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S1 TEXT: SUPPLEMENTARY METHODS 

RARE VARIANT ASSOCIATION TESTS 

Notations 

Let 𝐗 be the matrix of genotypes with 𝑋𝑖𝑗 the count of rare alleles for the 𝑖-th individual and 

𝑗-th rare variant, varying between 0, 1 or 2 rare alleles. Let 𝒀 be the vector of phenotypes with 

𝑌𝑖 = 1 if the 𝑖-th individual is a case, 𝑌𝑖 = 0 if else. Let 𝑙𝑗 be the position of the 𝑗-th rare 

variant. The number of affected (A) and unaffected (U) individuals are respectively 𝑁𝐴 and 

𝑁𝑈, with 𝑁 the total number of individuals. The number of rare variants in the gene is 𝑃.  

 

Methods not incorporating positional information 

Our classification of association tests is partly based on the review from Lee et al. (2014) [1]. 

Burden tests 

CAST 

The “cohort allelic sum test” CAST described by Morgenthaler and Thilly in 2007 [2], uses a 

collapsing strategy, reducing the genetic information of a region to an indicator about the 

presence of rare mutations. We used a version comparing the proportions of individuals that 

present at least one mutation on a gene between cases and controls. The genetic score for the 

𝑖-th individual is 

𝐶𝐶𝐴𝑆𝑇𝑖
= 𝐼(𝑆𝑖 ≥ 1) 
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with 𝑆𝑖 = ∑ 𝑋𝑖𝑗
𝑃
𝑗=1 , i.e. the sum of mutation counts on the gene for the 𝑖-th individual. A 

bilateral Fisher exact test is then applied between the binary genetic score 𝑪𝑪𝑨𝑺𝑻 and the 

binary phenotype 𝒀. 

 

WSS 

The “weighted sum statistic” (WSS) developed by Madsen and Browning in 2009 [3] 

computes a genetic score per individual which is a weighted sum of mutations counts. Let the 

genetic score for the 𝑖-th individual be: 

𝑆𝑊𝑆𝑆𝑖
= ∑ 𝑤𝑊𝑆𝑆𝑗

𝑋𝑖𝑗

𝑃

𝑗=1

 

The weight 𝑤𝑊𝑆𝑆𝑗
 is a continuous decreasing function of the control minor allele frequency: 

𝑤𝑊𝑆𝑆𝑗
 =

1

√𝑁. 𝑀𝐴𝐹𝑗
𝑈∗̂ (1 − 𝑀𝐴𝐹𝑗

𝑈∗̂ )

 

with 𝑀𝐴𝐹𝑗
𝑈∗̂ =

∑ 𝑋𝑖𝑗
𝑁𝑈

𝑖=1 +1

2(𝑁𝑈+1)
 the non-null estimator of the minor allele frequency in controls. 

Variants with a lower frequency present a more important weight so that they contribute 

equally to the genetic score under the null hypothesis. This also assumes that very rare 

variants are more likely to have an effect on disease susceptibility.  

The association between the variables 𝑆𝑊𝑆𝑆 and 𝑌 is tested with an unilateral Wilcoxon rank 

sum test, the null hypothesis being an excess of rare mutations in cases. The significance of 

the test can be evaluated by two different ways. The null hypothesis distribution of the test 

statistic can be approximated by a normal distribution, whose parameters are estimated by a 

phenotype permutation procedure. In this article we decided to evaluate the p-value with the 

empirical distribution obtained by permutations.  
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VT 

The “variable threshold” (VT) approach developed by Price et al. in 2010 [4] supposes that 

rare variants with a frequency below a threshold 𝑡, which is determined adaptively, are more 

likely to be causal. A z-score noted 𝑍(𝑡) is computed for each possible minor allele frequency 

threshold 𝑡: 

𝑍(𝑡) =  
∑ ∑ 𝐼(𝑀𝐴𝐹𝑗̂ ≤ 𝑡)𝑋𝑖𝑗

𝑃
𝑗=1 (𝑌𝑖 − 𝑌̅)𝑁

𝑖=1

[∑ ∑ [𝐼(𝑀𝐴𝐹𝑗̂ ≤ 𝑡)𝑋𝑖𝑗]𝑃
𝑗=1

𝑁
𝑖=1

2
]

1
2

  

 

 

with 𝑀𝐴𝐹𝑗̂ the estimator of the minor allele frequency in the total population. The final test 

statistic is the maximum z-score 𝑍(𝑡) across all possible 𝑡 thresholds. In this article, the 

significance of the unilateral test is evaluated by a standard phenotype permutation procedure. 

