT-trapped data Y∗ whose

marginal distribution is F (y; θ̂,xi), where the correlation between PIT-trapped

residuals is var∗(Ui) = Σ̂.

Now from Theorem 1, the cumulative distribution function of a PIT-trap value Y ∗
ij is

F (y;θj,xi)+Op(n
−1/2), and from Theorem 1, var(U∗

i ) = Σ̂ whose entries differ from
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those of Σ by Op(n
−1/2). Since F (y;θj,xi) and Σ characterize the joint distribution

of the Yi,

p̂k(t) = pk(t) +Op(n
−1/2)

for any k for which the kth moment of Yij is defined.

Hence the coefficients of n−1/2 in the above two Edgeworth expansions match to first

order and

P∗(T
∗ ≤ t) = P (T ≤ t) +Op(n

−1)

As in ?, p̂k(t) and pk(t) are odd functions for odd k. Hence the odd terms cancel

when calculating a two-tailed probability, removing the coefficient of n−1/2 in each

expansion, and the coefficients of n−1 match to first order, so

P∗(−t ≤ T ∗ ≤ t) = P (−t ≤ T ≤ t) +Op(n
−3/2)
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