File Name: Supplementary Information Description: Supplementary Figures, Supplementary Tables, Supplementary Methods and Supplementary References

File Name: Peer Review File Description:

Supplementary Figure 1 | Synthesis of 6-deoxy-L-talose derivatives. Reagents and conditions: (a) PDCP, DMSO, Et₃N, DCM, -10 °C to RT, 40 min; or Dess-Martin periodinane, DCE, reflux, 1 h; (b) NaBH₄, DCM/MeOH, -10 to 0 °C, 1 h, 65–70% (over two steps); (c) 80% HOAc, 60 °C, 3 h, 96% (for S3); 99% (for S5, over two steps); 92% (for S7, over two steps); (d) 2,2-DMP, PTSA, Me₂CO, RT, 2 h, 83% (for S4); 14% (for S2); (e) BnBr, NaH, DMF, 0 °C to RT, 2 h; (f) MeC(OMe)₃, PTSA, CH₃CN; (g) PMBCl, Ag₂CO₃, tol, 60 °C; or PMBCl, Ag₂O, Me₂S, TBAI, CH₃CN; or PMBTCA, Et₂O, TfOH; (h) MeI, NaH, TBAI, DMF, 0 °C to RT, 5 h; (i) Bu₂SnO, tol, reflux, 3 h; (j) PMBCl, CsF, TBAI, tol, 50 °C, overnight, 13% (for **S8**, over two steps); 60% (for **S9**, over two steps); (**k**) Ac₂O, py, DMAP, RT, overnight, 84%. Ac, acetyl; Ac₂O, acetic anhydride; All, allyl; Bn, benzyl; BnBr, benzyl bromide; Bu₂SnO, dibutyltin oxide; DCE, 1,2-dichloroethane; DCM, dichloromethane; DMAP, 4-(dimethylamino)pyridine; DMF, N,N-dimethylformamide; 2,2-DMP, 2,2-dimethoxypropane; DMSO, dimethylsulfoxide; Et₂O, diethyl ether; HOAc, acetic acid; MeC(OMe)₃, trimethyl orthoacetate; PDCP, phenyl dichlorophosphate; PMB, para-methoxybenzyl; PMBCl, para-methoxybenzyl chloride; PMBTCA, para-methoxybenzyl trichloroacetimidate; PTSA, para-toluenesulfonic acid; py, pyridine; RT, room temperature; TBAI, tetrabutylammonium iodide; TfOH, trifluoromethanesulfonic acid; tol, toluene.

Supplementary Table 1 | Regioselective protection of diols via stannylene acetal.

Entry	Compd	Reagents and conditions		Product	Yield ^b
		Step 1) ^a	Step 2) ^{<i>a</i>}	Froduct	(%)
1	S3	tol	PMBCl, TBAI, tol	S11	43
2	S3	tol	PMBCl, CsF, tol	S11	trace
3	S3	tol	PMBCl, TBAI, CsF, tol	S11	31
4	S3	MeOH	PMBCl, TBAI, CsF, tol	S11	65
5	S3	MeOH	MeI, CsF, tol^c	S12	28
6	S3	MeOH	MeI, CsF, DMF ^c	S12	38
7	S 5	tol	MeI, CsF, tol	S14	85
8	S5	tol	PMBCl, TBAI, tol	S13	56^d

"The reaction was performed in refluxing toluene or MeOH.

^bIsolated yield.

"The reaction was performed at 80 °C.

^dThe 2-O-PMB regioisomer was isolated as a minor compound (32% yield).

Supplementary Figure 2 | Synthesis of 6-deoxy-L-talopyranosyl trichloroacetimidate donors. Reagents and conditions: (a) $[Ir(COD){PMe(C_6H_5)_2}_2]^+.PF_6^-$, H₂, THF, RT, 1 h; (b) I₂, THF, H₂O, RT, 2 h, 66–89% (over two steps); (c) CCl₃CN, Cs₂CO₃, DCM/Me₂CO or DBU, DCM/Me₂CO, RT, 2–4 h, 58–91% (over two steps). CCl₃CN, trichloroacetonitrile; COD, cyclooctadienyl; DBU, 1,8-diazabicyclo[5.4.0]undec-7-ene; THF, tetrahydrofuran.

Supplementary Figure 3 | Synthesis of glucoside acceptor 13. Reagents and conditions: (a) TMSOTF, DCE, 4 Å MS, -10 °C to RT, overnight, 50%; (b) Et₃N, MeOH, RT, 48 h; (c) BDMA, CSA, CH₃CN, RT, 8 h, 78% (over two steps); (d) BnBr, TBAHS, 5% NaOH, DCM, reflux, 16 h, 55% (for 13); 28% (for S22); 9% (for S23). BDMA, benzaldehyde dimethyl acetal; CSA, camphorsulfonic acid; Ph, phenyl; TBAHS, tetrabutylammonium hydrogenosulfonate; TMSOTF, trimethylsilyl trifluoromethanesulfonate.

Supplementary Figure 4 | Synthesis of glucosydonors 14, S26, and S27. Reagents and conditions: (a) Lev₂O, py, DMAP, 50 °C, 6 h, 83%; (b) NBS, DCM, H₂O, 0 °C to RT, 2 h, 66%; (c) NBS, DAST, DCM, -10 °C to RT, 2 h, 73%; (d) PTFACl, K₂CO₃, Me₂CO, RT, 7 h, 58%. DAST, diethylaminosulfur trifluoride; Lev, levulinoyl; Lev₂O, levulinic anhydride; NBS, *N*-bromosuccinimide; PTFACl, *N*-phenyl-2,2,2-trifluoroacetimidoyl chloride; SEt, thioethyl; TBS, *tert*-butyldimethylsilyl.

Supplementary Figure 5 | Proposed mechanism for the cleavage of PMB group during glycosylation. Formation of derivative 20 can be tentatively explained via a mechanism in which a transient tricylic orthoester intermediate is attacked by the alcohol acceptor on the α -side. The resulting kinetic product 20 can then be transformed into the more stable derivative 27 by migration of the acetyl group from the C2 to C3 position.

Supplementary Figure 6 | Attempts to synthesize taloside acceptor S31. Reagents and conditions: (a) Lev₂O, py, DMAP, 50 °C, 2 h, 95%; (b) 80% HOAc, 60 °C, 1 h; (c) MeC(OMe)₃, PTSA, CH₃CN, RT, 2 h; (d) 80% HOAc, 0 °C to RT, 2 h; (e) (ClAc)₂O, py, DMAP, RT, 10 min, 83% (over four steps from S28); (f) DABCO, 55 °C, EtOH/py 5:1; (g) TBAF, THF, RT. (ClAc)₂O, chloroacetic anhydride; DABCO, 1,4-diazabicyclo[2.2.2]octane; TBAF, tetrabutylammonium fluoride.

Supplementary Figure 7 | Attempts to synthesize $(1\rightarrow 3)$ -linked disaccharides. Reagents and conditions: (a) MeC(OMe)₃, PTSA, CH₃CN, RT, 2 h; (b) 80% HOAc, 0 °C to RT, 2 h; (c) donor 14, NIS, AgOTf, 4 Å MS, Et₂O, -10 °C; (d) donor 14, DMTST, DTBMP, 4 Å MS, Et₂O, -10 to 40 °C; (e) donor S26, Cp₂ZrCl₂, AgOTf, 4 Å MS, Et₂O, -10 °C; (f) donor S27, TMSOTf, DCE, 4 Å MS, -10 °C; (g) donor 14, DMTST, DTBMP, 4 Å MS, DCE, RT, 2 h, 43%. AgOTf, silver(I) trifluoromethanesulfonate; Cp₂ZrCl₂, bis(cyclopentadienyl)zirconium(IV) dichloride; DMTST, dimethyl(methylthio)sulfonium trifluoromethanesulfonate; DTBMP, 2,6-di-*tert*-butyl-4-methylpyridine; MS, molecular sieves; NIS, *N*-iodosuccinimide.

Supplementary Figure 8 | Glucosylation of diol S5 and triol S3 using Taylor catalyst. Reagents and conditions: (a) 2-aminoethyl diphenylborinate (0.25 equiv), Ag₂O, CH₃CN, 60 °C, 16–48 h, 25% (for S34); (b) Ac₂O, py, DMAP, RT, overnight, 58% (for S35 over two steps).

Supplementary Figure 9 | Proposed mechanism for the formation of tricyclic orthoester
36. Formation of derivative 36 can be tentatively explained by the attack of free alcohol C4 to the carbonyl group of the dioxalenium intermediate.

Supplementary Figure 10 | Second generation synthesis of target disaccharides 6 and 7. Reagents and conditions: (a) Bu₂SnO, tol, reflux, 5 h; (b) MeI, CsF, tol, 80 °C, overnight, 96% (over two steps); (c) Ac₂O, py, DMAP, RT, 16 h, 88% (for S37); 65% (for 19); (d) [Ir(COD){PMe(C₆H₅)₂}₂]⁺.PF₆⁻, H₂, THF; (e) I₂, THF, H₂O; (f) CCl₃CN, Cs₂CO₃, Me₂CO, 87% (over three steps); (g) acceptor 13, TMSOTf (0.1 equiv), 4 Å MS, Et₂O/DCE 5:1, -10 °C to RT, 30 min, 92%; (h) H₂NNH₂.H₂O, py, HOAc, 0 °C to RT, overnight, 99%; (i) PDCP, DMSO, Et₃N, DCM, -10 °C to RT, 1 h; (j) NaBH₄, MeOH/DCM 3:1, -10 °C to RT, 1 h, 66% (over two steps); (k) Pd black, H₂, HCl (1.0 equiv), MeOH, DCM, 40 °C, quant. (for 6 and 7).

Supplementary Figure 11 | Synthesis of biotinylated oligosaccharides. Reagents and conditions: (a) Et₃N, DMF, H₂O, rt, 1 h, 69% (for **BIO-6**); 69% (for **BIO-7**); 55% (for **BIO-2**).

Supplementary Figure 12 | Synthesis of disaccharide:CRM197 conjugates SOC-6 and SOC-7. Disaccharide 6 or 7 was reacted with disuccinimidyl glutarate to generate derivative NHS-6 or NHS-7, respectively, which upon reaction with CRM197 led to the formation of glycoconjugate vaccine SOC-6 or SOC-7, respectively.

Supplementary Figure 13 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S2.

file: D:\RMN LPS\CGMAT80\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130006 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 14 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S2.

file: D:\RMN LPS\CGMATB0\4\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612754 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 885.392 ppm/cm: 8.79912

file: D:\RMM LPS\CGMAT82\2\fd expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 64 freq. of 0 ppm: 400.130006 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 16 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S3.

Supplementary Figure 17 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S4.

file: ...veau dossier/RMN LPS\CGMAT95\1\fid expt: <zg30 transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130005 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 18 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S4.

Supplementary Figure 19 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S5.

file: ... LPS Marielle\RMN LPS\CGAB28\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16

freq. of 0 ppm: 400.130010 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Supplementary Figure 20 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S5.

transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 512

processed size: 32768 complex points LB: 1.000 GF: 0.0000

Supplementary Figure 21 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S7.

file: ...veau dossier\RMN LPS\CGMAT98\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16

freq. of 0 ppm: 400.130005 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 22 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S7.

width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024

Supplementary Figure 23 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S8.

file: ...eau dossier\RMN LPS\CGMAT99B\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 64 freq. of 0 ppm: 400.130007 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 24 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S8.

Supplementary Figure 25 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S9.

file: F:\CGMAT99A\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 64 freq. of 0 ppm: 400.130004 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 26 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S9.

Supplementary Figure 27 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S10.

file: ...eau dossier/RMN LPS\CGMAT102\1\fid expt: <zg30 transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 4 freq. of 0 ppm: 400.130007 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 192.308 ppm/cm: 0.48061

file: D:\RMN LPS\CGMAT85A\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130009 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt

number of scans: 1024

LB: 1.000 GF: 0.0000 Hz/cm: 885.392 ppm/cm: 8.79912

file: ...au dossier/RNN LPS/CGMAT117B\1\fid expt: <zg3 transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16

rreq. or 0 ppm: 400.130005 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 32 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S12.

Supplementary Figure 33 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S13.

file: ...LPS Marielle\RMN LPS\CGAB29A\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130011 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Supplementary Figure 34 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S13.

Supplementary Figure 35 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S14.

file: ...eau dossier\RMN LPS\CGMAT103\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130008 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

S36

S37

Supplementary Figure 37 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S15.

file: ...eau dossier\RMN LPS\CGMAT126\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130008 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 38 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S15.

file: ...eau dossier\RMN LPS\CGMAT143\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32 freq. of 0 ppm: 400.130005 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 40 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S16.

file: ...eau dossier\RMN LPS\CGMAT143\3\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612755 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 885.392 ppm/cm: 8.79912

Supplementary Figure 41 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S6.

file: ...veau dossier\RMN LPS\CGMAT32\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130011 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 42 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S6.

file: ...veau dossier\RMN LPS\CGMAT32\4\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 512 freq. of 0 ppm: 100.612758 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 885.392 ppm/cm: 8.79912

Supplementary Figure 43 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S17.

file: ...eau dossier/RMN LPS\CGMAT108\1\fid expt: <zg30 transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 64 freq. of 0 ppm: 400.130009 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 192.308 ppm/cm: 0.48061

Hz/cm: 885.392 ppm/cm: 8.79912

Supplementary Figure 45 | ¹H NMR spectra (py-*d*₅, 400 MHz) of compound 8.

SpinWorks 3: CGMAT70TOTALE Pyr-d5

file: ...ssier\RMN LPS\CGMAT70 TOTALE\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 64

freq. of 0 ppm: 400.130588 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

file: ...ssier\RMN LPS\CGMAT70 TOTALE\3\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024

freq. of 0 ppm: 100.612860 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 885.393 ppm/cm: 8.79913

Supplementary Figure 47 | ¹H NMR spectra (py-*d*₅, 400 MHz) of compound 9.

file: ...eau dossier\RMN LPS\CGMAT188\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32

freq. of 0 ppm: 400.130591 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Supplementary Figure 48 | ¹³C NMR spectra (py-*d*₅, 100 MHz) of compound 9.

file: ...eau dossier/RMN LPS\CGMAT188\3\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612895 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000

Supplementary Figure 49 | ¹H NMR spectra (py-*d*₅, 400 MHz) of compound 10.

file: ...eau dossier\RMN LPS\CGMAT189\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32

freq. of 0 ppm: 400.130592 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Supplementary Figure 50 | ¹³C NMR spectra (py-*d*₅, 100 MHz) of compound 10.

file: ...eau dossier/RNN LPS\CGMAT189\3\fid expt: <zgpg3O> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612895 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000

Supplementary Figure 51 | ¹H NMR spectra (py-*d*₅, 400 MHz) of compound 11.

file: ...eau dossier\RMN LPS\CGMAT183\1\fid expt: <zg3> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32

freq. of 0 ppm: 400.130593 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Supplementary Figure 52 | ¹³C NMR spectra (py-*d*₅, 100 MHz) of compound 11.

file: ...eau dossier\RMN LPS\CGMAT183\3\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612894 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000

Supplementary Figure 53 | ¹H NMR spectra (py-*d*₅, 400 MHz) of compound 12.

file: ...eau dossier\RMN LPS\CGMAT184\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32

freq. of 0 ppm: 400.130592 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Supplementary Figure 54 | ¹³C NMR spectra (py-*d*₅, 100 MHz) of compound 12.

file: ...eau dossier/RNN LPS\CGMAT184\3\fid expt: <zgpg3O> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612895 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000

Supplementary Figure 55 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S20.

file: ...veau dossier\RMN LPS\CGMAT34\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16

freq. of 0 ppm: 400.130006 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Supplementary Figure 56 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S20.

Supplementary Figure 57 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S21.

file: ...eau dossier\RMN LPS\CGMAT137\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130009 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 58 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S21.

Supplementary Figure 59 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 13.

file: ...eau dossier\RMN LPS\CGMAT44B\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130011 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 60 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 13.

S61

Supplementary Figure 61 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S22.

file: ...eau dossier\RMN LPS\CGMAT44C\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16

freq. of 0 ppm: 400.130011 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 62 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S22.

file: ...eau dossier\RMN LPS\CGMAT44C\4\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 512 freq. of 0 ppm: 100.612757 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 629.194 ppm/cm: 6.25299

1.045 0.208

4.0

2.077 2.073

4.8

1.006 1.006

4.4

1.000

5.6

5.2

6.0

6.4

Supplementary Figure 63 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S23.

file: ...eau dossier\RMN LPS\CGMAT44A\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16

6.8

4.628 8.939 2.041

7.2

PPM

freq. of 0 ppm: 400.130021 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 130.630 ppm/cm: 0.32647

2.051

3.2

2.8

2.4

2.0

2.132 1.074

3.6

3.197

2.377 4.499

1.6

1.2

0.8

0.4

0.0

Supplementary Figure 64 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S23.

file: ...eau dossier\RMN LPS\CGMAT44A\4fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 512 freq. of 0 ppm: 100.612763 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 617.891 ppm/cm: 6.14066

Supplementary Figure 65 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 14.

file: ...eau dossier\RMN LPS\CGMAT121\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130008 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 66 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 14.

width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt

number of scans: 1024

Hz/cm: 885.392 ppm/cm: 8.79912

S67

Supplementary Figure 67 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S25.

file: ...au dossier\RMN LPS\CGMAT159B\1\fid expt: <zg30> transmitter freq.; 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16

freq. of 0 ppm: 400.130014 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Supplementary Figure 68 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S25.

transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 512

LB: 1.000 GF: 0.0000

Supplementary Figure 69 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S26.