 

aSum 

The “adaptive sum test” (aSum) developed by Han and Pan (2010) [5], computes a genetic 

score per individual in which weights take into account the direction of the genetic effect 

(protective or deleterious). The weight is equal to 1 (𝑤𝑎𝑆𝑢𝑚𝑗
= 1) for "deleterious-inclined" 

variants and is equal to -1 (𝑤𝑎𝑆𝑢𝑚𝑗
= −1) for "protective-inclined" variants. To decide 

whether the 𝑗-th variant is deleterious or protective inclined, the marginal logistic regression 

model is considered:  

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌𝑖 = 1)) = 𝛽0
j

+ 𝛽1
𝑗
Xij  

If the estimation of the regression coefficient 𝛽1
𝑗
 is 𝛽1

𝑗̂
< 0, and the p-value for the score test 

[6] is less than 𝛼0, then the 𝑗-th variant is considered protective-inclined. We chose 𝛼0 = 0.1 

as it is set in the original publication. 

The aSum test is based on the following logistic regression model: 
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𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌𝑖 = 1)) = 𝛽0 + 𝛽1SaSum𝑖
  

with 𝑆𝑎𝑆𝑢𝑚𝑖
= ∑ 𝑤𝑎𝑆𝑢𝑚𝑗

𝑋𝑖𝑗 𝑃
𝑗=1  the genetic score for the 𝑖-th individual. The null hypothesis 

is 𝛽1 = 0, which is tested with a score test [6]. We assessed the significance using the 

empirical distribution obtained by permutations. 

 

P-value combination tests 

ADA 

The “adaptive combination of p-values for rare variant association testing” (ADA) developed 

by Lin et al. (2014) [7], is an extension of the sigma-P method [8] which is inspired from the 

Fisher method combining individual association signals. Rare variants are tested individually 

and the statistic is a weighted linear combination of p-value logarithms. Let {𝑝𝑗 , 𝑗 ∈ {1, … , 𝑃}} 

be the p-values obtained by a classical single-marker test. The test statistic 𝑄𝐴𝐷𝐴 is: 

𝑄𝐴𝐷𝐴 = − ∑ 𝑤𝐴𝐷𝐴𝑗
log(𝑝𝑗)

𝑃

𝑗=1

 

with 𝑤𝐴𝐷𝐴𝑗
 the weight and 𝑝𝑗 the p-value for the 𝑗-th variant. This test uses the weight system 

proposed by Madsen and Browning (2009) [3] making the assumption that very rare variants 

play an important role. To deal with variants with opposite effects, it computes a statistic for 

“deleterious-inclined” variants and a statistic for “protective-inclined” variants. The weight 

for the ADA test is then: 

𝑤𝐴𝐷𝐴𝑗
= 𝐼(𝑀𝐴𝐹𝑗

𝐴̂ ≥ 𝑀𝐴𝐹𝑗
𝑈̂) × 𝐼(𝑝𝑗 ≤ 𝜃) × 𝑤𝑊𝑆𝑆𝑗

 for the “deleterious” statistic 

𝑤𝐴𝐷𝐴𝑗
= 𝐼(𝑀𝐴𝐹𝑗

𝐴̂ < 𝑀𝐴𝐹𝑗
𝑈̂) × 𝐼(𝑝𝑗 ≤ 𝜃) × 𝑤𝑊𝑆𝑆𝑗

 for the “protective” statistic 

with 𝜃 the p-value threshold which is determined to minimize the p-value of the ADA test. 

