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S1 FILE. PROOFS OF THEOREMS

We will first prove two lemmas relating to the situation where the cumulative dis-
tribution used for the PIT-trap has been misspecified, but in such a way that PIT-

residuals remain identically distributed.

Lemma 1. Let U = F(Y)Q + F(Y™)(1 — Q) be the probability integral transform
but where the cumulative distribution F(y) may have been misspecified, and the true

distribution function is G(y) = h{F(y)} for some function h(-).

Then

P(U <u) = h(u)

Proof. For simplicity we will consider the continuous case only, the proof follows via
a similar method in the discrete case. Let u = F(y) be the observed value of the

probability integral transform residual. Then:

PU <u)=P{F{Y)<F(y)} = PY <y)=Gy) = h{F(y)} = h(u)

Lemma 1 is used directly in the proof of Lemma 2 below.

Lemma 2. Consider a set of n random variables Y1, ..., Y, with distribution func-
tion Gi(y) for Y. A PIT-trap sample Y",...,Y," is computed using a (possibly

misspecified) set of cumulative distributions, denoted F;(y) forY;.



If Gi(y) = h {Ei(y)} for some function h(-), then for each i:
PY] <y) = Gi(y)
Proof.
P.(Y} <y) = PAF(Y") < F(y)} = P.{U < F(y)}
- Z Lp v < R

since the bootstrap sample U; is drawn at random with replacement from the set

of observed PIT-residuals.

=h{F(y)} from Lemma 1

= Gi(y)

Lemma 2 shows that if probability integral transform residuals are identically dis-

tributed, then the Y;* preserve the marginal distribution of the Y;.

Proof of Theorem 1

We will prove Theorem 1 by showing that asymptotically, the conditions of Lemma 2

are satisfied.

First note that if @ is v/n-consistent for @ then provided that Fj(y;a, x;) is twice

differentiable with respect to 6 then Fj(y; 6, x;) = Fj(y;0,%;) + O,(n~1/2).

Hence, up to a term O,(n~'/?), Fj(y;a, x;) satisfies the conditions of Lemma 2
(where h(-) is the identity function). By Lemma 2, PIT-trap values follow the true
cumulative distribution function Fj(y; @,x%;), up to a term no larger than O(n~1/2).

]



Note: While this argument uses the result that the F;(y; 5, x;) approximate the true
distribution Fj(y;0,x;), we can relax this assumption along the lines of Lemma 1
such that there is only the requirement that the PIT-residuals are (asymptotically)
identically distributed, P(U;; < u) = h(u) for each (7,7). Thus the PIT-trap can
preserve the marginal distribution of the data under certain forms of model mis-

specification.

Proof of Theorem 3

The proof follows via the usual Edgeworth expansion approach in 7.
If T'= g(Y) admits an Edgeworth expansion then:
P(T < t) = ®(t) + 0 Ppi(t)e(t) + n~'pa(t)o(t) + O(n %)

where p1(t) is an odd polynomial function of the skewness of T, py(t) is an even
polynomial function of the skewness and kurtosis of 7', and these moments are eval-
uated with respect to the distribution of the matrix of data y, which is characterized

by its margins F'(y; @, x;), and the correlation between PIT-residuals var(U;) = 3.

If Y is discrete then the same type of expansion applies, but only at continuity-

corrected points and not at all ¢ (7).

Under the same assumptions, the distribution of the PIT-trap statistic 7* = g(Y™)
under resampling admits a similar Edgeworth expansion:

P(T* <t) = ®(t) + n ' 2p (1) () + n " pa(t)d(t) + Op(n~3/?)

where pi(t) and po(t) are evaluated with respect to PIT-trapped data Y* whose
marginal distribution is F (y;a, x;), where the correlation between PIT-trapped

residuals is var,(U;) = >}

Now from Theorem 1, the cuamulative distribution function of a PIT-trap value Y} is

F(y;0;,%;)+0,(n"'/?), and from Theorem 1, var(U}) = 3 whose entries differ from
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those of 3 by O,(n~1/2). Since F(y;0;,%;) and 3 characterize the joint distribution

of the le'7
Bi(t) = pi(t) + Op(n~"72)
for any k for which the kth moment of Y;; is defined.

Hence the coefficients of n=/2 in the above two Edgeworth expansions match to first

order and

As in ?, p(t) and pi(t) are odd functions for odd k. Hence the odd terms cancel

1/2

when calculating a two-tailed probability, removing the coefficient of n="/= in each

expansion, and the coefficients of n~! match to first order, so

P(—t<T*<t)=P(—t<T <t)+0,(n%?
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