Supplementary Figure 70 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S26.

file: ...eau dossier\RMN LPS\CGMAT208\5\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612755 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 961.538 ppm/cm: 9.55587

Supplementary Figure 71 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S27.

file: ...au dossier\RMN LPS\CGMAT159A\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130593 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Supplementary Figure 72 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S27.

file: ...au dossier\RNN LPS\CGMAT159A\4\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612894 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000

Supplementary Figure 73 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 15.

file: D:\RMN LPS\CGMAT78A\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130012 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 74 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 15.

file: D:\RMN LPS\CGMAT59\3\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612759 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 643.567 ppm/cm: 6.39584

Supplementary Figure 75 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 16.

file: ...eau dossier\RMN LPS\CGMAT196\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32 freq. of 0 ppm: 400.130010 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 76 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 16.

file: ...eau dossier\RMN LPS\CGMAT196\3\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612755 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 885.392 ppm/cm: 8.79912

Supplementary Figure 77 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 17.

file: ...au dossier\RMN LPS\CGMAT193R\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130009 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 78 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 17.

file: ...au dossier\RMN LPS\CGMAT193R\4\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612757 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 885.392 ppm/cm: 8.79912

Supplementary Figure 79 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 18.

file: ...au dossier\RMN LPS\CGMAT185R\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32 freq. of 0 ppm: 400.130010 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

S80

Supplementary Figure 80 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 18.

file: ...au dossier\RMN LPS\CGMAT185R\3\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612755 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 885.392 ppm/cm: 8.79912

S81

Supplementary Figure 81 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 19.

file: ...eau dossier\RMN LPS\CGMAT186\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130009 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

S83

Supplementary Figure 83 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 20.

file: ...eau dossier\RMN LPS\CGMAT153\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32 freq. of 0 ppm: 400.130038 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

S84

Supplementary Figure 84 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 20.

file:...eau dossier/RNM LPS\CGMAT153\3\fid expt: <zgpg30> transmitter freq.: 100.62830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612755 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 885.392 ppm/cm: 8.79912

Supplementary Figure 85 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 21.

file: ...eau dossier\RMN LPS\CGMAT62A\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 64 freq. of 0 ppm: 400.130008 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 86 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 21.

file: ...eau dossier\RMN LPS\CGMAT62A\3\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612757 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 738.455 ppm/cm: 7.33884

Supplementary Figure 87 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 22.

file: ...eau dossier\RMN LPS\CGMAT197\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130007 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 88 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 22.

file: ...eau dossier\RMN LPS\CGMAT197\4\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612759 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 885.392 ppm/cm: 8.79912

Supplementary Figure 89 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 23.

file: ...eau dossier\RMN LPS\CGMAT200\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32 freq. of 0 ppm: 400.130009 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 90 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 23.

file: ...eau dossier\RMN LPS\CGMAT200\3\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612759 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 885.392 ppm/cm: 8.79912

Supplementary Figure 91 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 25.

file: ...eau dossier\RMN LPS\CGMAT199\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130009 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

S92

Supplementary Figure 92 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 25.

S93

Supplementary Figure 93 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 26.

file: ...eau dossier\RMN LPS\CGMAT201\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32 freq. of 0 ppm: 400.130006 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 94 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 26.

transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612756 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 961.538 ppm/cm: 9.55587

Supplementary Figure 95 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 27.

file: ...au dossier\RMN LPS\CGMAT209B\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32 freq. of 0 ppm: 400.130011 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

LB: 1.000 GF: 0.0000 Hz/cm: 885.392 ppm/cm: 8.79912

transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024

Supplementary Figure 97 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 28.

file: ...eau dossier\RMN LPS\CGMAT163\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32 freq. of 0 ppm: 400.130010 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 98 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 28.

file: ...eau dossier\RMN LPS\CGMAT163\4\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 512 freq. of 0 ppm: 100.612755 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 885.392 ppm/cm: 8.79912

Supplementary Figure 99 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 29.

file: ...eau dossier\RMN LPS\CGMAT157\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 64 freq. of 0 ppm: 400.130010 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 100 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 29.

file: ...eau dossier\RMN LPS\CGMAT157\4\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612755 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 961.538 ppm/cm: 9.55587

file: ...eau dossier\RMN LPS\CGMAT231\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130002 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 102 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S28.

file: F:\CGMAT235\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32 freq. of 0 ppm: 400.130007 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

S104

Supplementary Figure 104 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S30.

file: F:\CGMAT235\3\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612755 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 860.884 ppm/cm: 8.55555

Supplementary Figure 105 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S32.

file: ...au dossier\RMN LPS\CGMAT243B\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32 freq. of 0 ppm: 400.130033 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 129.624 ppm/cm: 0.32395

Supplementary Figure 106 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S32.

file: ...au dossier\RMM LPS\CGMAT243B\3\fid expt: <zgpg30: transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612756 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 885.392 ppm/cm: 8.79912

Supplementary Figure 107 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S34.

file: ...S Marielle\RMN LPS\CGMAT176B\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32

freq. of 0 ppm: 400.130014 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

S108

Supplementary Figure 108 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S34.

S109

Supplementary Figure 109 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S35.

file: ...eau dossier\RMN LPS\CGMAT173\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130012 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Supplementary Figure 110 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S35.

Supplementary Figure 111 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 30.

file: ...eau dossier\RMN LPS\CGMAT248\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32 freq. of 0 ppm: 400.130005 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 112 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 30.

file: ...eau dossier\RMN LPS\CGMAT248\3\fid expt: <zgpg30: transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612755 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 885.392 ppm/cm: 8.79912

Supplementary Figure 113 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 31.

file: ...au dossier\RMN LPS\CGMAT249A\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32 freq. of 0 ppm: 400.130007 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 114 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 31.

file: ...au dossier\RMN LPS\CGMAT249A\3\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612755 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 885.392 ppm/cm: 8.79912

Supplementary Figure 115 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 32.

file: ...eau dossier\RMN LPS\CGMAT259\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130011 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 116 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 32.

file: ...eau dossier\RMN LPS\CGMAT259\4\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612756 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 885.392 ppm/cm: 8.79912

Supplementary Figure 117 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 33.

file: ...eau dossier\RMN LPS\CGMAT260\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 16 freq. of 0 ppm: 400.130011 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 118 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 33.

file: ...eau dossier\RMN LPS\CGMAT260\3\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612755 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 885.392 ppm/cm: 8.79912

Supplementary Figure 119 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 34.

file: ...eau dossier\RMN LPS\CGMAT261\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32 freq. of 0 ppm: 400.130012 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 120 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 34.

file: ...eau dossier/RMN LPS\CCMAT261\3\fid expt: <zgpg30> transmitter freq.: 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612755 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000 Hz/cm: 885.392 ppm/cm: 8.79912

Supplementary Figure 121 | ¹H NMR spectra (py-*d*₅, 400 MHz) of compound 35.

file: ...au dossier\RMN LPS\CCGMAT267\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32 freq. of 0 ppm: 400.130592 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Supplementary Figure 122 | ¹³C NMR spectra (py-*d*₅, 100 MHz) of compound 35.

Supplementary Figure 123 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 36.

Supplementary Figure 124 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 36.

Supplementary Figure 125 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 37.

file: ...amigne\Desktop\RMN LPS\CG168\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32

freq. of 0 ppm: 400.130010 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Supplementary Figure 126 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 37.

file: ...amigne\Desktop\RMNL LPS\CG168\3\fid expt: <zgpg3O> transmitter freq. : 100.622830 MHz time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024 freq. of 0 ppm: 100.612755 MHz processed size: 32768 complex points LB: 1.000 GF: 0.0000

Supplementary Figure 127 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 38.

file: ...eau dossier\RMN LPS\CGMAT283\1\fid expt: <zg30> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32 freq. of 0 ppm: 400.130016 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000 Hz/cm: 160.052 ppm/cm: 0.40000

Supplementary Figure 128 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 38.

SpinWorks 3: CGMAT283 CDCI3

time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024

LB: 1.000 GF: 0.0000 Hz/cm: 734.687 ppm/cm: 7.30140

Supplementary Figure 129 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 39.

file: ...gne\Desktop\RMN LPS\CGMAT288\1\fid expt: <zg3> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32 freq. of 0 ppm: 400.130014 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Supplementary Figure 130 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 39.

width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024

LB: 1.000 GF: 0.0000

Supplementary Figure 131 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 40.

file: ...gne\Desktop\RMN LPS\CGMAT286\1\fid expt: <zg3> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32 freq. of 0 ppm: 400.130013 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Supplementary Figure 132 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 40.

width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024

LB: 1.000 GF: 0.0000

Supplementary Figure 133 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound 41.

file: ...amigne\Desktop\RMN LPS\CG174\2\fid expt: <zg3> transmitter freq.: 400.132001 MHz time domain size: 32768 points width: 4807.69 Hz = 12.0153 ppm = 0.146719 Hz/pt number of scans: 32

freq. of 0 ppm: 400.130016 MHz processed size: 32768 complex points LB: 0.300 GF: 0.0000

Supplementary Figure 134 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound 41.

time domain size: 65536 points width: 24038.46 Hz = 238.8967 ppm = 0.366798 Hz/pt number of scans: 1024

LB: 1.000 GF: 0.0000

Supplementary Figure 135 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S36.

Supplementary Figure 136 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S36.

Supplementary Figure 137 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S37.

Supplementary Figure 138 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S37.

Supplementary Figure 139 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S38.

Supplementary Figure 140 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S38.

Supplementary Figure 141 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S39.

Supplementary Figure 142 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S39.

Supplementary Figure 143 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S40.

Supplementary Figure 144 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S40.

Supplementary Figure 145 | ¹H NMR spectra (CDCl₃, 400 MHz) of compound S41.

Supplementary Figure 146 | ¹³C NMR spectra (CDCl₃, 100 MHz) of compound S41.

S147

Supplementary Figure 147 | ¹H NMR spectra (D₂O + acetone, 400 MHz) of compound 1.

SpinWorks 4: CGMATH01 D2O

Supplementary Figure 148 | ¹³C NMR spectra (D₂O + acetone, 100 MHz) of compound 1.

Supplementary Figure 149 | ¹H NMR spectra (D₂O + acetone, 400 MHz) of compound 2.

SpinWorks 4: CG176R D2O

S150

Supplementary Figure 150 | ¹³C NMR spectra (D₂O + acetone, 100 MHz) of compound 2.

Supplementary Figure 151 | ¹H NMR spectra (D₂O + acetone, 400 MHz) of compound 3.

SpinWorks 4: CGMATH03B D2O

S152

Supplementary Figure 152 | ¹³C NMR spectra (D₂O + acetone, 100 MHz) of compound 3.

Supplementary Figure 153 | ¹H NMR spectra (D₂O + acetone, 400 MHz) of compound 4.

Supplementary Figure 154 | ¹³C NMR spectra (D₂O + acetone, 100 MHz) of compound 4.

Supplementary Figure 155 | ¹H NMR spectra (D₂O + acetone, 400 MHz) of compound 5.

Supplementary Figure 156 | ¹³C NMR spectra (D₂O + acetone, 100 MHz) of compound 5.

Supplementary Figure 157 | ¹H NMR spectra (D₂O + acetone, 400 MHz) of compound 6.

Supplementary Figure 158 | ¹³C NMR spectra (D₂O + acetone, 100 MHz) of compound 6.

Supplementary Figure 159 | ¹H NMR spectra (D₂O + acetone, 400 MHz) of compound 7.

Supplementary Figure 160 | ¹³C NMR spectra (D₂O + acetone, 100 MHz) of compound 7.

Supplementary Figure 161 | ¹H NMR spectra (MeOD, 400 MHz) of compound BIO-6.

Supplementary Figure 162 | ¹³C NMR spectra (MeOD, 100 MHz) of compound BIO-6.

Supplementary Figure 163 | ¹H NMR spectra (MeOD, 400 MHz) of compound BIO-7.

Supplementary Figure 164 | ¹³C NMR spectra (MeOD, 100 MHz) of compound BIO-7.

Supplementary Figure 165 | ¹H NMR spectra (MeOD, 400 MHz) of compound BIO-2.

Supplementary Figure 166 | ¹³C NMR spectra (MeOD, 100 MHz) of compound BIO-2.

Supplementary Figure 167 | Analysis of LPS antigens purified from wild type and mutant strains of *B. pseudomallei*. LPS antigens (2 µg/lane) were separated on 12% Tris-Glycine gels and visualized by (A) silver staining. For Western immunoblotting, LPS antigens were electrophoretically transferred to nitrocellulose membranes and probed with (B) mAb Pp-PS-W or (C) mAb 3D11. Wild type LPS was purified from *B. pseudomallei* RR2808 while OacA mutant LPS was purified from *B. pseudomallei* Bp RR4744. Data not shown: Similar to mAb 3D11, mAbs 4C7 and 9C1-2 only reacted with RR4744 LPS. Likewise, *B. mallei* LPS only reacted with mAbs 3D11, 4C7 and 9C1-2. Based on these results, Bp RR4744 OPS and *B. mallei* OPS antigens appeared to share a common epitope (see Figure 2).

Supplementary Figure 168 | Epitope mapping of disaccharide 6:mAb 4C7 interaction by STD-NMR (sensorgrams and steady-state affinity model fitting). SPR analysis was performed between mAb 4C7 and biotinylated oligosaccharide BIO-6. Binding affinities (K_D) were calculated using a steady-state affinity model.

Supplementary Figure 169 | Epitope mapping of disaccharide 7:mAb 4C7 interaction by STD-NMR (sensorgrams and steady-state affinity model fitting). SPR analysis was performed between mAb 4C7 and biotinylated oligosaccharide BIO-7. Binding affinities (*K*_D) were calculated using a steady-state affinity model.

Supplementary Figure 170 | Schematic illustration of the SPR experiments. Streptavidincoated sensor chips were used in order to measure the K_D values of the biotinylated oligosaccharides:mAb 4C7 interactions.

Supplementary Figure 171 | STD-NMR spectrum of disaccharide 7 and mAb 4C7 mixture. (a) Reference ¹H NMR spectrum of disaccharide 7 at 298 K. (b) STD 1D NMR spectrum of a 1:100 mAb 4C7/disaccharide mixture. The irradiation frequency was set at 8 ppm and a saturation time of 2 seconds was used.

Supplementary Figure 172 | STD-NMR spectrum of disaccharide 7 and mAb 4C7 mixture. (a) Reference ¹H NMR spectrum of disaccharide 7 at 310 K. (b) STD 1D NMR spectrum of a 1:100 mAb 4C7/disaccharide mixture. The irradiation frequency was set at 8 ppm and a saturation time of 2 seconds was used.

Supplementary Figure 173 | **SDS-PAGE and Western immunoblot analysis of synthetic oligosaccharide conjugates.** (A) The carrier protein and conjugates (3 µg protein per lane) were separated on a 4-12% Bis-Tris Bolt gel and stained with CBB R-250; (B) The carrier protein and conjugates (1.5 µg protein per lane) were separated on 4-12% Bis-Tris Bolt gels and electrophoretically transferred to nitrocellulose. SOC-6 was detected by chemiluminescence using a 1/2000 dilution of mAb 3D11 and a 1/5000 dilution of an anti-mouse IgG-HRP conjugate. Results similar to mAb 3D11 were observed using mAbs 4C7 and 9C1-2 (data not shown). In contrast, SOC-7 was detected by chemiluminescence using a 1/400 dilution of mAb Pp-PS-W and a 1/5000 dilution of an anti-mouse IgM-HRP conjugate (data not shown).

Supplementary Figure 174 | MALDI-TOF-MS spectra of SOC-6 and SOC-7. (a) SOC-6 (blue line) and (b) SOC-7 (blue line) as well as unconjugated CRM197 (red line) were dried and reconstituted in 50 mM ammonium bicarbonate buffer (20μ L). The samples were deposited on a MALDI plate using premix method with 2,4,6-trihydroxyacetophenone (THAP) as the matrix. The MALDI analysis results were acquired on a TOF/TOFTM 5800 system (AB sCIEX) using linear positive ion mode. The data were externally calibrated using BSA. The analysis suggested that the mass of CRM197, SOC-6, and SOC-7 were 58.2 kDa, 61.5 kDa and 61.3 kDa, respectively. The mass differences indicated that SOC-6 and SOC-7 consisted of about 6 and 5 disaccharides covalently linked to CRM197, respectively.

Supplementary Figure 175 | Reactivity of CRM197, SOC-6 and OC-4744 antiserum with

B. mallei. Paraformaldehyde-fixed *B.* mallei were labeled with CRM197 antiserum (a and d), **SOC-6** antiserum (b and e), or OC-4744 antiserum (c and f) and anti-mouse IgG-Alexa488 conjugate as described in the Supplementary Methods. Panels a-c show immunofluorescence images and panels d-f show bright field images. Scale bars are $5 \mu m$.

Supplementary Figure 176 | **Immune responses to OC-2808.** C57BL/6 mice (n = 6 per group) were immunized with OC-2808. ELISAs were used to quantitate immune serum IgG titers. Colored dots represent the mean endpoint titers for individual mice against the various target antigens.

Supplementary Methods

General methods

All starting materials and reagents were purchased from commercial sources, and used as received without further purification. Air and water sensitive reactions were performed in heat gun-dried glassware under Ar atmosphere. Moisture sensitive reagents were introduced via a dry syringe. Anhydrous solvents were supplied over molecular sieves, and used as received. Petroleum ether (PE) refers to the 40-60 °C boiling fraction. Powdered 4 Å molecular sieves were activated before use by heating with a heat gun for ~5 min under high vacuum. Reactions were monitored by thinlayer chromatography (TLC) with silica gel 60 F₂₅₄ 0.25 mm pre-coated aluminium foil plates. Compounds were visualized by using UV₂₅₄ and/or orcinol (1 mg·mL⁻¹) in 10% aq H₂SO₄ solution and/or Hanessian's stain [2.5 g (NH₄)₆Mo₇O₂₄·4H₂O, 1.0 g Ce(NH₄)₄(SO₄)₄·2H₂O, 90 mL H₂O, 10 mL H₂SO₄] with heating. Normal-phase flash column chromatography was performed on silica gel 60 Å (15-40 μ m). Reversed-phase flash column chromatography was performed on C₁₈ silica gel (fully capped, 25-40 μ m). NMR spectra were recorded at 297 K in the indicated solvent (CDCl₃, py-d₅, D₂O or MeOD) with a 400 MHz instrument, employing standard softwares given by the manufacturer. ¹H and ¹³C NMR spectra were referenced to tetramethylsilane (TMS, $\delta_{\rm H} = \delta_{\rm C} = 0.00$ ppm) as internal reference for spectra in CDCl₃, py-d₅, and MeOD or to internal acetone ($\delta_{\rm H}$ = 2.218 ppm; $\delta_{\rm C}$ = 33.0 ppm) for spectra in D₂O. Assignments were based on ¹H, ¹³C, DEPT-135, COSY, HSQC, undecoupled HSQC and HMBC experiments. Interchangeable assignments are marked with an asterisk. High-resolution mass spectra (HRMS) were recorded on an ESI-Q-TOF mass spectrometer.