The final test statistic is the maximum of the two statistics. Contrary to the sigma-P method, 

the ADA test aims to effectively remove neutral variants from the analysis. Variants with a p-
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value larger than a threshold 𝜃 are not taken into account in the analysis, the threshold being 

chosen adaptively. The significance is evaluated by a phenotype permutation procedure. 

Remark: In the implementation of the ADA test, variants are tested individually with a Fisher 

exact test. Because of the discreteness of the hypergeometric distribution, p-values are 

particularly conservative in a context of rare variants, with an average greater than 0.5. This is 

why mid-p-values are computed [9]. 

 

Variance-component tests 

The common assumption in burden tests is that causal variants have the same direction of 

effects; it means either protective or deleterious effect. A category of rare variant association 

tests, called variance-component tests, test unusual variance of minor allele frequencies in a 

group of variants. 

 

C-alpha 

The C-alpha test [10] has been developed to detect a mixture of genetic effects (neutral, 

protective or deleterious) in groups of variants. For a variant 𝑗-th, observed 𝑚𝑗 times, we 

suppose that the number of mutations in cases 𝑚𝑗
𝐴 follow a binomial distribution ℬ(𝑚𝑗 , 𝑝𝑗). 

Let 𝑝0 be the proportion of cases in the dataset, under the null hypothesis, ∀𝑗 ∈ {1, … , 𝑃},

𝑝𝑗 = 𝑝0, i.e. a rare mutation occurs randomly in cases and controls. Under the alternative 

hypothesis the group of rare variants presents a mixture of binomial distributions with 

protective variants (𝑝𝑗 < 𝑝0) or/and deleterious variants (𝑝𝑗 > 𝑝0). 

The C-alpha test is based on the principle that a mixture of binomial distributions leads to 

overdispersion. The statistic is then a sum of differences between observed variance and 

expected variance under the null hypothesis. Its expression is  
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𝑄𝐶−𝑎𝑙𝑝ℎ𝑎 = ∑  [(𝑚𝑗
𝐴 − 𝑚𝑗𝑝0)

2
− 𝑚𝑗𝑝0(1 − 𝑝0)]

𝑃

𝑗=1

 

The significance is evaluated by a phenotype permutation procedure. 

 

SKAT 

The sequence kernel association test (SKAT) [11] is a generalization of the C-alpha test and 

uses a kernel matrix representing genetic similarities between individuals enabling more 

complex models. The logistic linear model is  

𝑙𝑜𝑔𝑖𝑡(𝑃(𝑌𝑖 = 1|𝑋𝑖)) = 𝛽0 + ∑ 𝛽𝑗𝑋𝑖𝑗

𝑃

𝑗=1

 

with 𝛽0 the intercept and 𝛽𝑗, 𝑗 ∈ {1, … , 𝑃} the regression coefficients for genetic effects. We 

consider in this model genetic factors as random effects. Each 𝛽𝑗 follows an arbitrary 

distribution with a mean of zero and a variance of 𝑤𝑗𝜏 with 𝜏 the variance-component and 𝑤𝑗 

the weight for the 𝑗-th variant. The null hypothesis in this test is 𝐻0: 𝜏 = 0. The statistic is  

𝑄𝑆𝐾𝐴𝑇 = (𝒀 − 𝑌̅)′𝐊(𝒀 − 𝑌̅) 

with 𝐊 the kernel matrix corresponding to a genetic similarity matrix between individuals. In 

the context of the weighted linear model the kernel matrix is  

𝐊 = 𝐗𝐖𝐖′𝐗′ 

 with 𝐖 = 𝑑𝑖𝑎𝑔(𝑤𝑆𝐾𝐴𝑇1
, … , 𝑤𝑆𝐾𝐴𝑇𝑃

) where the weights are 𝑤𝑆𝐾𝐴𝑇𝑗
= 𝑏𝑒𝑡𝑎(𝑀𝐴𝐹𝑗 , 𝑎1, 𝑎2). 

Weights are function of the MAF, computed through the entire case-control sample. We chose 

to set the default values 𝑎1 = 1, and 𝑎2 = 25, as it increases the weight of very rare variants 

while still putting decent weights for less rare variants. The test statistic follows under the null 

distribution a mixture of chi-square distributions, which is approximated with the Davies 
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method [12], to assess the significance. For sample sizes strictly inferior to 2000, an 

adjustment is performed in the assessment of the p-value by approximated distribution [13].  

SKAT-O 

It has been noticed that the variance-component test SKAT is not powerful in a context of a 

high proportion of causal variants in a gene with the same effect [14]. That is why another 

version of SKAT called SKAT-O[13] has been developed with the strategy to optimally 

combine the variance-component test SKAT with a burden test. In this test, an additional 

parameter 𝜌, is adaptively determined to maximize the power. 𝜌 is a coefficient between 0 

and 1 that determines the correlation structure between genetic effects :  ∀𝑗 𝑐𝑜𝑟𝑟(𝛽𝑗 , 𝛽𝑗′) = 𝜌. 

The statistic is  

𝑄𝑆𝐾𝐴𝑇−𝑂𝜌
= (𝒀 − 𝑌̅)′𝐊𝛒(𝒀 − 𝑌̅) 

with   

𝐊𝛒 = 𝐗𝐖𝐑𝛒𝐖′𝐗′ 

 where 𝐑𝛒 = (1 − 𝜌)𝑰𝑷 +  𝜌𝟏𝑷𝟏𝑷′ and 𝐖 = 𝑑𝑖𝑎𝑔(𝑤𝑆𝐾𝐴𝑇1
, … , 𝑤𝑆𝐾𝐴𝑇𝑃

).  

There are two particular cases: 

- 𝜌 = 0 ∶       𝑄𝜌 = ∑ w𝑗
2[∑ (𝑌𝑖 − 𝑌̅)𝑋𝑖𝑗

𝑁
𝑖=1 ]

2𝑃
𝑗=1    SKAT 

- 𝜌 = 1 ∶       𝑄𝜌 = [∑ w𝑗
2 ∑ (𝑌𝑖 − 𝑌̅)𝑋𝑖𝑗

𝑁
𝑖=1

𝑃
𝑗=1 ]

2
              burden test  

The coefficient 𝜌 is determined among a series of values from 0 to 1 with an increment of 0.1 

so that the p-value is minimal. The null distribution is approximated with the method 

described by Lee et al. (2012). For sample sizes strictly inferior to 2000, an adjustment is 

performed in the assessment of the p-value by approximated distribution [13]. 
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The kernel-based adaptive cluster (KBAC) test 

The kernel-based adaptive cluster (KBAC) test proposed by Liu and Leal (2010) [15] aims to 

overcome noise caused by neutral variants and gene interaction. It uses adaptive weights to 

better discriminate multi-site genotypes. A more important weight is accorded to the multi-

site genotypes (or mutations patterns) that are enriched in cases.  

Suppose that 𝑋𝐾𝐵𝐴𝐶𝑙
, 𝑙 𝜖 {0, … , 𝐿}, are the different multi-site genotypes we observe in our 

dataset 𝐗, and that 𝑛𝑙 , 𝑙{0, … , 𝐿} are the observed counts for each different mutation pattern. 

The KBAC statistic is given by  

𝐾𝐵𝐴𝐶 = (∑ 𝑤𝑙  (
𝑛𝑙

𝐴

𝑁𝐴
−

𝑛𝑙
𝑈

𝑁𝑈
)

𝐿

𝑙=1

)

2

 

with 𝑤𝑙 the weight for 𝑙-th multi-site genotype which is computed adaptively with the choice 

of a kernel function. The hypergeometric kernel is the most often used in the literature and is 

suitable for small to moderate sample sizes. It is assumed that under the null hypothesis the 

count 𝑁𝑙
𝐴 of the 𝑙-th pattern in cases follows an hypergeometric distribution ℋ (𝑁𝐴,

𝑛𝑙

𝑁
, 𝑁). 

The weight 𝑤𝑙 for the 𝑙-th multi-site genotype is defined as  

𝑤𝑙 = 𝑃(𝑁𝑙
𝐴 ≥ 𝑛𝑙

𝐴) = ∑
(

𝑁𝑙

𝑘
) (

𝑁 − 𝑁𝑙

𝑁𝐴 − 𝑘
)

(
𝑁

𝑁𝐴)

𝑛𝑙
𝐴

𝑘=0

 

The significance of the KBAC test is evaluated by a phenotype permutation procedure. 