General procedures

Synthesis of trichloroacetimidate donors. 1,5-Cyclooctadiene-bis(methyldiphenylphosphine)iridium(I) hexafluorophosphate (0.02–0.1 equiv) was dissolved in anhydrous THF (5 mL·mmol⁻¹) and the red solution was degassed under Ar. Hydrogen was bubbled through the solution for 5 min, and then the yellow solution was once again degassed under Ar. A solution of allyl taloside (1.0 equiv) in anhydrous THF (5.0 mL·mmol⁻¹) was added. The mixture was stirred for 2 h at rt under Ar. Then, a solution of iodine (2.0–2.5 equiv) in THF/H₂O (6.0 mL·mmol⁻¹, 4:1 ν/ν) was added to the mixture, which was stirred for another 1 h at rt. The excess of iodine was quenched by adding a freshly prepared 10% $Na_2S_2O_3(aq)$ solution and stirred until the color turned bright yellow (~5) min). The aqueous phase was extracted with EtOAc $(3 \times)$. The combined organic layers were washed with a saturated NaHCO₃(aq) solution and brine. The solvents of the dried solution (MgSO₄) were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography to give the corresponding hemiacetal as an α/β mixture. To a cooled (0 °C) solution of the hemiacetal (1.0 equiv) in DCM/acetone (14 mL·mmol⁻¹, 8:3 ν/ν) were added DBU (0.3 equiv) or Cs₂CO₃ (0.2 equiv) followed by CCl₃CN (5.0–6.0 equiv). The mixture was stirred for 1 h at rt, then the suspension was filtered over Celite and rinsed with DCM. The solvents were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography to give the trichloroacemidate donor, the α -anomer being the major compound.

Synthesis of protected disaccharides. Acceptor 13 (1.0 equiv) and donor 8-12 (2.0 equiv) were dried for 2 h under high vacuum and then dissolved in anhydrous Et_2O (20 mL·mmol⁻¹). The solution was cooled to -10 °C and TMSOTf (0.01–0.2 equiv) was added keeping rigorous anhydrous conditions. The mixture was stirred at -10 °C for 10 min under Ar, and then quenched with a few drops of Et_3N . The suspension was filtered over Celite, rinsed with DCM and the filtrate was concentrated under reduced pressure. The residue was purified by combi-flash chromatography to give the target disaccharide as a pure α -anomer.

Deprotection of PMB group. To a solution of disaccharide **15–17** (1.0 equiv) in DCM/H₂O (22 mL·mmol⁻¹, 10:1 ν/ν) was added DDQ (2.0 equiv) and the deep-green mixture was stirred for 2 h at rt. The reaction was quenched by adding a saturated NaHCO₃(aq) solution, stirred until the color turned bright yellow (~10 min), and diluted with EtOAc. The organic phase was washed with a saturated NaHCO₃(aq) solution and brine. The solvents of the dried solution (MgSO₄) were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography to give the corresponding alcohol.

Hydrogenolysis using the H-Cube system. The oligosaccharide (1.0 equiv) was dissolved in DCE (10 mL·mmol⁻¹), then MeOH (250 mL·mmol⁻¹) followed by concentrated HCl (2.0 equiv) were added. The solution was passed without delay through a 20% Pd(OH)₂/C cartridge (CatCart30) using a H-Cube continuous flow system in control mode (10 bars). The temperature was set at 40 °C, and the flow rate was fixed at 1.0 mL·mmol⁻¹. After one run, the cartridge was rinsed with MeOH and the solutions were concentrated under reduced pressure keeping the bath temperature below 40 °C. The residue was subjected to C₁₈ reversed-phase flash chromatography (H₂O/MeOH 10:0 to 6:4) followed by freeze-drying to give the target oligosaccharide in the form of a hydrochloride salt.
Hydrogenolysis under heterogeneous conditions. The oligosaccharide (1.0 equiv) was dissolved in anhydrous DCE (10 mL·mmol⁻¹), then anhydrous MeOH (250 mL·mmol⁻¹) followed by concentrated HCl (1.0 equiv) were added. The solution was degassed with Ar and Pd black (1 mg·mg⁻¹ of compound) was added. The suspension was stirred under an atmosphere of H₂ at 40 °C for 16 h. The mixture was filtered over Celite to remove the catalyst, and the cake was rinsed with MeOH. The solutions were concentrated under reduced pressure keeping the bath temperature below 40 °C. The soluble part of the residue was dissolved in D₂O, filtered over Celite using a pipette, rinsed with D₂O and the solutions were concentrated under reduced pressure to give the target oligosaccharide in the form of a hydrochloride salt.

Biotinylation of oligosaccharides. A solution of the free oligosaccharide (1.0 equiv) and 6biotinylamidohexanoic acid *N*-hydroxysuccinimidoyl ester (2.0 equiv) in DMF (22.5 mL·mmol⁻¹), Et₃N (2.5 mL·mmol⁻¹), and H₂O (25.0 mL·mmol⁻¹) was stirred for 1 h at rt. The solvents were concentrated under reduced pressure. The resulting residue was dissolved in EtOH and the soluble fraction was purified by silica gel flash chromatography (DCM/MeOH) to give the biotinylated oligosaccharide.

SDS-PAGE and Western immunoblotting. Glycoconjugate samples were solubilized in 1X SDS-PAGE sample buffer and heated to 100 °C for 5 min prior to electrophoresis on 4-12% Bis-Tris Bolt gels (Life Technologies). Proteins were visualized via staining with Coomassie Blue R-250. For Western immunoblot analyses, the glycoconjugate samples and CRM197 were separated on the same 4-12% gels and electrophoretically transferred to nitrocellulose membranes. The membranes were blocked with 3% skim milk in high salt Tris-buffered saline (HS-TBS; 20 mM Tris, 500 mM NaCl, pH 7.5) for 60 min at room temperature and then incubated overnight at 4 °C with 1/400 - 1/2000 dilutions of a *B. pseudomallei* (Pp-PS-W) or *B. mallei* OPS-specific mAbs (4C7, 3D11 and 9C1-2). To facilitate detection, the membranes were incubated for 1 h at room temperature with 1/5000 dilutions of an anti-mouse IgG horse radish peroxidase conjugate (SouthernBiotech). The blots were then visualized using Pierce ECL Western Blotting Substrate (Pierce).

Immunofluorescence staining and microscopy. B. mallei ATCC 23344 was cultured at 37 °C with aeration (200 rpm) in LB Lennox broth (Fisher Scientific) supplemented with 4% glycerol. Mid log phase bacteria were pelleted by centrifugation, fixed with 2.5% paraformaldehyde for 15 min then washed extensively with PBS and then blocked with PBS containing 10% normal goat serum (PBS-G; Invitrogen) for 20 min. Bacteria were stained with CRM197, OC-4744 or SOC-6 mouse antiserum (from mice represented by green dots in Fig 8a and 8b) diluted 1/500 in PBS-G for 30 min, washed three times with PBS and then incubated with Alexa Fluor 488 goat anti-mouse IgG (Invitrogen) diluted 1/1000 in PBS-G for 30 min. Stained bacteria were then washed three times with PBS, rinsed two times with water and mounted onto glass slides with ProLong Gold (Invitrogen) medium. Fluorescence and bright field microscopy was performed using a Nikon Eclipse 90i imaging system using a CFI Plan APO VC 100X/1.4 oil objective (Nikon Instruments Inc.). Images were acquired using NIS-Elements Advanced Research software (Nikon Instruments Inc.). All manipulations of *B. mallei* were conducted in CDC-approved and -registered biosafety level 3 facility at the University of South Alabama in accordance with standard select agent operating practices in compliance with the rules and regulations of the U.S. Federal Select Agent Program.

Immunogenicity evaluation. Groups of 6–8 week old female C57BL/6 mice (Charles River) were immunized subcutaneously on days 0, 21 and 35 with 10 μ g of the OAg-CRM197 glycoconjugate OC-2808 formulated in saline plus Alhydrogel 2% (500 μ g/mouse; Brenntag) and PolyI:C (PIC; 30 μ g/mouse; InvivoGen). Terminal bleeds were conducted 14 days after the third immunization for the assessment of antibody responses. All procedures involving mice were performed according to protocols approved by the University of South Alabama Institutional Animal Care and Use Committee and were conducted in strict accordance with the recommendations in the Guide for the Care and Use of Laboratory Animals of the National Institutes of Health.

Synthetic methods and characterization data

Allyl 6-Deoxy-2,3-*O*-isopropylidene-α-L-talopyranoside (S2).

To a cooled (0 $^{\circ}$ C) solution of allylic alcohol (128 mL) was added dropwise acetyl chloride (9.9 mL, 138.8 mmol, 2.5 equiv). After 1 h, L-rhamnose (10 g, 55.5 mmol, 1.0 equiv) was added to the former solution and the reaction mixture was stirred at 70 °C. After 2 h, the reaction mixture was allowed to slowly warm up to rt and then solid NaHCO₃ was added. The mixture was filtered over Celite, rinsed with MeOH and the filtrate was concentrated under reduced pressure. The crude triol was dissolved in anhydrous acetone (61 mL) and 2,2-dimethoxypropane (21 mL, 166.5 mmol, 3.0 equiv) followed by a catalytic amount of PTSA (1.5 mg, 8.4 mmol, 0.15 equiv) were added. The reaction mixture was stirred for 3 h at rt under N2 and diluted with DCM (150 mL). The organic phase was washed with water (3×50 mL). The solvents of the dried (MgSO₄) solution were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 6:4 to 5:5) to give alcohol S1¹ (9.4 g, 91%, two steps) as a yellow oil: R_f 0.5 (DCM/MeOH 9:1); ¹H NMR (400 MHz, CDCl₃) δ (ppm): 5.95–5.85 (m, 1H, H-2_{All}), 5.31 (ddd, J = 17.2, 3.8, 1.7 Hz, 1H, H-3a_{All}), 5.22 (ddd, J = 10.3, 3.3, 1.4 Hz, 1H, H-3b_{All}), 5.01 (s, 1H, H-1), $4.19 (ddt, J = 12.5, 5.1, 1.9 Hz, 1H, H-1a_{All}), 4.17 (d, J = 5.6 Hz, 1H, H-2), 4.10 (t, J = 6.9 Hz, 1H, H-1a_{All}), 4.17 (d, J = 5.6 Hz, 1H, H-2), 4.10 (t, J = 6.9 Hz, 1H, H-1a_{All}), 4.17 (d, J = 5.6 Hz, 1H, H-2), 4.10 (t, J = 6.9 Hz, 1H, H-1a_{All}), 4.17 (d, J = 5.6 Hz, 1H, H-2), 4.10 (t, J = 6.9 Hz, 1H, H-1a_{All}), 4.17 (d, J = 5.6 Hz, 1H, H-2), 4.10 (t, J = 6.9 Hz, 1H, H-1a_{All}), 4.17 (d, J = 5.6 Hz, 1H, H-2), 4.10 (t, J = 6.9 Hz, 1H, H-2), 4.10$ H-3), 4.01 (ddt, J = 12.6, 6.2, 2.0 Hz, 1H, H-1b_{All}), 3.73–3.66 (m, 1H, H-5), 3.40 (ddd, J = 9.3, 5.9, 4.6, 2.0 Hz, 1H, H-4), 2.50 (d, J = 4.6 Hz, 1H, OH), 1.53 (s, 3H, CH₃), 1.36 (s, 3H, CH₃), 1.30 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ (ppm): 133.6 (C-2_{All}), 117.9 (C-3_{All}), 109.5 (C(CH₃)₂), 96.2 (C-1), 78.3 (C-3), 75.8 (C-2), 74.5 (C-4), 68.0 (C-1_{All}), 65.9 (C-5), 27.9, 26.1 (2 x CH₃), 17.5 (CH_{3Tal}).

Route A (*Dess-Martin periodinane procedure*): Alcohol **S1** (500 mg, 2.1 mmol, 1.0 equiv) was dissolved in anhydrous DCE (31 mL) at rt under Ar. Dess-Martin periodinane (1.9 g, 4.5 mmol, 2.2 equiv) was added and the mixture was refluxed for 1 h. The reaction mixture was cooled down to rt, diluted with DCM (30 mL) and washed with a 10% Na₂S₂O₃(aq) solution (20 mL). The organic phase was washed with brine (50 mL) and dried (MgSO₄). The solvents were concentrated under reduced pressure. The ketone was dissolved in MeOH/DCM (38 mL, 4:1 ν/ν), the solution was cooled to -10 °C, and NaBH₄ (250 mg, 6.5 mmol, 3.2 equiv) was slowly added. The mixture was stirred from -10 to 0 °C under Ar for 1 h. The reaction mixture was quenched by adding a 10% HOAc(aq) solution (2 mL) and then concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 90:10 to 85:15) to give alcohol **S2** (310 mg, 65%, two steps) as a colorless oil: R_f 0.4 (tol/EtOAc 8:2).

Route B (Pfitzner-Moffatt procedure): To a solution of DMSO (4.4 mL, 61.4 mmol, 5.0 equiv) in anhydrous DCM (123 mL) at -10 °C under Ar were added sequentially with stirring PDCP (5.5 mL, 36.8 mmol, 3.0 equiv) and Et₃N (8.6 mL, 61.4 mmol, 5.0 equiv). Then a solution of alcohol

S1 (3.0 g, 12.3 mmol, 1.0 equiv) in DCM (61 mL) was added dropwise during 1 h. The reaction mixture was stirred at -10 °C for 10 min, then allowed to slowly warm up to rt. After 30 min, water (100 mL) was added. The organic phase was separated and the aqueous phase was extracted with DCM (3×40 mL). The combined organic phases were washed with brine. The solvents of the dried solution (MgSO₄) were concentrated under reduced pressure. To a cooled (-10 °C) solution of the ketone in MeOH (123 mL) was slowly added NaBH₄ (558 mg, 22.1 mmol, 1.8 equiv). The mixture was stirred from -10 to 0 °C under Ar for 1 h. Then, the reaction mixture was diluted with DCM (200 mL) and the organic layer was washed with water (120 mL). The aqueous layer was back extracted with DCM (3×50 mL). The combined organic phases were washed with brine, dried (MgSO₄) and then concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 9:1 to 8:2) to give alcohol S2 (2.1 g, 70%, two steps) as a colorless oil: $R_f 0.2$ (PE/EtOAc 8:2); $[\alpha]_D^{20} = -46$ (c 1.3, CHCl₃/THF 1:1); ¹H NMR (400 MHz, CDCl₃) δ 5.97-5.87 (m, 1H, H-2_{All}), 5.31 (ddd, J = 17.2, 3.5, 1.6 Hz, 1H, H-3a_{All}), 5.22 (ddd, J = 10.3, 3.2, 1.6 Hz, 1H, H-3b_{All}), 5.09 (s, 1H, H-1), 4.25-4.18 (m, 2H, H-3, H-1a_{All}), 4.07 (td, J = 6.4, 0.6 Hz, 1H, H-2), 4.03 (ddt, J = 12.8, 6.3, 1.3 Hz, 1H, H-1b_{All}), 3.87 (dd, J = 13.9, 6.5 Hz, 1H, H-5), 3.56 (t, J = 5.8 Hz, 1H, H-4), 2.19 (d, J = 6.7 Hz, 1H, OH), 1.59 (s, 3H, CH₃), 1.38 (s, 3H, CH₃), 1.33 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 133.8 (C-2_{All}), 117.9 (C-3_{All}), 109.4 (C(CH₃)₂), 96.8 (C-1), 73.5 (C-2), 73.1 (C-3), 68.4 (C-1_{All}), 67.1 (C-4), 64.6 (C-5), 25.9, 25.4 (2 × CH₃), 16.8 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₂H₂₁O₅ 245.1384; found 245.1381; m/z [M + Na]⁺ calcd for C₁₂H₂₀NaO₅ 267.1203; found 267.1206; m/z [M + K]⁺ calcd for C₁₂H₂₀KO₅ 283.0942; found 283.0939.

Allyl 6-Deoxy-α-L-talopyranoside (S3).

Alcohol **S2** (4.3 g, 17.5 mmol, 1.0 equiv) was dissolved in a 80% HOAc(aq) solution (220 mL). The reaction mixture was stirred at 60 °C for 3 h. Then, the mixture was concentrated under reduced pressure and co-evaporated with toluene (3 ×). Purification by silica gel flash chromatography (DCM/MeOH 98:2 to 85:15) gave triol **S3** (3.4 g, 96%) as a yellow oil: R_f 0.2 (PE/EtOAc 7:3); $[\alpha]_D^{20} = -97$ (*c* 1.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.94–5.84 (m, 1H, H-2_{All}), 5.28 (ddd, J = 17.2, 3.8, 2.4 Hz, 1H, H-3a_{All}), 5.19 (ddd, J = 10.4, 3.4, 2.1 Hz, 1H, H-3b_{All}), 4.91 (s, 1H, H-1), 4.16 (ddt, J = 13.0, 5.2, 1.5 Hz, 1H, H-1a_{All}), 4.00 (ddt, J = 12.9, 6.0, 1.3 Hz, 1H, H-1b_{All}), 3.92 (dd, J = 14.0, 6.5 Hz, 1H, H-5), 3.81–3.80 (m, 2H, H-2, H-3), 3.68 (s, 1H, H-4), 1.29 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 133.9 (C-2_{All}), 117.5 (C-3_{All}), 99.9 (C-1), 73.0 (C-4), 70.7 (C-2), 68.3 (C-1_{All}), 66.8 (C-3), 66.4 (C-5), 16.6 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₉H₁₆NaO₅ 227.0890; found 227.0887.

Allyl 6-Deoxy-3,4-*O*-isopropylidene-α-L-talopyranoside (S4).