 

Methods that incorporate positional information 

Few tests take into account physical positions of rare variants. There are two main strategies 

to detect associated clustered rare variants: sliding windows and distance matrix.  
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Tests using sliding windows 

Burden or Mutation Position test (BOMP) 

A simple approach to detect a cluster of DRVs in a gene is to compute a statistic per window 

of the gene. Because the size and the location of the cluster are usually unknown, sliding 

windows of different sizes are commonly considered. This strategy is used in the tests Burden 

or Mutation Position (BOMP) test [16],  proposed by Chen et al. in 2013, and the test 

developed by Ionita-Laza et al. in 2012 [17]. 

The BOMP test [16] consists in a combination of two likelihood ratio tests: a burden test and 

a mutation position distribution test.   

The burden test uses an approach similar to CAST, and the collapsing variable is 

𝐶𝑖 = 𝐼(𝑆𝑖 ≥ 𝑡) 

with 𝑡 a threshold that is determined to maximize the test statistic. For the computation of this 

log-likelihood ratio statistic Λ𝑏𝑢𝑟𝑑𝑒𝑛(𝑡), it is assumed that presenting at least 𝑡 rare mutations 

follows a Bernoulli distribution of success probability 𝑝𝐴, 𝑝𝑈 or 𝑝𝐴+𝑈 for case, control or 

total population. Under the null hypothesis, these probabilities are equal. The final statistic 

Λ𝑏𝑢𝑟𝑑𝑒𝑛 is given for the threshold 𝑡 that maximizes the function Λ𝑏𝑢𝑟𝑑𝑒𝑛(𝑡), i.e.  Λ𝑏𝑢𝑟𝑑𝑒𝑛 =

max𝑡(Λ𝑏𝑢𝑟𝑑𝑒𝑛(𝑡)) . 

 

For the mutation position test, the gene is divided into 𝑀 windows. The window mutations 

counts follow a multinomial distribution of parameters 𝑝𝑚
𝐴 , 𝑚 ∈ {1, … , 𝑀} for cases, 𝑝𝑚

𝑈 , 𝑚 ∈

{1, … , 𝑀} for controls and 𝑝𝑚
𝐴+𝑈, 𝑚 ∈ {1, … , 𝑀} for the total population. Under the null 

hypothesis the parameters are equal for each multinomial distribution. The log-likelihood 

ratio statistic Λ𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is computed for several partitions of the gene by a sliding window 

procedure with different window sizes. The statistic is the maximum statistic over the 

different partitions. 
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The final BOMP statistic is the sum of the log-likelihood ratio statistics obtained for the two 

tests 

Λ𝐵𝑂𝑀𝑃 = Λ𝑏𝑢𝑟𝑑𝑒𝑛 + Λ𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 

The significance of the total BOMP statistic is evaluated by a phenotype permutation 

procedure. 

 

Tests using kernel matrix 

KERNEL 

The test proposed by Schaid et al. in 2013 [18], is inspired from the Tango spatial method[19] 

which aims to detect spatial disease clusters. Let 𝜹𝑲𝒆𝒓𝒏𝒆𝒍 be the vector of difference in minor 

allele frequencies between cases and controls. The value of one element of this vector is  

𝛿𝐾𝑒𝑟𝑛𝑒𝑙𝑗
=

𝑚𝑗
𝐴

∑ 𝑚𝑗
𝐴𝑃

𝑗=1

−
𝑚𝑗

𝑈

∑ 𝑚𝑗
𝑈𝑃

𝑗=1

 

with 𝑚𝑗
𝐴 and 𝑚𝑗

𝑈 the counts of rare mutations for the 𝑗-th variant in cases and controls 

respectively. Position information is contained in a kernel matrix 𝐀 that measures distances 