Triol S3 (1.2 g, 6.1 mmol, 1.0 equiv) was dissolved in anhydrous acetone (7 mL). 2.2-DMP (2.2 mL, 18.4 mmol, 3.0 equiv) and PTSA (58 mg, 310 µmol, 0.05 equiv) were added sequentially. The mixture was stirred for 2 h at rt under Ar, then diluted with DCM (20 mL). The organic phase was washed with a saturated NaHCO₃(aq) solution (10 mL) and water (10 mL). The solvents of the dried (MgSO₄) solution were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 9:1 to 7:3) to give alcohol S4 (1.2 g, 83%) as a yellow oil: $R_f 0.4$ (PE/EtOAc 6:4); $[\alpha]_D^{20} = -43$ (c 1.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.98–5.88 $(m, 1H, H-2_{All}), 5.31 (ddd, J = 17.2, 3.7, 1.6 Hz, 1H, H-3a_{All}), 5.19 (ddd, J = 10.4, 3.4, 0.9 Hz, 1H, 1H, 1H)$ H-3b_{All}), 4.81 (d, $J_{1,2}$ = 5.4 Hz, 1H, H-1), 4.52 (dd, J = 7.4, 3.4 Hz, 1H, H-3), 4.27 (ddt, J = 12.9, 5.3, 1.8 Hz, 1H, H-1a_{All}), 4.12 (dd, *J* = 7.4, 2.0 Hz, 1H, H-4), 4.05 (ddt, *J* = 12.8, 6.0, 1.7 Hz, 1H, H-1b_{All}), 3.85 (ddd, J = 13.8, 6.5, 2.0 Hz, 1H, H-5), 3.73 (dd, J = 5.5, 3.4 Hz, 1H, H-2), 1.53 (s, 3H, CH₃), 1.37 (s, 3H, CH₃), 1.25 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 134.4 (C-2_{All}), 117.3 (C-3_{All}), 110.0 (C(CH₃)₂), 100.0 (C-1), 76.2 (C-4), 73.7 (C-3), 68.8 (C-2), 68.6 (C-1_{All}), 65.2 (C-5), 26.1, 25.3 (2 × CH₃), 15.9 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{12}H_{20}NaO_5 267.1203$; found 267.1209; $m/z [M + K]^+$ calcd for $C_{12}H_{20}KO_5 283.0942$; found 283.0941.

Allyl 4-*O*-Benzyl-6-deoxy-α-L-talopyranoside (S5).

To a cooled (0 °C) solution of alcohol S2 (6.0 g, 24.6 mmol, 1.0 equiv) in anhydrous DMF (100 mL), was slowly added NaH (60% oil dispersion, 1.5 g, 37.0 mmol, 1.5 equiv) under Ar and the reaction mixture was stirred for 1 h from 0 °C to rt. Then, the mixture was cooled again to 0 °C, BnBr (4.4 mL, 37 mmol, 1.5 equiv) was added dropwise and the reaction mixture was gradually warmed to rt. After being stirred for 2 h under Ar, the reaction was quenched with MeOH (5 mL) and diluted with EtOAc (250 mL). The organic layer was washed with water (2×50 mL), a 10% HCl(aq) solution (50 mL) and a saturated NaHCO₃(aq) solution (50 mL). Aqueous phases were back extracted with EtOAc (3×50 mL). Then, combined organic phases were washed with brine (100 mL) and the solvents of the dried solution (MgSO₄) were concentrated under reduced pressure. The residue was dried under high vacuum overnight, then dissolved in a 80% HOAc(aq) solution (308 mL). The reaction mixture was stirred at 60 °C for 3 h. Then, the mixture was concentrated under reduced pressure and co-evaporated with toluene $(3 \times)$. Purification by silica gel flash chromatography (PE/EtOAc 9:1 to 6:4) gave diol S5 (7.2 g, 99%, two steps) as a lite yellow foam: $R_f 0.4$ (PE/EtOAc 7:3); $[\alpha]_D^{20} = -88$ (c 0.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.40–7.28 (m, 5H, CH-Ar), 5.93–5.83 (m, 1H, H-2_{All}), 5.27 (ddd, J = 17.3, 3.6, 1.6 Hz, 1H, H- $3a_{A11}$), 5.18 (ddd, J = 10.4, 3.4, 1.4 Hz, 1H, H- $3b_{A11}$), 4.90 (s, 1H, H-1), 4.78 (d, J = 11.1 Hz, 1H, CHHPh), 4.71 (d, J = 11.1 Hz, 1H, CHHPh), 4.15 (ddt, J = 13.0, 5.1, 2.8 Hz, 1H, H-1a_{All}), 3.99 (ddt, J = 13.2, 6.0, 2.9 Hz, 1H, H-1b_{All}), 3.92 (dd, J = 13.8, 6.6 Hz, 1H, H-5), 3.87 (br s, 1H, H-4), 3.68 (d, J = 10.1 Hz, 1H, H-2), 3.64 (br s, 1H, H-3), 3.37 (d, J = 11.9 Hz, 1H, OH), 2.76 (s, 1H, OH), 1.27 (d, J = 6.6 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 137.3 (C-Ar), 133.8 (C-2_{All}), 128.6, 128.2, 128.0 (3 × CH-Ar), 117.3 (C-3_{All}), 100.1 (C-1), 81.4 (C-3), 76.7 (CH₂Ph), 70.8 (C-2), 68.2 (C-1_{All}), 66.8 (C-4), 66.0 (C-5), 16.9 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + H]⁺ calcd for $C_{16}H_{23}O_5$ 295.1540; found 295.1542; m/z [M + NH₄]⁺ calcd for $C_{16}H_{26}NO_5$ 312.1805; found 312.1804; m/z [M + Na]⁺ calcd for C₁₆H₂₂NaO₅ 317.1359; found 317.1359.

Allyl 6-Deoxy-2-*O*-methyl-α-L-talopyranoside (S7).

NaH (60% oil dispersion, 94 mg, 2.3 mmol, 2.5 equiv) was added dropwise to a cooled (0 °C) solution of alcohol S4 (230 mg, 940 µmol, 1.0 equiv) in anhydrous DMF (5 mL). The mixture was stirred for 15 min at this temperature, then MeI (293 μ L, 4.7 mmol, 5.0 equiv) and TBAI (35 mg, 94 μ mol, 0.1 equiv) were added. The mixture was allowed to warm to rt and stirred for 5 h under Ar. The reaction mixture was diluted with EtOAc (20 mL), then poured into ice-cold brine (10 mL). The organic layer was washed again with brine $(2 \times 10 \text{ mL})$, dried over MgSO₄, concentrated under reduced pressure and co-evaporated with toluene $(3 \times)$. The residue was dissolved in a 80% HOAc(aq) solution (11 mL). The reaction mixture was stirred at 60 °C for 3 h. Then, the mixture was concentrated under reduced pressure and co-evaporated with toluene $(3 \times)$. Purification by silica gel flash chromatography (PE/EtOAc 8:2 to 7:3) gave diol S7 (188 mg, 92%, two steps) as a yellow oil: $R_f 0.2$ (PE/EtOAc 7:3); $[\alpha]_D^{20} = -42$ (c 1.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.95-5.85 (m, 1H, H-2_{All}), 5.29 (ddd, J = 17.2, 3.7, 1.6 Hz, 1H, H-3a_{All}), 5.21 (ddd, J = 10.4, 3.3, 1.3 Hz, 1H, H-3b_{All}), 4.97 (d, $J_{1,2} = 1.2$ Hz, 1H, H-1), 4.19 (ddt, J = 13.0, 5.1, 1.8 Hz, 1H, H-1a_{All}), $4.00 \text{ (ddt, } J = 13.0, 6.0, 1.6 \text{ Hz}, 1\text{H}, \text{H-1b}_{\text{All}}\text{)}, 3.88 \text{ (ddd, } J = 13.8, 6.5, 0.8 \text{ Hz}, 1\text{H}, \text{H-5}\text{)}, 3.82 \text{ (br}$ s, 1H, H-3), 3.53 (d, J = 9.4 Hz, 1H, H-4), 3.49 (s, 3H, CH_{3Me}), 3.45 (dt, J = 3.5, 1.6 Hz, 1H, H-2), 3.02 (s, 1H, OH), 2.79 (d, J = 11.7 Hz, 1H, OH), 1.29 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 133.7 (C-2_{All}), 117.5 (C-3_{All}), 96 (C-1), 80.4 (C-2), 73.1 (C-4), 68.3 (C-1_{All}), 67.1 (C-5), 66.5 (C-3), 59.4 (CH_{3Me}), 16.5 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₁₀H₁₈NaO₅ 241.1046; found 241.1050.

Allyl 6-Deoxy-4-*O-para*-methoxybenzyl-2-*O*-methyl-*a*-L-talopyranoside (S8) and Allyl 6-Deoxy-3-*O-para*-methoxybenzyl-2-*O*-methyl-*a*-L-talopyranoside (S9).

In a vessel equipped with a Dean-Stark apparatus, a suspension of Bu₂SnO (204 mg, 819 μ mol, 1.05 equiv) and diol S7 (170 mg, 780 μ mol, 1.0 equiv) was refluxed in toluene (8 mL) for 5 h. The temperature was cooled to 50 °C, then TBAI (303 mg, 819 μ mol, 1.05 equiv), CsF (121 mg, 796 μ mol, 1.02 equiv) and PMBCl (116 μ L, 858 μ mol, 1.1 equiv) were successively added and the reaction was refluxed overnight. The reaction mixture was then concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 9:1 to 7:3) to give alcohol S9 (196 mg, 60%) as a yellow amorphous solid along with its regioisomer S8 (36 mg, 13%) as a yellow oil. Analytical data for **S9**: $R_f 0.3$ (PE/EtOAc 7:3); ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.29 (m, 2H, CH-Ar), 6.89–6.86 (m, 2H, CH-Ar), 5.93–5.83 (m, 1H, H-2_{All}), 5.26 (ddd, J = 17.2, 3.8, 1.6 Hz, 1H, H-3a_{All}), 5.19 (ddd, J = 10.4, 3.4, 1.4 Hz, 1H, H-3b_{All}), 4.95 (d, $J_{1,2} = 1.5$ Hz, 1H, H-1), 4.69 (d, J = 11.7 Hz, 1H, CHH_{PMB}), 4.53 (d, J = 11.7 Hz, 1H, CHH_{PMB}), 4.16 (ddt, J = 13.1, 5.0, 1.8 Hz, 1H, H-1a_{All}), 3.98 (ddt, J = 12.9, 6.0, 1.7 Hz, 1H, H-1b_{All}), 3.80 (s, 3H, CH_{3PMB}), 3.77 (dd, J = 13.0, 6.3 Hz, 1H, H-5), 3.74–3.70 (m, 1H, H-4), 3.69 (t, J = 3.3 Hz, 1H, H-3), 3.53 (dd, $J_{2,3} = 3.2$ Hz, $J_{1,2} = 1.6$ Hz, 1H, H-2), 3.53 (s, 3H, CH_{3Me}), 3.47 (d, J = 9.9 Hz, 1H, OH), 2.89 (d, J = 11.6 Hz, 1H, OH), 1.30 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 159.2 (C-Ar), 133.8 (C-2_{All}), 130.2 (C-Ar), 129.3 (CH-Ar), 117.3 (C-3_{All}), 113.8 (CH-Ar), 96.9 (C-1), 78.7 (C-2), 73.3 (C-3), 70.4 (C-4), 69.6 (CH_{2PMB}), 68.1 (C-1_{All}), 67.6 (C-5), 59.9 (CH_{3Me}), 55.3 (*C*H_{3PMB}), 16.6 (*C*H_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₁₈H₂₆NaO₆ 361.1622; found 361.1626. Analytical data for S8: $R_f 0.2$ (PE/EtOAc 7:3); $[\alpha]_D^{20} = -50$ (c 4.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.29 (m, 2H, CH-Ar), 6.88–6.85 (m, 2H, CH-Ar), 5.94–5.84 (m, 1H, H-2_{All}), 5.27 (ddd, J = 17.2, 3.8, 1.6 Hz, 1H, H-3a_{All}), 5.18 (ddd, J = 10.3, 3.3, 1.3 Hz, 1H, H- $3b_{All}$), 4.97 (d, $J_{1,2} = 1.1$ Hz, 1H, H-1), 4.72 (d, J = 11.8 Hz, 1H, CHH_{PMB}), 4.57 (d, J = 11.8 Hz, 1H, CH H_{PMB}), 4.14 (ddt, J = 13.1, 5.1, 1.8 Hz, 1H, H-1 a_{AII}), 3.97 (ddt, J = 12.9, 6.0, 1.7 Hz, 1H, H-1b_{All}), 3.87–3.81 (m, 2H, H-5, H-3), 3.80 (s, 3H, CH_{3PMB}), 3.46 (s, 3H, CH_{3Me}), 3.45 (d, J = 1.7 Hz, 1H, H-4), 3.27 (dd, J = 4.5, 6.3 Hz, 1H, H-2), 2.89 (d, J = 11.6 Hz, 1H, OH), 1.19 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 159.4 (C-Ar), 134.0 (C-2_{All}), 130.7 (C-Ar), 130.1 (CH-Ar), 117.2 (C-3_{All}), 113.8 (CH-Ar), 96.3 (C-1), 78.8 (C-2), 78.4 (C-4), 75.7 (CH_{2PMB}), 68.0 (C-1_{All}), 66.7 (C-5), 65.9 (C-3), 59.9 (CH_{3Me}), 55.3 (CH_{3PMB}), 16.9 (CH_{3Tal}).

Allyl 4-O-Acetyl-6-deoxy-3-O-para-methoxybenzyl-2-O-methyl-a-L-talopyranoside (S10).

Alcohol **S9** (751 mg, 2.2 mmol, 1.0 equiv) was dissolved in anhydrous py (3 mL). Ac₂O (6 mL) and DMAP (27 mg, 222 μ mol, 0.1 equiv) were added. The reaction mixture was stirred overnight at rt under Ar. The mixture was then concentrated under reduced pressure and co-evaporated with toluene $(3 \times)$. The residue was purified by silica gel flash chromatography (PE/EtOAc 9:1 to 7:3) to give derivative **S10** (714 mg, 84%) as a vellow amorphous solid: $R_f 0.2$ (tol/EtOAc 7:3); $[\alpha]_D^{20}$ $= -107 (c \ 1.2, \text{CHCl}_3); ^{1}\text{H NMR} (400 \text{ MHz}, \text{CDCl}_3) \delta 7.27 - 7.25 (m, 2H, CH-Ar), 6.88 - 6.86 (m,$ 2H, CH-Ar), 5.93–5.83 (m, 1H, H-2_{All}), 5.31 (t, J = 2.1 Hz, 1H, H-4), 5.25 (ddd, J = 17.2, 3.8, 1.6 Hz, 1H, H-3a_{All}), 5.19 (ddd, J = 10.4, 3.3, 1.3 Hz, 1H, H-3b_{All}), 4.97 (d, $J_{1,2} = 1.2$ Hz, 1H, H-1), 4.67 (d, J = 11.8 Hz, 1H, CHH_{PMB}), 4.56 (d, J = 11.8 Hz, 1H, CHH_{PMB}), 4.14 (ddt, J = 13.0, 5.1, 1.8 Hz, 1H, H-1a_{All}), 3.99–3.93 (m, 2H, H-1b_{All}, H-5), 3.80 (s, 3H, CH_{3PMB}), 3.75 (t, J = 3.8 Hz, 1H, H-3), 3.53 (s, 3H, CH_{3Me}), 3.41 (dt, J = 3.6, 1.5 Hz, 1H, H-2), 2.20 (s, 3H, CH_{3Ac}), 1.20 (d, J= 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, (CO), 159.3 (C-Ar), 133.8 (C-2_{All}), 130.2 (C-Ar), 129.3 (CH-Ar), 117.5 (C-3_{All}), 113.8 (CH-Ar), 97.8 (C-1), 77.2 (C-2), 73.0 (C-3), 70.4 (CH_{2PMB}), 69.1 (C-4), 68.2 (C-1_{All}), 65.1 (C-5), 60.1 (CH_{3Me}), 55.3 (CH_{3PMB}), 21.3, (CH_{3Ac}), 16.4 (*C*H_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₀H₂₈NaO₇ 403.1727; found 403.1738; m/z [M + K]⁺ calcd for C₂₀H₂₈KO₇ 419.1467; found 419.1462; m/z [2M + Na]⁺ calcd for C₄₀H₅₆NaO₁₄ 783.3562; found 783.3566.

Allyl 6-Deoxy-3-*O-para*-methoxybenzyl-α-L-talopyranoside (S11).

A suspension of Bu₂SnO (1.0 g, 4.0 mmol, 1.1 equiv) and triol S3 (750 mg, 3.7 mmol, 1.0 equiv) was refluxed in MeOH (37 mL) for 4 h using a Dean-Stark apparatus. Then, the solvents were concentrated under reduced pressure and co-evaporated with toluene $(3 \times)$. The residue was dissolved in toluene (19 mL). CsF (569 mg, 3.7 mmol, 1.02 equiv), TBAI (587 mg, 3.7 mmol, 1.05 equiv) and PMBCl (523 μ L, 3.9 mmol, 1.05 equiv) were successively added and the reaction was refluxed for an additional 4 h. The mixture was then concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (DCM/MeOH 97:3) to give diol S11 (769 mg, 65%) as a yellow oil, which solidified upon standing at rt: R_f 0.6 (DCM/MeOH 95:5); $[\alpha]_D^{20}$ = -72 (c 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.29 (m, 2H, CH-Ar), 6.90–6.87 (m, = 10.4, 3.5, 1.9 Hz, 1H, H-3b_{All}), 4.91 (d, $J_{1,2}$ = 1.5 Hz, 1H, H-1), 4.62 (d, J = 11.2 Hz, 1H, CHH_{PMB}), 4.58 (d, J = 11.2 Hz, 1H, CHH_{PMB}), 4.15 (ddt, J = 12.9, 5.2, 1.5 Hz, 1H, H-1a_{All}), 3.99 $(ddt, J = 13.0, 6.0, 1.3 Hz, 1H, H-1b_{AII}), 3.93-3.89 (m, 1H, H-2), 3.86 (dd, J = 13.9, 6.7 Hz, 1H, H-1)$ H-5), 3.80 (s, 3H, CH_{3PMB}), 3.76–3.74 (m, 1H, H-4), 3.62 (t, J = 3.3 Hz, 1H, H-3), 3.46 (d, J = 7.2 Hz, 1H, OH), 3.05 (d, J = 6.2 Hz, 1H, OH), 1.30 (d, J = 6.6 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) & 159.5 (C-Ar), 133.9 (C-2_{All}), 129.9 (C-Ar), 129.8 (CH-Ar), 117.5 (C-3_{All}), 114.0 (CH-Ar), 99.9 (C-1), 73.0 (C-3), 70.7 (C-4), 69.6 (CH_{2PMB}), 68.5 (C-2), 68.2 (C-1_{All}), 66.4 (C-5), 55.4 (CH_{3PMB}) , 16.6 (CH_{3Tal}) ; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₁₇H₂₄NaO₆ 347.1465; found $347.1472; m/z [M + K]^+$ calcd for $C_{17}H_{24}KO_6$ 363.1204; found 363.1202; $m/z [2M + Na]^+$ calcd for C₃₄H₄₈NaO₁₂ 671.3038; found 671.3044.

Allyl 6-Deoxy-3-*O*-methyl-α-L-talopyranoside (S12).

To a solution of triol S3 (750 mg, 3.7 mmol, 1.0 equiv) in MeOH (37 mL) was added Bu₂SnO (1.0 g, 4.0 mmol, 1.1 equiv) and the mixture was refluxed for 4 h. Then, the solvents were concentrated under reduced pressure and co-evaporated with toluene $(3 \times)$. The residue was dissolved in DMF (19 mL). CsF (569 mg, 3.7 mmol, 1.02 equiv) and MeI (23 mL, 367 mmol, 100 equiv) were sequentially added. After stirring overnight at 80 °C, the mixture was concentrated under reduced pressure and co-evaporated with toluene (3 ×). The residue was purified by silica gel flash chromatography (DCM/MeOH 98:2 to 97:3) to give diol S12 (303 mg, 38%) as a yellow oil: R_f 0.2 (DCM/MeOH 97:3); $[\alpha]_D^{20} = -87 (c \ 1.4, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3) \delta 5.95 - 5.85 (m, CDCl_3) \delta 5.95 (m,$ 1H, H-2_{All}), 5.29 (ddd, J = 17.2, 3.7, 1.6 Hz, 1H, H-3a_{All}), 5.20 (ddd, J = 10.4, 3.4, 1.3 Hz, 1H, H- $3b_{All}$, 4.94 (d, $J_{1,2} = 0.9$ Hz, 1H, H-1), 4.17 (ddt, J = 12.9, 5.3, 1.5 Hz, 1H, H-1 a_{All}), 4.01 (ddt, J = 12.9 12.9, 6.1, 1.3 Hz, 1H, H-1b_{All}), 3.94–3.87 (m, 2H, H-2, H-5), 3.82 (br s, 1H, H-4), 3.53 (d, J = 6.0 Hz, 1H, OH), 3.47 (s, 3H, CH_{3Me}), 3.43 (t, J = 3.3 Hz, 1H, H-3), 1.32 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 133.9 (C-2_{All}), 117.7 (C-3_{All}), 99.9 (C-1), 75.3 (C-3), 70.2 (C-4), 68.3 (C-1_{All}), 68.1 (C-2), 66.4 (C-5), 55.7 (CH_{3Me}), 16.6 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₁₀H₁₈NaO₅ 241.1046; found 241.1054; m/z [2M + Na]⁺ calcd for C₂₀H₃₆NaO₁₀ 459.2201; found 459.2201.

Allyl 4-O-Benzyl-6-deoxy-3-O-para-methoxybenzyl-a-L-talopyranoside (S13).

To a solution of diol S5 (500 mg, 1.7 mmol, 1.0 equiv) in toluene (20 mL) was added Bu₂SnO (444 mg, 1.8 mmol, 1.05 equiv) and the mixture was refluxed using a Dean-Stark apparatus for 3 h. The temperature was cooled to 30 °C, then TBAI (659 mg, 1.8 mmol, 1.05 equiv) and PMBCI (253 µL, 1.9 mmol, 1.1 equiv) were successively added. After refluxing overnight, the mixture was concentrated under reduced pressure. Purification by silica gel flash chromatography (PE/EtOAc 9:1 to 8:2) gave alcohol **S13** (398 mg, 56%) as a yellow oil: $R_f 0.4$ (PE/EtOAc 7:3); $[\alpha]_D^{20} = -38$ (c 2.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.24 (m, 7H, CH-Ar), 6.92–6.87 (m, 2H, CH-Ar), 5.92-5.82 (m, 1H, H-2_{All}), 5.24 (ddd, J = 17.2, 3.7, 1.5 Hz, 1H, H-3a_{All}), 5.17 (ddd, J = 10.4, 3.5, 1.3 Hz, 1H, H-3b_{All}), 4.99 (d, J = 11.1 Hz, 1H, CHHPh), 4.92 (d, J_{1,2} = 0.8 Hz, 1H, H-1), 4.76 (d, J = 11.4 Hz, 1H, CHH_{PMB}), 4.61 (d, J = 11.1 Hz, 1H, CHHPh), 4.49 (d, J = 11.4 Hz, 1H, CHH_{PMB}), 4.23 (d, J = 10.3 Hz, 1H, OH), 4.13 (ddt, J = 12.9, 5.1, 1.6 Hz, 1H, H-1a_{All}), 4.01–3.95 (m, 2H, H-1b_{All}, H-2), 3.85 (dd, J = 13.1, 6.5 Hz, 1H, H-5), 3.82 (s, 3H, CH_{3PMB}), 3.75 (t, J = 3.3Hz, 1H, H-3), 3.64 (t, J = 1.5 Hz, 1H, H-4), 1.20 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 159.2, 137.7 (2 × C-Ar), 133.9 (C-2_{All}), 130.4 (C-Ar), 129.2–127.9 (CH-Ar), 117.1 (C-3AII), 113.8 (CH-Ar), 100.8 (C-1), 78.9 (C-4), 75.5 (CH2Ph), 74.1 (C-3), 69.5 (CH2PMB), 68.1 (C-1_{All}), 68.0 (C-2), 66.5 (C-5), 55.3 (CH_{3PMB}), 16.8 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₄H₃₁O₆ 415.2115; found 415.2109; m/z [M + NH₄]⁺ calcd for C₂₄H₃₄NO₆ 432.2380; found 432.2379; m/z [M + Na]⁺ calcd for C₂₄H₃₀NaO₆ 437.1934; found 437.1931.

Allyl 4-O-Benzyl-6-deoxy-3-O-methyl-a-L-talopyranoside (S14).

To a solution of diol S5 (500 mg, 1.7 mmol, 1.0 equiv) in toluene (7 mL) was added Bu₂SnO (465 mg, 1.9 mmol, 1.1 equiv) and the mixture was refluxed using a Dean-Stark apparatus for 5 h. The temperature was cooled to 30 °C, then CsF (263 mg, 1.7 mmol, 1.02 equiv) and MeI (11 mL, 170 mmol, 100 equiv) were successively added. After stirring overnight at 80 °C, the mixture was concentrated under reduced pressure. Purification by silica gel flash chromatography (PE/EtOAc 9:1 to 8:2) gave alcohol **S14** (446 mg, 85%) as a yellow oil: $R_f 0.4$ (PE/EtOAc 7:3); $[\alpha]_D^{20} = -52$ (c 1.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.27 (m, 5H, CH-Ar), 5.94–5.84 (m, 1H, H-2_{All}), 5.28 (ddd, *J* = 17.2, 3.7, 1.6 Hz, 1H, H-3a_{All}), 5.19 (ddd, *J* = 10.4, 3.2, 1.3 Hz, 1H, H-3b_{All}), 4.98 (d, J = 11.1 Hz, 1H, CHHPh), 4.93 (d, $J_{1,2} = 1.7$ Hz, 1H, H-1), 4.61 (d, J = 11.1 Hz, 1H, CHHPh), 4.15–4.11 (m, 2H, OH, H-1a_{All}), 4.01 (ddt, J = 13.0, 6.1, 1.3 Hz, 1H, H-1b_{All}), 3.96–3.92 (m, 1H, H-2), 3.87 (dd, J = 13.8, 6.5 Hz, 1H, H-5), 3.69-3.68 (m, 1H, H-4), 3.54 (t, J = 3.2 Hz, 1H, H-3), 3.48 (s, 3H, CH_{3Me}), 1.22 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 137.8 (C-Ar), 134.0 (C-2_{All}), 128.5-128.1 (CH-Ar), 117.5 (C-3_{All}), 100.9 (C-1), 78.2 (C-4), 76.6 (C-3), 75.6 (CH₂Ph), 68.3 (C-1_{All}), 67.9 (C-2), 66.6 (C-5), 55.9 (CH_{3Me}), 17.0 (CH_{3Tal}); HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₁₇H₂₄NaO₅ 331.1516; found 331.1519; *m/z* [2M + Na]⁺ calcd for C₃₄H₄₈NaO₁₀ 639.3140; found 639.3138.

Allyl 2,4-O-Di-acetyl-6-deoxy-3-O-para-methoxybenzyl-a-L-talopyranoside (S15).

Diol S11 (766 mg, 2.4 mmol, 1.0 equiv) was dissolved in anhydrous py (12 mL). Ac₂O (12 mL) and DMAP (29 mg, 240 µmol, 0.1 equiv) were added. The reaction mixture was stirred for 4 h at rt under Ar. Then, the mixture was concentrated under reduced pressure and co-evaporated with toluene $(3 \times)$. The residue was purified by silica gel flash chromatography (DCM/MeOH 1:0) to give derivative S15 (632 mg, 65%) as a white amorphous solid: $R_f 0.8$ (DCM/MeOH 96:4); $[\alpha]_D^{20}$ $= -64 (c \ 1.3, \text{CHCl}_3); ^{1}\text{H NMR} (400 \text{ MHz}, \text{CDCl}_3) \delta 7.24 - 7.22 (m, 2H, CH-Ar), 6.87 - 6.85 (m, 2H, CH-Ar))$ 2H, CH-Ar), 5.91-5.81 (m, 1H, H-2AII), 5.28-2.18 (m, 4H, H-3aAII, H-3bAII, H-4, H-2), 5.22-5.18 (m, 2H, H-2, H-3b_{All}), 4.88 (d, $J_{1,2} = 0.9$ Hz, 1H, H-1), 4.53 (d, J = 11.8 Hz, 1H, CHH_{PMB}), 4.49 $(d, J = 11.8 \text{ Hz}, 1\text{H}, CHH_{PMB}), 4.12 (ddt, J = 13.1, 5.2, 1.9 \text{ Hz}, 1\text{H}, H-1a_{AII}), 4.03 (dd, J = 6.6, 1.2)$ Hz, 1H, H-5), 3.97 (ddt, J = 12.7, 6.1, 1.8 Hz, 1H, H-1b_{All}), 3.80 (s, 3H, CH_{3PMB}), 3.78 (t, J = 3.9Hz, 1H, H-3), 2.16 (s, 3H, CH_{3Ac}), 2.12 (s, 3H, CH_{3Ac}), 1.19 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 170.6 (2 × CO), 159.3 (C-Ar), 133.5 (C-2_{All}), 130.0 (C-Ar), 129.2 (CH-Ar), 117.9 (C-3_{All}), 113.8 (CH-Ar), 97.8 (C-1), 70.5 (C-3), 70.3 (CH_{2PMB}), 69.1 (C-4), 68.4 (C-1_{All}), 67.3 (C-2), 65.1 (C-5), 55.4 (CH_{3PMB}), 21.3, 21.1(2 × CH_{3Ac}), 16.4 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₁H₂₈NaO₈ 431.1676; found 431.1690; m/z [2M + Na]⁺ calcd for C₄₂H₅₆NaO₁₆ 839.3461; found 839.3468.

Allyl 2,4-O-Di-acetyl-6-deoxy-3-O-methyl-α-L-talopyranoside (S16).

Diol **S12** (319 mg, 1.5 mmol, 1.0 equiv) was dissolved in anhydrous py (7 mL). Ac₂O (7 mL) and DMAP (18 mg, 150 μ mol, 0.1 equiv) were added. The reaction mixture was stirred overnight at rt under Ar. Then, the mixture was concentrated under reduced pressure and co-evaporated with toluene (3 ×). The residue was purified by silica gel flash chromatography (PE/EtOAc 85:15 to 75:15) to give derivative **S16** (338 mg, 76%) as a yellow oil: R_f 0.8 (PE/EtOAc 7:3); $[\alpha]_D^{20} = -69$ (*c* 1.6, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.94–5.84 (m, 1H, H-2_{All}), 5.30 (ddd, J = 17.1, 3.5, 1.6 Hz, 1H, H-3a_{All}), 5.26 (d, J = 3.6 Hz, 1H, H-4), 5.23 (ddd, J = 10.4, 3.2, 1.3 Hz, 1H, H-3b_{All}), 5.18 (dt, J = 3.8, 1.5 Hz, 1H, H-2), 4.88 (d, $J_{1,2} = 1.1$ Hz, 1H, H-1), 4.15 (ddt, J = 12.7, 5.3, 1.7 Hz, 1H, H-1a_{All}), 4.05 (ddd, J = 12.5, 6.6, 1.2 Hz, 1H, H-5), 4.00 (ddt, J = 12.4, 6.2, 1.6 Hz, 1H, H-1b_{All}), 3.64 (t, J = 3.9 Hz, 1H, H-3), 3.37 (s, 3H, CH_{3Me}), 2.17 (s, 3H, CH_{3Ac}), 2.14 (s, 3H, CH_{3Ac}), 1.20 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 170.6 (2 × CO), 133.4 (C-2_{All}), 118.1 (C-3_{All}), 97.8 (C-1), 73.7 (C-3), 68.6 (C-1_{All}), 68.5 (C-4), 67.1 (C-2), 65.2 (C-5), 57.3 (CH_{3Me}), 21.3, 21.1 (2 × CH_{3Ac}), 16.4 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C_{14H22}NaO₇ 325.1258; found 325.1261.

Allyl 2-O-Acetyl-4-O-benzyl-6-deoxy-3-O-para-methoxybenzyl-a-L-talopyranoside (S6).

Alcohol **S13** (381 mg, 920 µmol, 1.0 equiv) was dissolved in anhydrous py (3 mL). Ac₂O (3 mL) and DMAP (11 mg, 90 μ mol, 0.1 equiv) were added. The reaction mixture was stirred at rt overnight under Ar. Then, solvents were concentrated under reduced pressure and co-evaporated with toluene $(3 \times)$. The residue was purified by silica gel flash chromatography (PE/EtOAc 9:1 to 8:2) to give derivative S6 (397 mg, 95%) as a colorless oil: $R_f 0.5$ (PE/EtOAc 7:3); $[\alpha]_D^{20} = -15$ (c 0.92, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.23 (m, 7H, CH-Ar), 6.89–6.87 (m, 2H, CH-Ar), 5.92-5.82 (m, 1H, H-2_{All}), 5.34 (d, J = 3.5 Hz, 1H, H-2), 5.25 (ddd, J = 17.2, 3.8, 1.7 Hz, 1H, H-3a_{All}), 5.17 (ddd, J = 10.3, 3.4, 1.4 Hz, 1H, H-3b_{All}), 4.92 (d, J = 11.6 Hz, 1H, CHHPh), 4.89 (s, 1H, H-1), 4.68 (d, J = 11.6 Hz, 1H, CHHPh), 4.67 (d, J = 11.5 Hz, 1H, CHH_{PMB}), 4.42 (d, J = 11.5 Hz, 1H, CH H_{PMB}), 4.12 (dd, J = 13.0, 6.4 Hz, 1H, H-1a_{All}), 3.97 (dd, J = 13.0, 6.0 Hz, 1H, H-1b_{All}), 3.89 (dd, J = 14.2, 6.5 Hz, 1H, H-5), 3.81 (s, 3H, CH_{3PMB}), 3.78 (t, J = 4.1 Hz, 1H, H-3), 3.52 (s, 1H, H-4), 2.08 (s, 3H, CH_{3Ac}), 1.26 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 171.1 (CO), 159.2, 139.1 (2 × C-Ar), 133.8 (C-2_{All}), 130.4 (C-Ar), 129.2–127.4 (CH-Ar), 117.5 (C-3AII), 113.8 (CH-Ar), 97.9 (C-1), 75.8 (C-4), 75.0 (C-3), 74.1 (CH₂Ph), 70.7 (CH₂PMB), 68.2 (C-1_{All}), 67.2 (C-2, C-5), 55.4 (CH_{3PMB}), 21.4 (CH_{3Ac}), 16.9 (CH_{3Tal}); HRMS (ESI-TOF) *m/z* [M + H]⁺ calcd for C₂₆H₃₃O₇ 457.2221; found 457.2218; m/z [M + NH₄]⁺ calcd for C₂₆H₃₆NO₇ 474.2486; found 474.2487; m/z [M + Na]⁺ calcd for C₂₆H₃₂NaO₇ 479.2040; found 479.2041.

Allyl 2-O-Acetyl-4-O-benzyl-6-deoxy-3-O-methyl-a-L-talopyranoside (S17).

Alcohol **S14** (430 mg, 1.4 mmol, 1.0 equiv) was dissolved in anhydrous py (4 mL). Ac₂O (4 mL) and DMAP (17 mg, 139 μ mol, 0.1 equiv) were added. The reaction mixture was stirred for 6 h at rt under Ar. Then, solvents were concentrated under reduced pressure and co-evaporated with toluene (3 ×). The residue was purified by silica gel flash chromatography (PE/EtOAc 9:1) to give derivative **S17** (432 mg, 89%) as a yellow oil: R_f 0.5 (PE/EtOAc 8:2); $[\alpha]_D^{20} = -20$ (*c* 1.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.25 (m, 5H, CH-Ar), 5.93–5.83 (m, 1H, H-2_{All}), 5.29-5.27 (m, 1H, H-2), 5.28 (ddd, *J* = 17.2, 3.8, 1.5 Hz, 1H, H-3a_{All}), 5.19 (ddd, *J* = 10.4, 3.3, 1.2 Hz, 1H, H-3b_{All}), 4.92 (d, *J* = 11.8 Hz, 1H, CHH Ph), 4.88 (d, $J_{1,2} = 1.3$ Hz, 1H, H-1), 4.65 (d, *J* = 11.8 Hz, 1H, CHH Ph), 4.88 (d, $J_{1,2} = 1.3$ Hz, 1H, H-1), 4.65 (d, *J* = 11.8 Hz, 1H, CHH Ph), 4.88 (d, $J_{1,2} = 1.3$ Hz, 1H, H-1), 4.65 (d, *J* = 11.8 Hz, 1H, CHH Ph), 4.88 (d, $J_{1,2} = 1.3$ Hz, 1H, H-1), 4.65 (d, *J* = 11.8 Hz, 1H, CHH Ph), 4.88 (d, $J_{1,2} = 1.3$ Hz, 1H, H-1), 4.65 (d, *J* = 11.8 Hz, 1H, CHH Ph), 4.88 (d, $J_{1,2} = 1.3$ Hz, 1H, H-1), 4.65 (d, *J* = 11.8 Hz, 1H, CHH Ph), 4.88 (d, $J_{1,2} = 1.3$ Hz, 1H, H-1), 4.65 (d, *J* = 11.8 Hz, 1H, CHH Ph), 4.14 (ddt, *J* = 12.8, 5.2, 1.7 Hz, 1H, H-1a_{All}), 3.98 (ddt, *J* = 13.1, 6.1, 1.7 Hz, 1H, H-1b_{All}), 3.92 (dd, *J* = 14.1, 6.3 Hz, 1H, H-5), 3.61–3.59 (m, 2H, H-3, H-4), 3.41 (s, 3H, CH_{3Me}), 2.09 (s, 3H, CH_{3Ac}), 1.28 (d, *J* = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 171.1, (CO), 139.3 (C-Ar), 133.8 (C-2_{All}), 128.2, 128.1, 127.4 (3 × CH-Ar), 117.7 (C-3_{All}), 97.9 (C-1), 77.8 (C-3), 75.4 (C-4), 74.0 (CH₂Ph), 68.3 (C-1_{All}), 67.2 (C-5), 67.1 (C-2), 57.2 (CH_{3Me}), 21.3 (CH_{3Ac}), 16.9 (CH_{3Tal}); HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₁₉H₂₆NO₆ 373.1622; found 373.1624; *m*/*z* [M + K]⁺ calcd for C₁₉H₂₆KO₆ 389.1361; found 389.1360.