between pairs of rare variants. The quadratic test statistic is then 

𝑄𝐾𝑒𝑟𝑛𝑒𝑙 = 𝜹𝑲𝒆𝒓𝒏𝒆𝒍
′ 𝐀𝜹𝑲𝒆𝒓𝒏𝒆𝒍 

The kernel function is the tri-weight  

𝐴𝑗𝑗′(𝑐) = 𝐾 (𝑑𝑗𝑗′
′ (𝑐)) = (1 − 𝑑𝑗𝑗′

′ (𝑐)2)
3

 

with 𝑑𝑗𝑗′
′ (𝑐) =

𝑑
𝑗𝑗′

𝑐×𝑚𝑎𝑥𝑑  
 where 𝑑𝑗𝑗′ = |𝑙𝑗′ − 𝑙𝑗| is the physical distance between variants 𝑗 and 

𝑗′ ; 𝑚𝑎𝑥𝑑 is a user-specified maximum distance (gene length or coding length); 𝑐 is a 

coefficient varying from 0.1 to 1 with an increment of 0.1. The final test statistic is the 
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maximum over the computed statistics with the ten different values of 𝑐. The significance is 

evaluated by a phenotype permutation procedure. 

 

CLUSTER 

The test CLUSTER [20], proposed by Lin in 2014, is an extension of the test ADA[7] which 

has been described previously and is inspired from the test developed by Schaid et al. [18].  In 

a vector 𝜹𝑪𝑳𝑼𝑺𝑻𝑬𝑹,  are indicated the weighted logarithms of single-marker p-values. The 

value for one element of this vector is  

𝛿𝐶𝐿𝑈𝑆𝑇𝐸𝑅𝑗
= √−𝑤𝐴𝐷𝐴𝑗

𝑙𝑜𝑔(𝑝𝑗) 

The quadratic test statistic is then  

𝑄𝐶𝐿𝑈𝑆𝑇𝐸𝑅 = 𝜹𝑪𝑳𝑼𝑺𝑻𝑬𝑹
′ 𝐀𝜹𝑪𝑳𝑼𝑺𝑻𝑬𝑹 

with 𝐀 the same kernel matrix as for the KERNEL test. Like the test ADA, two statistics are 

computed for “deleterious-inclined” variants and for “protective-inclined” variants; and the 

final statistic is the maximum of these two statistics. The significance is evaluated by a 

phenotype permutation procedure. 

 

Position-Dependent Kernel Association Test (PODKAT) 

The test PODKAT, has been proposed by Bodenhofer [21], is an extension of the test SKAT. 

The test statistic is similar to the SKAT test statistic: 

𝑄𝑃𝑂𝐷𝐾𝐴𝑇 = (𝒀 − 𝑌̅)′𝐊(𝒀 − 𝑌̅) 

where the position-dependent linear kernel is : 

𝐊 = 𝐗𝐖𝐀𝐀′𝐖′𝐗′ 

The kernel matrix 𝐊 incorporates the SKAT weight matrix 𝐖 = 𝑑𝑖𝑎𝑔(𝑤𝑆𝐾𝐴𝑇1
, … , 𝑤𝑆𝐾𝐴𝑇𝑃

) 

and a position-dependent matrix 𝐀 measuring similarities/closeness of positions of variants: 
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𝐴𝑗,𝑗′ = max (1 −
1

𝑤
𝑑𝑗,𝑗′ , 0) 

The parameter 𝑤 is called “maximal radius of tolerance”, by default its value is 1000 bp. By 

analogy with KERNEL distance measure 𝑑𝑗𝑗′
′ (𝑐), the parameter 𝑤 is then equivalent to 

𝑐 × 𝑚𝑎𝑥𝑑, with 𝑐 = 0.1 in our simulation context as 𝑚𝑎𝑥𝑑 = 10 kb. 

 

The distance-based measure (DBM) test 

The test developed by Fier et al. [22] compares two weighted distance distribution functions 

in cases and controls with the Ansari-Bradley test [23].  