2-O-Acetyl-4-O-benzyl-6-deoxy-3-O-para-methoxybenzyl-α-L-talopyranosyl 2,2,2-Trichloroacetimidate (8).

Allyl taloside S6 (397 mg, 870 μ mol, 1.0 equiv) was reacted according to the general procedure for the synthesis of trichloroacetimidate donors (first part). Purification by silica gel flash chromatography (PE/EtOAc 9:1 to 7:3) gave a hemiacetal (258 mg, 71%, ratio $\alpha/\beta \sim 3:1$) as a yellow oil: *R*_f0.4 (PE/EtOAc 8:2); ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.25 (m, 8H, CH-Ar), 6.90– 6.87 (m, 2H, CH-Ar), 5.32–5.31 (m, 1H, H-2), 5.29 (s, 1H, H-1), 4.91 (d, J = 11.8 Hz, 1H, CHHPh), 4.69 (d, J = 11.8 Hz, 1H, CHHPh), 4.67 (d, J = 11.5 Hz, 1H, CHH_{PMB}), 4.45 (d, J = 11.5 Hz, 1H, CHH_{PMB}), 4.14 (ddd, J = 13.7, 6.5, 1.3 Hz, 1H, H-5), 3.84 (t, J = 3.5 Hz, 1H, H-3), 3.81 (s, 3H, CH_{3PMB}), 3.54 (t, J = 1.6 Hz, 1H, H-4), 2.76 (s, 1H, OH), 2.10 (s, 3H, CH_{3Ac}), 1.27 (d, J = 6.6 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 171.1 (CO), 159.3, 139.0, 130.4 (3 × C-Ar), 129.3, 128.4, 128.2, 127.6 (4 × CH-Ar), 113.9 (C-Ar), 93.6 (C-1), 75.8 (C-4), 74.5 (C-3), 73.9 (CH₂Ph), 70.8 (CH_{2PMB}), 67.6 (C-2), 67.5 (C-5), 55.4 (CH_{3PMB}), 21.4 (CH_{3Ac}), 16.9 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + NH₄]⁺ calcd for C₂₃H₃₂NO₇ 434.2173; found 434.2169; m/z [M + Na]⁺ calcd for C₂₃H₂₈NaO₇ 439.1727; found 439.1725. The hemiacetal (50 mg, 120 µmol, 1.0 equiv) was reacted in the presence of DBU (4 μ L, 40 μ mol, 0.3 equiv) and CCl₃CN (60 μ L, 600 μ mol, 5.0 equiv). Purification by silica gel flash chromatography (PE/EtOAc 85:15 to 8:2 + 1% Et₃N) gave imidate 8 (61 mg, 90%) as a colorless oil: $R_f 0.5$ (PE/EtOAc 6:4); $[\alpha]_D^{20} = +3.4$ (c 0.80, CHCl₃); ¹H NMR (400 MHz, py-d₅) δ 7.54–7.48 (m, 7H, CH-Ar), 7.05–7.03 (m, 2H, CH-Ar), 6.83 (s, 1H, H-1), 5.88 (t, J = 1.8 Hz, 1H, H-2), 5.22 (d, J = 11.3 Hz, 1H, CHHPh), 4.91 (d, J = 11.3 Hz, 1H, CHHPh), 4.79 (d, *J* = 11.4 Hz, 1H, CHH_{PMB}), 4.73 (d, *J* = 11.4 Hz, 1H, CHH_{PMB}), 4.41 (dd, *J* = 14.3, 6.3 Hz, 1H, H-5), 4.25 (t, J = 3.6 Hz, 1H, H-3), 3.88 (t, J = 1.5 Hz, 1H, H-4), 3.69 (s, 3H, CH_{3PMB}), 2.03 (s, 3H, CH_{3Ac}), 1.43 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, py- d_5) δ 171.8 (CO), 160.2, 159.9 (2 × C-Ar), 130.4 (CH-Ar), 128.9, 128.7, 128.1 (3 × CH-Ar), 114.7 (CH-Ar), 97.3 (C-1), 76.8 (C-4), 75.0 (CH₂Ph), 74.8 (C-3), 71.2 (CH_{2PMB}, C-5), 66.4 (C-2), 55.5 (CH_{3PMB}), 21.3 (CH_{3Ac}), 17.3 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + NH₄]⁺ calcd for C₂₅H₃₂Cl₃N₂O₇ 577.1269; found 577.1264; m/z [M + Na]⁺ calcd for C₂₅H₂₈Cl₃NNaO₇ 582.0823; found 582.0822.

4-*O*-Acetyl-6-deoxy-3-*O*-*para*-methoxybenzyl-2-*O*-methyl-α-L-talopyranosyl Trichloroacmetimidate (9).

Allyl taloside **S10** (829 mg, 2.2 mmol, 1.0 equiv) was reacted according to the general procedure for the synthesis of trichloroacetimidate donors (first part). Purification by silica gel flash chromatography (PE/EtOAc 85:15 to 5:5) gave a hemiacetal (658 mg, 89%, ratio $\alpha/\beta \sim 3:1$) as a yellow amorphous solid: $R_f 0.6$ (DCM/MeOH 95:5); ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.24 (m, 4H, CH-Ar), 6.90–6.87 (m, 4H, CH-Ar), 5.35 (dd, J = 3.4, 1.4 Hz, 1H, H-1a), 5.31 (t, J = 1.7 Hz, 1H, H-4 α), 5.29–5.27 (m, 1H, H-4 β), 4.70 (d, J = 11.5 Hz, 1H, CHHPh), 4.68 (d, J = 11.8 Hz, 1H, CHHPh), 4.58 (d, J = 12.6 Hz, 1H, H-1 β), 4.46 (d, J = 11.8 Hz, 1H, CHHPh), 4.42 (d, J = 11.5 Hz, 1H, CHHPh), 4.22 (ddd, J = 13.6, 6.5, 1.5 Hz, 1H, H-5 α), 4.09 (d, J = 12.6 Hz, 1H, OH), 3.81 (s, 3H, CH_{3PMB}), 3.80 (s, 3H, CH_{3PMB}), 3.79 (t, J = 3.8 Hz, 1H, H-3 α), 3.66 (s, 3H, CH_{3Me}), 3.61 (ddd, J = 13.8, 6.5, 1.5 Hz, 1H, H-5 β), 3.54 (s, 3H, CH_{3Me}), 3.50 (s, 1H, H-3 β), 3.49 (d, J = 0.6 Hz, 1H, H-2 β), 3.43–3.41 (m, 1H, H-2 α), 2.94 (d, J = 3.4 Hz, 1H, OH), 2.21, 2.20 (2 × s, 6H, 2 × CH_{3Ac}), 1.26 (d, J = 6.5 Hz, 3H, CH_{3Tal}), 1.20 (d, J = 6.6 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 171.5, 171.3 (2 × CO), 159.3, 159.1 (2 × C-Ar), 130.1, 129.8 (2 × C-Ar), 129.4, 129.3 (2 × CH-Ar), 114.0, 113.9 (2 × CH-Ar), 94.1 (C-1 β), 93.4 (C-1 α), 77.9 (C-2 β), 77.3 (C-2 α), 77.0 (C-3 β), 72.4 (C-3α), 70.7 (CH_{2PMB}), 70.4 (CH_{2PMB}), 69.9 (C-5β), 69.1 (C-4α), 67.6 (C-4β), 65.2 (C-5α), 61.6, 60.1 ($2 \times CH_{3Me}$), 55.4, 55.3 ($2 \times CH_{3PMB}$), 21.3, 21.2 ($2 \times CH_{3Ac}$), 16.5, 16.4 ($2 \times CH_{3Tal}$); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₁₇H₂₄NaO₇ 363.1414; found 363.1427. The hemiacetal (644 mg, 1.9 mmol, 1.0 equiv) was reacted in the presence of Cs_2CO_3 (123 mg, 380 μ mol, 0.2 equiv) and CCl₃CN (950 μ L, 9.5 mmol, 5.0 equiv). Purification by silica gel flash chromatography (PE/EtOAc 1:0 to 5:5 + 1% Et₃N) gave imidate 9 (834 mg, 91%) as a yellow oil: $R_f 0.6$ (PE/EtOAc 5:5 + 1% Et₃N); $[\alpha]_D^{20} = -46 (c \ 1.5, CHCl_3)$; ¹H NMR (400 MHz, py-d₅) δ 7.58–7.48 (m, 2H, CH-Ar), 7.02–6.99 (m, 2H, CH-Ar), 6.81 (s, 1H, H-1), 5.74 (br s, 1H, H-4), 4.89 (d, J = 11.4 Hz, 1H, CHH_{PMB}), 4.68 (d, J = 11.4 Hz, 1H, CHH_{PMB}), 4.50 (dd, J = 14.0, 6.3 Hz, 1H, H-5), 4.20 (t, J = 3.8 Hz, 1H, H-3), 3.89 (t, J = 1.9 Hz, 1H, H-2), 3.68 (s, 3H, CH_{3PMB}), 3.61 (s, 3H, CH_{3Me}), 2.15 (s, 3H, CH_{3Ac}), 1.32 (d, J = 6.6 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, py- d_5) δ 171.1 (CO), 159.9 (C-Ar), 159.4 (C_{imine}), 130.1, 114.3 (2 × CH-Ar), 97.3 (C-1), 75.3 (C-2), 73.1 (C-3), 70.5 (CH_{2PMB}), 68.9 (C-4, C-5), 59.5 (CH_{3Me}), 55.2 (CH_{3PMB}), 21.0 (CH_{3Ac}), 16.6 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M $+ Na]^+$ calcd for C₁₉H₂₄Cl₃NNaO₇ 506.0511; found 506.0511.

2,2,2-

2,4-Di-*O*-acetyl-6-deoxy-3-*O*-para-methoxybenzyl-α-L-talopyranosyl Trichloroacetimidate (10).

Allyl taloside **S15** (602 mg, 1.5 mmol, 1.0 equiv) was reacted according to the general procedure for the synthesis of trichloroacetimidate donors (first part). Purification by silica gel flash chromatography (DCM/MeOH 98:2 to 96:4) gave a hemiacetal (471 mg, 87%, ratio $d\beta \sim 3:1$) as a white amorphous solid: $R_f 0.5$ (DCM/MeOH 95:5); ¹H NMR (400 MHz, CDCl₃) δ 7.25–7.22 (m, 4H, CH-Ar), 6.88–6.85 (m, 2H, CH-Ar), 5.32–5.31 (m, 1H, H-2), 5.26 (d, J = 2.4 Hz, 1H, H-1), 5.23 (d, J = 2.9 Hz, 1H, H-4), 5.17 (dt, J = 3.7, 1.4 Hz, 1H, H-2), 4.55 (d, J = 11.8 Hz, 1H, CHH_{PMB}),4.49 (d, *J* = 11.8 Hz, 1H, CHH_{PMB}), 4.25 (ddd, *J* = 14.1, 6.6, 1.1 Hz, 1H, H-5), 3.83 (t, *J* = 3.9 Hz, 1H, H-3), 3.80 (s, 3H, CH_{3PMB}), 3.15 (d, J = 3.8 Hz, 1H, OH), 2.16, 2.13 (2 × s, 6H, 2 × CH_{3Ac}), 1.19 (d, J = 6.6 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 170.7 (2 × CO), 159.3, 129.9 (2 × C-Ar), 129.2 (CH-Ar), 113.9 (C-Ar), 93.4 (C-1), 70.3 (CH_{2PMB}), 69.3 (C-3), 69.1 (C-4), 67.6 (C-2), 65.2 (C-5), 55.4 (CH_{3PMB}), 21.3, 21.1 (2 × CH_{3Ac}), 16.5 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₁₈H₂₄NaO₈ 391.1363; found 391.1376; m/z [2M + Na]⁺ calcd for C₃₆H₄₈NaO₁₆ 759.2835; found 759.2841. The hemiacetal (455 mg, 1.2 mmol, 1.0 equiv) was reacted in the presence of Cs₂CO₃ (80 mg, 250 µmol, 0.2 equiv) and CCl₃CN (620 µL, 6.2 mmol, 5.0 equiv). Purification by silica gel flash chromatography (PE/EtOAc 1:0 to 7:3 + 1% Et₃N) gave imidate 10 (558 mg, 88%) as a yellow amorphous solid: $R_f 0.5$ (PE/EtOAc 7:3 + 1% Et₃N); $[\alpha]_D^{20}$ $= -32 (c 1.8, CHCl_3)$; ¹H NMR (400 MHz, py-d₅) δ 7.58–7.46 (m, 2H, CH-Ar), 6.96–6.94 (m, 2H, CH-Ar), 6.83 (s, 1H, H-1), 5.81 (br s, 1H, H-2), 5.74 (t, J = 1.7 Hz, 1H, H-4), 4.82 (d, J = 11.6 Hz, 1H, CHH_{PMB}), 4.76 (d, J = 11.6 Hz, 1H, CHH_{PMB}), 4.55 (dd, J = 14.2, 6.5 Hz, 1H, H-5), 4.31 (t, J = 4.0 Hz, 1H, H-3), 3.64 (s, 3H, CH_{3PMB}), 2.23, 2.13 ($2 \times s$, 6H, $2 \times CH_{3Ac}$), 1.33 (d, J = 6.6 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, py- d_5) δ 170.8, 170.2 (2 × CO), 159.9 (C-Ar), 159.4 (C_{imine}), 129.9, 114.3 (2 × CH-Ar), 96.7 (C-1), 70.7 (C-3), 70.6 (CH_{2PMB}), 68.9 (C-4), 68.8 (C-5), 66.0 (C-2), 55.1 (CH_{3PMB}), 20.9 (2 × CH_{3Ac}), 16.5 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₀H₂₄Cl₃NNaO₈ 534.0460; found 534.0467.

2,2,2-

2-O-Acetyl-4-O-benzyl-6-deoxy-3-O-methyl-α-L-talopyranosyl 2,2,2-Trichloroacetimidate (11).

Allyl taloside **29** (413 mg, 1.2 mmol, 1.0 equiv) was reacted according to the general procedure for the synthesis of trichloroacetimidate donors (first part). Purification by silica gel flash chromatography (PE/EtOAc 85:5 to 8:2 + 1% Et₃N) gave a hemiacetal (242 mg, 66%, ratio $\alpha/\beta \sim$ 4:1) as a yellow oil: $R_f 0.5$ (PE/EtOAc 6:4); ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.27 (m, 5H, CH-Ar), 5.29 (br s, 1H, H-1), 5.26 (dd, J = 3.6, 1.2 Hz, 1H, H-2), 4.90 (d, J = 11.8 Hz, 1H, CHHPh), 4.65 (d, J = 11.8 Hz, 1H, CHHPh), 4.17 (ddd, J = 13.8, 6.5, 1.4 Hz, 1H, H-5), 3.65 (t, J = 3.4 Hz, 1H, H-3), 3.62 (t, J = 1.6 Hz, 1H, H-4), 3.43 (s, 3H, CH_{3Me}), 2.91 (d, J = 3.7 Hz, 1H, OH), 2.11 (s, 3H, CH_{3Ac}), 1.29 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 171.2 (CO), 139.1 (C-Ar), 128.3, 128.2, 127.5 (3 × CH-Ar), 93.4 (C-1), 77.4 (C-3), 75.3 (C-4), 73.9 (CH₂Ph), 67.5 (C-2), 67.4 (C-5), 57.4 (CH_{3Me}), 21.4 (CH_{3Ac}), 17.0 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{16}H_{22}NaO_6$ 333.1309; found 333.1316; m/z [2M + Na]+ calcd for C₃₂H₄₄NaO₁₂ 643.2725; found 643.2744. The hemiacetal (228 mg, 730 µmol, 1.0 equiv) was reacted in the presence of Cs₂CO₃ (48 mg, 150 µmol, 0.2 equiv) and CCl₃CN (370 µL, 3.7 mmol, 5.0 equiv). Purification by silica gel flash chromatography (PE/EtOAc 1:0 to 4:6 + 1% Et₃N) gave imidate 11 (558 mg, 88%) as a yellow oil: $R_f 0.7$ (PE/EtOAc 7:3 + 1% Et₃N); $[\alpha]_D^{20} = -6.4$ (c 1.4, CHCl₃); ¹H NMR (400 MHz, py- d_5) δ 7.61–7.16 (m, 5H, CH-Ar), 6.83 (s, 1H, H-1), 5.84 (t, J = 1.9 Hz, 1H, H-2), 5.14 (d, J = 11.4 Hz, 1H, CHHPh), 4.73 (d, J = 11.4 Hz, 1H, CHHPh), 4.43 (dd, J = 14.0, 6.6 Hz, 1H, H-5), 3.97 (t, J = 3.7 Hz, 1H, H-3), 3.87–3.85 (m, 1H, H-4), 3.50 (s, 3H, CH_{3Me}), 2.00 (s, 3H, CH_{3Ac}), 1.43 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, py- d_5) δ 170.4 (CO), 159.2 (C-Ar), 128.9, 128.6, 127.8 (3 × CH-Ar), 96.9 (C-1), 77.7 (C-3), 76.0 (C-4), 74.6 (CH₂Ph), 70.7 (C-5), 65.7 (C-2), 57.2 (CH_{3Me}), 20.9 (CH_{3Ac}), 17.0 (CH_{3Tal}); HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for C₁₈H₂₂Cl₃NNaO₆ 476.0405; found 476.0417.