Let 𝑺𝑨 and 𝑺𝑼 be the variant position sequences for cases and controls. In these vectors are 

incorporated variant positions, which are repeated [𝑚𝑗
𝐴𝑤𝑗] in cases or [𝑚𝑗

𝑈𝑤𝑗] in controls 

(round numbers) to account spatial distribution of allele frequencies. Then allele distances are 

derived in 𝑫𝑨 and 𝑫𝑼 vectors, by subtracting two consecutive elements of vectors 𝑺𝑨 and 𝑺𝑼. 

An Ansari-Bradley test is applied to 𝑫𝑨 and 𝑫𝑼 vectors to compare the weighted distance 

distributions in cases and controls. 

The weighted scheme adopted by Fier et al. [22] depends of minor allele frequencies and 

distance to the closest neighbour. Two kinds of weight are computed according to the 

distribution of variants in cases or controls. Weights, based on the distribution of variants in 

cases are:  

𝑤𝑗
𝐴 = 1 +

𝑚𝐴 + 1
𝑚𝑗

𝐴 + 1

log (𝑑𝑚𝑖𝑛𝑗
+ 1)

 

with 𝑑𝑚𝑖𝑛𝑗
 the distance between the 𝑗-th variant and its closest neighbour. In the same way, 

weights based on the distribution of variants in cases are:  
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𝑤𝑗
𝑈 = 1 +

𝑚𝑈 + 1
𝑚𝑗

𝑈 + 1

log (𝑑𝑚𝑖𝑛𝑗
+ 1)

 

 

A test statistic is computed for each weighted scheme and the final test statistic corresponds to 

the maximum. The significance is finally evaluated by a phenotype permutation procedure. 
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Implementation of the different statistical tests 

Test Source type Source link Arguments other than 

default 

CAST R package 

AssotesteR  

(CRAN) 

https://cran.r-

project.org/src/contrib/Assote

steR_0.1-10.tar.gz 

maf=0.5 

(variants already 

filtered on the MAF) 

WSS R code   

VT R code   

aSum R code from Wei 

Pan’s website 

http://www.biostat.umn.edu/~

weip/prog/BasuPanGE11/aSu

mTest.r 

alpha0=0.1 

C-ALPHA R code based on 

Wei Pan’s code 

http://www.biostat.umn.edu/~

weip/prog/BasuPanGE11/Cal

phaP.R 

 

SKAT R package SKAT 

(CRAN) 

https://cran.r-

project.org/src/contrib/SKAT

_1.1.2.tar.gz 

 

SKAT-O R package SKAT 

(CRAN) 

https://cran.r-

project.org/src/contrib/SKAT

_1.1.2.tar.gz 

method="optimal" 

KBAC R package KBAC http://tigerwang.org/software/

kbac 

alpha = 999 

(to not use the KBAC 

adaptive p-value 

calculation) 

ADA R code from 

Wan-Yu Lin’s 

website 

http://homepage.ntu.edu.tw/~l

inwy/ADA.html 

mafThr = 0.5 

DBM R code sent by 

authors 

  

CLUSTER R code from 

Wan-Yu Lin’s 

website 

http://homepage.ntu.edu.tw/~l

inwy/CLUSTER.html 

mafThr = 0.5 

max_d=𝑚𝑎𝑥𝑑 

KERNEL R code   

PODKAT R code on 

Bioconductor 

https://www.bioconductor.org

/packages/release/bioc/src/co

ntrib/podkat_1.2.0.tar.gz 

kernel=”linear.podkat” 

 

BOMP Software java  http://karchinlab.org/apps/app

Bomp.html 
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POWER COMPARISON BETWEEN SIMULATED SCENARIOS 

For each statistical test, we wanted to compare the differences in power at α=5% between the 

simulated scenarios 1 and 2, which correspond respectively to situations with no clustered 

DRVs and one cluster of DRVs. We performed a Fisher exact test on the following 2x2 

contingency table, to test the independency between the significant/non-significant status of 

the gene and the simulated scenario. 

 Scenario 1 Scenario 2 

Significant gene at α=5% a b 

Non-significant gene at α=5% c d 

Total 1000 replicates 1000 replicates 

 

We also compared scenarios 2 and 3, to see if there was a power difference between one and 

two clusters of DRVs. 
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