2,4-Di-O-acetyl-6-deoxy-3-O-methyl-α-L-talopyranosyl 2,2,2-Trichloroacetimidate (12).

Allyl taloside S16 (320 mg, 1.1 mmol, 1.0 equiv) was reacted according to the general procedure for the synthesis of trichloroacetimidate donors (first part). Purification by silica gel flash chromatography (PE/EtOAc 85:5 to 6:4 + 1% Et₃N) gave a hemiacetal (248 mg, 89%, ratio $d\beta \sim$ 3:1) as a yellow oil: $R_f 0.2$ (PE/EtOAc 6:4); ¹H NMR (400 MHz, CDCl₃) δ 5.28–5.27 (m, 2H, H-1, H-2), 5.18 (td, J = 3.8, 1.5 Hz, 1H, H-4), 4.30 (ddd, J = 13.7, 6.6, 1.2 Hz, 1H, H-5), 3.70 (t, J = 3.8 Hz, 1H, H-3), 3.38 (s, 3H, CH_{3Me}), 2.17, 2.15 (2 × s, 6H, 2 × CH_{3Ac}), 1.20 (d, J = 6.6 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 171.0, 170.8 (2 × CO), 93.2 (C-1), 73.3 (C-3), 68.5 (C-4), 67.4 (C-2), 65.2 (C-5), 57.3 (CH_{3Me}), 21.3, 21.1 (2 × CH_{3Ac}), 16.5 (CH_{3Tal}); HRMS (ESI-TOF) m/z $[M + Na]^+$ calcd for C₁₁H₁₈NaO₇ 285.0945; found 285.0950. The hemiacetal (234 mg, 890 μ mol, 1.0 equiv) was reacted in the presence of $C_{s2}CO_3$ (58 mg, 180 μ mol, 0.2 equiv) and CCl₃CN (450 μ L, 4.5 mmol, 5.0 equiv). Purification by silica gel flash chromatography (PE/EtOAc 1:0 to 4:6 + 1% Et₃N) gave imidate 12 (281 mg, 77%) as a yellow oil: $R_f 0.5$ (PE/EtOAc 8:2 + 1% Et₃N); $[\alpha]_D^{20}$ $= -18 (c 1.4, CHCl_3);$ ¹H NMR (400 MHz, py- d_5) $\delta 6.84 (s, 1H, H-1), 5.80 (d, J = 3.4 Hz, 1H, H-1)$ 2), 5.68 (t, J = 1.7 Hz, 1H, H-4), 4.56 (dd, J = 14.5, 6.3 Hz, 1H, H-5), 4.06 (t, J = 3.9 Hz, 1H, H-3), 3.46 (s, 3H, CH_{3Me}), 2.21, 2.13 (2 × s, 6H, 2 × CH_{3Ac}), 1.32 (d, J = 6.6 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, py-d₅) δ 170.7, 170.1 (2 × CO), 159.1 (C_{imine}), 96.6 (C-1), 74.0 (C-3), 68.7 (C-5), 68.4 (C-4), 65.8 (C-2), 57.1 (CH_{3Me}), 20.9, 20.8 (2 × CH_{3Ac}), 16.5 (CH_{3Tal}).

(5-Azido-1-pentyl) 2,3,4,6-Tetra-O-acetyl-β-D-glucopyranoside (S20).

To a solution of glycosyl donor S18² (562 mg, 1.1 mmol, 1.0 equiv) and 5-azido-1-pentanol S19³ (221 mg, 1.7 mmol, 1.5 equiv) in anhydrous DCE (11 mL) was added freshly activated 4 Å powdered molecular sieves (2.0 g). The mixture was stirred for 1 h at rt under Ar. Then, the reaction mixture was cooled to -10 °C and TMSOTf (60 μ L, 303 μ mol, 0.3 equiv) was added dropwise. The mixture was stirred from -10 °C to rt for 24 h under Ar. The reaction was quenched with Et₃N (100 μ L), filtered over Celite and rinsed with DCM. The filtrate was concentrated under reduced pressure and purified by silica gel flash chromatography (PE/EtOAc 9:1 to 7:3) to give glucoside S20 (260 mg, 50%) as a colorless oil, which solidified upon standing at 4 °C: Rf 0.5 (PE/EtOAc 6:4); $[\alpha]_D^{20} = -12$ (c 1.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.20 (t, J = 9.7 Hz, 1H, H-3), 5.08 (t, J = 9.9 Hz, 1H, H-4), 4.98 (dd, J = 9.4, 8.0 Hz, 1H, H-2), 4.49 (d, J = 8.1 Hz, 1H, H-1), 4.26(dd, J = 12.4 Hz, 4.7 Hz, 1H, H-6a), 4.14 (dd, J = 12.4 Hz, 2.6 Hz, 1H, H-6b), 3.88 (td, J = 9.6, 6.6, 6.1, 1H, H-1 a_{linker}), 3.69 (ddd, J = 9.9, 4.8, 2.6 Hz, 1H, H-5), 3.49 (dt, J = 9.6, 7.1, 1H, H-1 b_{linker}), 3.27 (t, J = 7.1 Hz, 2H, H-5_{linker}), 2.09, 2.05, 2.02, 2.01 (4 × s, 12H, 4 × CH_{3Ac}), 1.65–1.56 (m, 4H, H-2_{linker}, H-4_{linker}), 1.46–1.37 (m, 2H, H-3_{linker}); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 170.4, 169.5, 169.4 (4 × CO), 100.9 (C-1), 72.9 (C-3), 71.9 (C-5), 71.4 (C-2), 69.8 (C-1_{linker}), 68.6 (C-4), 62.1 (C-6), 51.5 (C-5_{linker}), 29.1 (C-2_{linker}), 28.6 (C-4_{linker}), 23.3 (C-3_{linker}), 20.9, 20.8, 20.7, 20.6 (4 × *C*H_{3Ac}); HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₉H₃₀N₃O₁₀ 460.1925; found 460.1926; m/z $[M + NH_4]^+$ calcd for $C_{19}H_{33}N_4O_{10}$ 477.2191; found 477.2192; m/z $[M + Na]^+$ calcd for C₁₉H₂₉N₃NaO₁₀ 482.1745; found 482.1746.

(5-Azido-1-pentyl) 4,6-*O*-Benzylidene-β-D-glucopyranoside (S21).

Glucoside **S20** (1.2 g, 2.6 mmol, 1.0 equiv) was dissolved in anhydrous MeOH (20 mL). Et₃N (2.1 mL, 15 mmol, 6.0 equiv) was added and the reaction mixture was stirred 48 h at rt under Ar. Then, the mixture was concentrated under reduced pressure and co-evaporated with toluene $(3 \times)$. The residue was dissolved in anhydrous CH₃CN (10 mL) and BDMA (0.8 mL, 5.2 mmol, 2.0 equiv) followed by CSA (60 mg, 260 μ mol, 0.1 equiv) were added. The mixture was stirred for 8 h at rt under Ar. Then, the reaction mixture was quenched with Et₃N (100 μ L), concentrated under reduced pressure and purified by silica gel flash chromatography (PE/EtOAc 85:15 to 5:5) to give diol S21 (776 mg, 78%, two steps) as a white amorphous solid: $R_f 0.4$ (DCM/MeOH 95:5); $[\alpha]_D^{20}$ = -25 (c 1.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.50–7.48 (m, 2H, CH-Ar), 7.39–7.36 (m, 3H, CH-Ar), 5.53 (s, 1H, H-7), 4.39 (d, J_{1,2} = 7.8 Hz, 1H, H-1), 4.34 (dd, J = 10.7, 4.9 Hz, 1H, H-6a), 3.92 (td, J = 8.9, 6.6 Hz, 1H, H-1a linker), 3.84–3.76 (m, 2H, H-3, H-6b), 3.60–3.42 (m, 4H, H-1blinker, H-4, H-2, H-5), 3.29 (t, J = 7.2 Hz, 2H, H-5linker), 2.79 (s, 1H, OH), 2.65 (s, 1H, OH), 1.71– 1.60 (m, 4H, H-2_{linker}, H-4_{linker}), 1.51–1.43 (m, 2H, H-3_{linker}); ¹³C NMR (100 MHz, CDCl₃) δ 137.1 (C-Ar), 129.4, 128.5, 126.4 (3 × CH-Ar), 103.3 (C-1), 102.0 (C-7), 80.7 (C-4), 74.7 (C-2), 73.3 (C-4), 74.7 (C-4), 3), 70.1 (C-1_{linker}), 68.8 (C-6), 66.5 (C-5), 51.4 (C-5_{linker}), 29.2 (C-2_{linker}), 28.6 (C-4_{linker}), 23.3 (C- 3_{linker} ; HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₁₈H₂₆N₃O₆ 380.1816; found 380.1820; m/z [M + NH₄]⁺ calcd for C₁₈H₂₉N₄O₆ 397.2082; found 397.2078; m/z [M + Na]⁺ calcd for C₁₈H₂₅N₃NaO₆ 402.1635; found 402.1638.

(5-Azido-1-pentyl) 2-*O*-Benzyl-4,6-*O*-benzylidene-β-D-glucopyranoside (13).

Diol **S21** (475 mg, 1.2 mmol, 1.0 equiv) was dissolved in DCM (14 mL), then a 5% NaOH(aq) solution (4 mL) was added followed by Bu₄NHSO₄ (85 mg, 250 μ mol, 0.2 equiv) and benzyl bromide (261 µL, 2.2 mmol, 1.8 equiv). The emulsion was refluxed for 16 h under Ar. The reaction mixture was poured into a separatory funnel and the aqueous phase was extracted with DCM (3 \times 30 mL). The organic layer was dried (MgSO₄) and the solvents were concentrated under reduced pressure. Purification by silica gel flash chromatography (PE/EtOAc 9:1 to 7:3) gave alcohol 13 (320 mg, 55%) as a white amorphous powder along with its regioisomer **S22** (160 mg, 28%) as a white foam, and fully benzylated S23 (62 mg, 9%) as a colorless oil. Analytical data for 13: R_f 0.4 (PE/EtOAc 7:3); $[\alpha]_D^{20} = -14$ (*c* 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.47 (m, 2H, CH-Ar), 7.39–7.28 (m, 8H, CH-Ar), 5.52 (s, 1H, H-7), 4.94 (d, J = 11.5 Hz, 1H, CHHPh), 4.74 (d, J = 11.5 Hz, 1H, CH*H*Ph), 4.51 (d, $J_{1.2} = 7.8$ Hz, 1H, H-1), 4.34 (dd, J = 10.6, 4.9 Hz, 1H, H-6a), 3.94 (td, J = 8.9, 6.5 Hz, 1H, H-1 a_{linker}), 3.83 (t, J = 9.5 Hz, 1H, H-3), 3.77 (t, J = 10.7 Hz, 1H, H-6b), 3.57 (dt, J = 9.6, 7.1 Hz, 1H, H-1b_{linker}), 3.54 (t, J = 9.6 Hz, 1H, H-4), 3.45–3.39 (m, 1H, H-5), 3.34 (dd, J = 9.3, 7.8 Hz, 1H, H-2), 3.24 (t, J = 7.3 Hz, 2H, H-5_{linker}), 2.49 (s, 1H, OH), 1.72– 1.58 (m, 4H, H-2_{linker}, H-4_{linker}), 1.54–1.43 (m, 2H, H-3_{linker}); ¹³C NMR (100 MHz, CDCl₃) δ 138.3, 137.1 (2 × C-Ar), 129.3–126.4 (6 × CH-Ar), 103.9 (C-1), 101.9 (C-7), 81.9 (C-2), 80.5 (C-4), 74.9 (CH₂Ph), 73.3 (C-3), 70.1 (C-1_{linker}), 68.8 (C-6), 66.2 (C-5), 51.4 (C-5_{linker}), 29.4 (C-2_{linker}), 28.7 $(C-4_{linker})$, 23.5 (C-3_{linker}); HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₅H₃₂N₃O₆ 470.2285; found 470.2286; m/z [M + NH₄]⁺ calcd for C₂₅H₃₅N₄O₆ 487.2551; found 487.2551; m/z [M + Na]⁺ calcd for C₂₅H₃₁N₃NaO₆ 492.2105; found 492.2102. Analytical data for **S22**: $[\alpha]_D^{20} = -26 (c \ 1.5, CHCl_3);$ ¹H NMR (400 MHz, CDCl₃) δ 7.50–7.48 (m, 2H, CH-Ar), 7.41–7.28 (m, 8H, CH-Ar), 5.57 (s, 1H, H-7), 4.96 (d, J = 11.7 Hz, 1H, CHHPh), 4.80 (d, J = 11.7 Hz, 1H, CHHPh), 4.39 (d, $J_{1,2} = 7.6$ Hz, 1H, H-1), 4.34 (dd, J = 10.6, 4.9 Hz, 1H, H-6a), 3.90 (dt, J = 9.6, 6.7 Hz, 1H, H-1a_{linker}), 3.80 (t, J = 10.6 Hz, 1H, H-6b), 3.71 (t, J = 9.4 Hz, 1H, H-4), 3.66 (t, J = 9.2 Hz, 1H, H-3), 3.57 (dt, J = 9.2, 7.4 Hz, 1H, H-1b_{linker}), 3.47–3.41 (m, 1H, H-5), 3.28 (t, *J* = 7.1 Hz, 2H, H-5_{linker}), 2.46 (s, 1H, OH), 1.70–1.59 (m, 4H, H-2_{linker}, H-4_{linker}), 1.50–1.43 (m, 2H, H-3_{linker}); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 137.3 (2 × C-Ar), 129.1–126.1 (6 × CH-Ar), 103.4 (C-1), 101.4 (C-7), 81.5 (C-4), 80.3 (C-4), 102.4 (C-7), 102.4 (C-3), 74.7 (CH₂Ph), 74.4 (C-2), 70.1 (C-1_{linker}), 68.8 (C-6), 66.5 (C-5), 51.4 (C-5_{linker}), 29.2 (C-2_{linker}), 28.7 (C-4_{linker}), 23.3 (C-3_{linker}); HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₅H₃₂N₃O₆ 470.2285; found 470.2286; m/z [M + NH₄]⁺ calcd for C₂₅H₃₅N₄O₆ 487.2551; found 487.2551; m/z [M + Na]⁺ calcd for C₂₅H₃₁N₃NaO₆ 492.2105; found 492.2102. Analytical data for S23: $[\alpha]_D^{20} = -27$ (c 5.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.50–7.25 (m, 15H, CH-Ar), 5.56 (s, 1H, H-7), 4.91 (d, J = 11.7 Hz, 1H, CHHPh), 4.88 (d, J = 11.7 Hz, 1H, CHHPh), 4.80 (d, J = 5.9 Hz, 1H, CHHPh), 4.78 (d, J = 5.9 Hz, 1H, CH*H*Ph), 4.49 (d, $J_{1,2} = 7.7$ Hz, 1H, H-1), 4.34 (dd, J = 10.4, 5.1 Hz, 1H, H-6a), 3.93 (dt, J = 9.7, 6.8 Hz, 1H, H-1a_{linker}), 3.78 (t, J = 10.8 Hz, 1H, H-6b), 3.75 (t, J = 9.4 Hz, 1H, H-3), 3.68 (t, J = 9.5 Hz, 1H, H-4), 3.56 (dt, J = 9.7, 7.1 Hz, 1H, H-1b_{linker}), 3.45 (t, J = 8.6 Hz, 1H, H-2), 3.43–3.37 (m, 1H, H-5), 3.21 (t, J = 7.3 Hz, 2H, H-5_{linker}), 1.70–1.56 (m, 4H, H-2_{linker}, H-4_{linker}), 1.50–1.41 (m, 2H, H-3_{linker}); ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 138.4, 137.3 (3 × C- Ar), 129.0–126.1 (9 × CH-Ar), 104.1 (C-1), 101.2 (C-7), 82.2 (C-2), 81.6 (C-4), 80.9 (C-3), 75.4, 75.2 (2 × CH₂Ph), 70.2 (C-1_{linker}), 68.8 (C-6), 66.1 (C-5), 51.3 (C-5_{linker}), 29.4 (C-2_{linker}), 28.7 (C-4_{linker}), 23.4 (C-3_{linker}); HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₃₂H₃₈N₃O₆ 560.2755; found 560.2751; m/z [M + NH₄]⁺ calcd for C₃₂H₄₁N₄O₆ 577.3020; found 577.3019; m/z [M + Na]⁺ calcd for C₃₂H₃₇N₃NaO₆ 582.2574; found 582.2565.

Ethyl 4,6-*O*-Benzylidene-3-*O*-*tert*-butyldimethylsilyl-2-*O*-levulinoyl-1-thio-β-D-glucopyranoside (14).

To a solution of alcohol S24⁴ (1.8 g, 4.3 mmol, 1.0 equiv) in anhydrous py (28 mL) was added DMAP (1.3 g, 10.8 mmol, 2.5 equiv). A solution of levulinic anhydride⁵ (8.3 g, 38.8 mmol, 9.0 equiv) in anhydrous py (38 mL) was added dropwise over 30 min to the former mixture. The reaction mixture was then heated to 50 °C and stirred under Ar for 6 h. The solvents were concentrated under reduced pressure and the residue was purified by silica gel flash chromatography (PE/EtOAc 95:5 to 85:15) to give 14 (1.9 g, 83%) as a yellow oil: R_f 0.3 (tol/EtOAc 95:5); $[\alpha]_D^{20} = -48$ (c 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.45 (m, 2H, CH-Ar), 7.37–7.35 (m, 3H, CH-Ar), 5.51 (s, 1H, H-7), 2.76 (dd, J = 10.3, 8.6 Hz, 1H, H-2), 4.45 $(d, J_{1,2} = 10.1 \text{ Hz}, 1\text{H}, \text{H}-1), 4.32 \text{ (dd}, J = 10.5, 4.8 \text{ Hz}, 1\text{H}, \text{H}-6a), 3.88 \text{ (t}, J = 9.0 \text{ Hz}, 1\text{H}, \text{H}-3),$ 3.75 (t, J = 10.5 Hz, 1H, H-6b), 3.54 (t, J = 9.4 Hz, 1H, H-4), 3.50–3.44 (m, 1H, H-5), 2.83–275 (m, 2H, CH_{2SEt}), 2.73–2.59 (m, 4H, $2 \times CH_{2Lev}$), 2.20 (s, 3H, CH_{3Lev}), 1.25 (t, J = 7.4 Hz, 3H, CH_{3SEt}), 0.80 (s, 9H, C(CH₃)₃), 0.02, -0.02 (2 × s, 6H, 2 × CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 206.3 (CO), 171.7 (CO), 137.1 (C-Ar), 129.2, 128.3, 126.3 (3 × CH-Ar), 101.9 (C-7), 84.3 (C-1), 81.5 (C-4), 74.0 (C-3), 73.2 (C-2), 70.8 (C-5), 68.7 (C-6), 38.1 (CH_{2SEt}), 30.1 (CH_{3Lev}), 28,4 (CH_{2Lev}), 25.7 (C(CH₃)₃), 24.1 (CH_{2Lev}), 18.1 (C(CH₃)₃), 14.9 (CH_{3SEt}), -4.06, -4.80 (2 × CH₃); HRMS (ESI-TOF m/z [M + Na]⁺ calcd for C₂₆H₄₀NaO₇SSi 547.2156; found 547.2162; m/z [2M + Na]⁺ calcd for C₅₂H₈₀NaO₁₄S₂Si₂ 1071.4420; found 1071.4425.

4,6-*O*-Benzylidene-3-*O*-tert-butyldimethylsilyl-2-*O*-levulinoyl- α , β -D-glucopyranose (S25).

To a cooled (0 °C) solution of thioglucoside 14 (1.0 g, 1.9 mmol, 1.0 equiv) dissolved in DCM/water (22 mL, 10:1 v/v) was added NBS (498 mg, 2.7 mmol, 1.4 equiv). The reaction mixture was stirred from 0 °C to rt for 2 h. The mixture was then diluted with DCM (20 mL) and washed with a saturated NaHCO₃(aq) solution (10 mL). The aqueous phase was extracted with DCM (3 \times 10 mL). The combined organic layers were washed with brine (20 mL). Solvents of the dried solution (MgSO₄) were concentrated under reduced pressure and the residue was purified by silica gel flash chromatography (PE/EtOAc 9:1 to 7:3) to give hemiacetal S25 (630 mg, 66%, ratio $\alpha l\beta$ ~ 5:1) as a yellow oil: R_f 0.3 (tol/EtOAc 8:2); ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.45 (m, 2H, CH-Ar), 7.36–7.33 (m, 3H, CH-Ar), 5.51 (s, 1H, H-7), 5.38 (d, J = 3.2 Hz, 1H, H-2), 4.74 (dd, J = 9.5, 3.6 Hz, 1H, H-3), 4.26 (dd, J = 10.3, 4.9 Hz, 1H, H-6a), 4.19 (t, J = 9.7 Hz, 1H, H-4), 4.07 (td, J = 10.4, 4.9 Hz, 1H, H-5), 3.71 (t, J = 10.8 Hz, 1H, H-6b), 3.47 (d, $J_{1,2} = 9.0$ Hz, 1H, H-1), 2.89-272 (m, 2H, CH_{2Lev}), 2.62-2.48 (m, 2H, CH_{2Lev}), 2.19 (s, 3H, CH_{3Lev}), 0.81 (s, 9H, C(CH₃)₃), 0.05, 0.00 (2 × s, 6H, 2 × CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 207.4 (CO), 172.4 (CO), 137.4 (C-Ar), 129.1, 128.3, 126.3 (3 × CH-Ar), 101.9 (C-7), 90.9 (C-2), 82.1 (C-1), 75.3 (C-3), 69.3 (C-4), 69.1 (C-6), 62.6 (C-5), 38.3 (CH_{2Lev}), 29.9 (CH_{3Lev}), 28.2 (CH_{2Lev}), 25.8 (C(CH₃)₃), 18.3 (C(CH₃)₃), -4.14, -4.69 (2 × CH₃); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₄H₃₆NaO₈Si 503.2072; found 503.2082.

4,6-*O*-Benzylidene-3-*O*-*tert*-butyldimethylsilyl-2-*O*-levulinoyl-α-D-glucopyranosyl Fluoride (S26).

To a cooled (-10 °C) solution of thioglucoside 14 (100 mg, 191 μ mol, 1.0 equiv) in anhydrous DCM (2 mL) was added DAST (76 μ L, 572 μ mol, 3.0 equiv). The reaction mixture was stirred for 8 min, then NBS (47 mg, 267 μ mol, 1.4 equiv) was added. The mixture was stirred for 2 h from – 10 °C to rt under Ar. The solution was diluted with DCM (20 mL). The organic phase was washed with a saturated NaHCO₃(aq) solution (2 × 10 mL) and brine (10 mL). Solvents of the dried solution (MgSO₄) were concentrated under reduced pressure and the residue was purified by silica gel flash chromatography (PE/EtOAc 85:15) to give fluoride S26 (68 mg, 73%) as a yellow oil: $R_f 0.2$ (tol/EtOAc 8:2); $[\alpha]_D^{20} = -41$ (c 0.63, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.44 (m, 2H, CH-Ar), 7.39–7.34 (m, 3H, CH-Ar), 5.53 (s, 1H, H-7), 5.34 (dd, J_{1,F} = 53.1, J_{1,2} = 6.5 Hz, 1H, H-1), 5.08–5.01 (m, 1H, H-2), 4.38 (dd, J = 10.5, 4.8 Hz, 1H, H-6a), 3.90 (t, J = 8.6 Hz, 1H, H-3), 3.81 (t, J = 10.5 Hz, 1H, H-6b), 3.70 (t, J = 9.7 Hz, 1H, H-4), 3.56 (td, J = 10.1, 4.9 Hz, 1H, H-5), 2.83-273 (m, 2H, CH_{2Lev}), 2.72-2.58 (m, 2H, CH_{2Lev}), 2.19 (s, 3H, CH_{3Lev}), 0.81 (s, 9H, C(CH₃)₃), 0.04, 0.00 (2 × s, 6H, 2 × CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 206.2 (CO), 171.4 (CO), 136.9 (C-Ar), 129.3, 128.3, 126.3 (3 × CH-Ar), 108.3–106.1 (C-1), 101.9 (C-7), 80.8 (C-4), 74.9–74.7 (C-2), 72.3-72.2 (C-3), 68.6 (C-6), 66.1-66.0 (C-5), 37.9 (CH_{2Lev}), 29.9 (CH_{3Lev}), 28.0 (CH_{2Lev}), 25.7 $(C(CH_3)_3)$, 18.1 $(C(CH_3)_3)$, -4.20, -4.86 $(2 \times CH_3)$; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₂₄H₃₅FNaO₇Si 505.2028; found 505.2046.

4,6-*O*-Benzylidene-3-*O*-*tert*-butyldimethylsilyl-2-*O*-levulinoyl- α , β -D-glucopyranosyl N-Phenyl-2,2,2-trifluoroacetimidate (S27).

To a solution of hemiacetal **S25** (630 mg, 1.3 mmol, 1.0 equiv) in acetone (26 mL) were added K₂CO₃ (272 mg, 1.9 mmol, 1.5 equiv) followed by 2,2,2-trifluoro-*N*-phenylacetimidoyl chloride (PTFACl, 419 μ L, 2.6 mmol, 2.0 equiv). The mixture was stirred for 7 h at rt under Ar, then the suspension was filtered over Celite and rinsed with DCM. The solvents were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 9:1 + 1% Et₃N) to give imidate **S27** (499 mg, 58%, ratio $\alpha/\beta \sim 1:1$) as a yellow amorphous solid: R_f 0.6 (PE/EtOAc 7:3); ¹H NMR (400 MHz, py- d_5) δ 7.50–7.34 (m, 6H, CH-Ar), 7.18–7.13 (m, 4H, CH-Ar), 5.78 (s, 1H, H-7), 5.60 (t, J = 9.2 Hz, 1H, H-2), 5.32 (d, J = 7.5 Hz, 1H, H-3), 4.58 (t, J = 9.9 Hz, 1H, H-4), 4.45–4.41 (m, 1H, H-6a), 4.32 (t, J = 9.5 Hz, 1H, H-5), 3.91–3.85 (m, 2H, H-1, H-6b), 2.97–2.75 (m, 4H, 2 × CH_{2Lev}), 2.10 (s, 3H, CH_{3Lev}), 0.96 (s, 9H, C(CH₃)₃), 0.21, 0.18 (2 × s, 6H, 2 × CH₃); ¹³C NMR (100 MHz, py- d_5) δ 207.4 (CO), 172.4 (CO), 138.0, 137.4 (2 × C-Ar), 129.1–121.9 (6 × CH-Ar), 102.1 (C-7), 81.3 (C-1), 74.1 (C-2), 73.5 (C-3), 70.1 (C-4), 68.6 (C-6), 65.8 (C-5), 38.1 (CH_{2Lev}), 29.4 (CH_{3Lev}), 28.6 (CH_{2Lev}), 25.9 (C(CH₃)₃), 18.4 (C(CH₃)₃), -4.09, – 4.69 (2 × CH₃).

 $(5-Azido-1-pentyl) 2-O-Acetyl-4-O-benzyl-6-deoxy-3-O-para-methoxybenzyl-a-L-talopyranosyl-(1 \rightarrow 3)-2-O-benzyl-4, 6-O-benzylidene-\beta-D-glucopyranoside (15).$

According to the general procedure for the synthesis of protected disaccharides, acceptor 13 (400 mg, 850 μ mol, 1.0 equiv) and donor 8 (956 mg, 1.7 mmol, 2.0 equiv) were reacted in the presence of TMSOTf (6 µL, 34 µmol, 0.02 equiv). Purification by combi-flash chromatography (tol/Et₂O 98:2 to 94:6) gave disaccharide 15 (698 mg, 95%) as a white amorphous solid. $R_f 0.8$ (tol/Et₂O 7:3); $[\alpha]_{D^{20}} = -20$ (c 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.20 (m, 17H, CH-Ar), 6.86–6.87 (m, 2H, CH-Ar), 5.46 (s, 1H, H-7), 5.44 (d, J = 3.7 Hz, 1H, H-2B), 5.34 (s, 1H, H-1B), 4.92 (d, J = 10.9 Hz, 1H, CHHPh), 4.81 (d, J = 11.8 Hz, 1H, CHHPh), 4.69 (d, J = 11.2 Hz, 1H, CHHPh), 4.66 (d, J = 10.9 Hz, 1H, CHHPh), 4.59 (d, J = 11.8 Hz, 1H, CHHPh), 4.50 (d, J_{1A,2A} = 7.6 Hz, 1H, H-1A), 4.38 (d, J = 11.2 Hz, 1H, CH*H*Ph), 4.32 (dd, J = 10.8, 4.8 Hz, 1H, H-6aA), 4.10 (dd, J = 13.6, 6.3 Hz, 1H, H-5B), 3.98 (t, J = 9.4 Hz, 1H, H-3A), 3.92 (dt, J = 9.6, 6.4 Hz, 1H, H-1alinker), 3.79 (s, 3H, CH_{3PMB}), 3.75 (t, J = 10.5 Hz, 1H, H-6bA), 3.70 (t, J = 3.7 Hz, 1H, H-3B), 3.56 (dt, J = 9.6, 6.9 Hz, 1H, H-1b_{linker}), 3.50 (t, J = 9.6 Hz, 1H, H-4A), 3.45 (t, J = 9.0 Hz, 1H, H-2A), 3.45–3.39 (m, 1H, H-5A), 3.36 (t, J = 1.4 Hz, 1H, H-4B), 3.19 (t, J = 7.3 Hz, 2H, H-5_{linker}), 1.96 (s, 3H, CH_{3Ac}), 1.69–1.55 (m, 4H, H-2_{linker}, H-4_{linker}), 1.49–1.42 (m, 2H, H-3_{linker}), 0.91 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 170.7 (CO), 159.1 (C-Ar), 139.2, 138.1, 137.3, 130.6 (4 × C-Ar), 129.4–126.3 (10 × CH-Ar), 113.8 (CH-Ar), 104.1 (C-1A), 101.8 (C-7), 99.2 (C-1B), 83.3 (C-2A), 79.3 (C-4A), 75.9 (C-4B), 75.5 (C-3A), 75.4 (C-3B), 74.9, 74.0, 70.7 (3 × CH₂Ph), 70.2 (C-1_{linker}), 68.9 (C-6), 67.1 (C-5B), 66.8 (C-2B), 66.4 (C-5A), 55.4 (CH_{3PMB}), 51.3 (C-5_{linker}), 29.4 (C-2_{linker}), 28.7 (C-4_{linker}), 23.4 (C-3_{linker}), 21.3 (CH_{3Ac}), 16.6 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₄₈H₅₇N₃NaO₁₂ 890.3834; found 890.3849.

 $(5-Azido-1-pentyl) \\ 4-O-Acetyl-6-deoxy-3-O-para-methoxybenzyl-2-O-methyl-a-L-talopyranosyl-(1 \rightarrow 3)-2-O-benzyl-4, 6-O-benzylidene-\beta-D-glucopyranoside (16).$

According to the general procedure for the synthesis of protected disaccharides, acceptor 13 (405 mg, 862 μ mol, 1.0 equiv) and donor **9** (956 mg, 1.7 mmol, 2.0 equiv) were reacted in the presence of TMSOTf (2 μ L, 9 μ mol, 0.01 equiv). Purification by combi-flash chromatography (PE/EtOAc 73:27) gave disaccharide 16 (615 mg, 90%) as a white amorphous solid. R_f 0.6 (tol/EtOAc 8:2); $[\alpha]_{D^{20}} = -72 (c \ 1.4, \text{CHCl}_3); ^{1}\text{H NMR} (400 \text{ MHz}, \text{CDCl}_3) \delta 7.43 - 7.22 (m, 12\text{H}, \text{CH-Ar}), 6.87 - 6.85$ (m, 2H, CH-Ar), 5.46 (s, 1H, H-7), 5.33 (d, J = 1.1 Hz, 1H, H-1B), 5.12 (t, J = 2.0 Hz, 1H, H-4B), 4.98 (d, J = 11.6 Hz, 1H, CHHPh), 4.63 (d, J = 11.5 Hz, 2H, CH_{2PMB}), 4.51 (d, $J_{1A,2A} = 7.8$ Hz, 1H, H-1A), 4.39 (d, J = 11.6 Hz, 1H, CH*H*Ph), 4.59 (d, J = 11.8 Hz, 1H, C*H*HPh), 4.33 (dd, J = 10.6, 4.7 Hz, 1H, H-6aA), 4.16 (ddd, J = 13.7, 6.5, 1.4 Hz, 1H, H-5B), 3.95–3.90 (m, 2H, H-3A, H-1a_{linker}), 3.79 (s, 3H, CH_{3PMB}), 3.75 (t, J = 10.6 Hz, 1H, H-6bA), 3.67 (t, J = 3.7 Hz, 1H, H-3B), 3.56 (dt, J = 9.5, 7.0 Hz, 1H, H-1b_{linker}), 3.49 (t, J = 9.4 Hz, 1H, H-4A), 3.46-3.38 (m, 2H, H-2A, H-5A), 3.29 (dt, J = 3.6, 1.5 Hz, 1H, H-2B), 3.22 (s, 3H, CH_{3Me}), 3.19 (t, J = 7.3 Hz, 2H, H-5linker), 2.11 (s, 3H, CH_{3Ac}), 1.69–1.55 (m, 4H, H-2linker, H-4linker), 1.50–1.39 (m, 2H, H-3linker), 0.79 $(d, J = 6.4 \text{ Hz}, 3H, CH_{3\text{Tal}})$; ¹³C NMR (100 MHz, CDCl₃) δ 171.5 (CO), 159.2 (C-Ar), 138.2, 137.2, 130.5 (3 × C-Ar), 129.4–126.3 (7 × CH-Ar), 113.8 (CH-Ar), 104.2 (C-1A), 102.1 (C-7), 99.6 (C-1B), 83.3 (C-2A), 79.4 (C-4A), 77.1 (C-2B), 76.8 (C-3A), 75.0 (CH₂Ph), 73.4 (C-3B), 70.4 (CH₂Ph), 70.2 (C-1_{linker}), 69.2 (C-4B), 68.9 (C-6), 66.5 (C-5A), 65.0 (C-5B), 59.8 (CH_{3Me}), 55.4 (CH_{3PMB}), 51.4 (C-5_{linker}), 29.4 (C-2_{linker}), 28.7 (C-4_{linker}), 23.5 (C-3_{linker}), 21.2 (CH_{3Ac}), 15.8 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₄₂H₅₃N₃NaO₁₂ 814.3521; found 814.3515.

(5-Azido-1-pentyl) 2,4-Di-O-acetyl-6-deoxy-3-*O-para* $-methoxybenzyl-<math>\alpha$ -L-talopyranosyl- $(1\rightarrow 3)$ -2-*O*-benzyl-4,6-*O*-benzylidene- β -D-glucopyranoside (17).

According to the general procedure for the synthesis of protected disaccharides, acceptor 13 (221 mg, 470 μ mol, 1.0 equiv) and donor 10 (482 mg, 940 μ mol, 2.0 equiv) were reacted in the presence of TMSOTf (1 μ L, 5 μ mol, 0.01 equiv). Purification by combi-flash chromatography (PE/EtOAc 75:25) gave disaccharide 17 (227 mg, 58%) as a white amorphous solid. $R_f 0.5$ (tol/EtOAc 8:2); $[\alpha]_{D}^{20} = -53 (c 3.2, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3) \delta 7.42 - 7.21 (m, 12H, CH-Ar), 6.86 - 6.84$ (m, 2H, CH-Ar), 5.47 (s, 1H, H-7), 5.32 (d, J = 4.0 Hz, 1H, H-2B), 5.29 (s, 1H, H-1B), 5.05 (d, J = 3.2 Hz, 1H, H-4B), 4.91 (d, J = 10.7 Hz, 1H, CHHPh), 4.66 (d, J = 10.7 Hz, 1H, CHHPh), 4.50 $(d, J_{1A,2A} = 8.0 \text{ Hz}, 1\text{H}, \text{H}-1\text{A}), 4.49 (s, 2\text{H}, CH_{2PMB}), 4.33 (dd, J = 10.6, 4.8 \text{ Hz}, 1\text{H}, \text{H}-6a\text{A}), 4.22$ (dd, J = 14.1, 6.5 Hz, 1H, H-5B), 3.96–3.90 (m, 2H, H-3A, H-1alinker), 3.79 (s, 3H, CH_{3PMB}), 3.74 (t, J = 10.0 Hz, 1H, H-6bA), 3.71 (t, J = 3.6 Hz, 1H, H-3B), 3.56 (dt, J = 9.5, 6.7 Hz, 1H, H-1b_{linker}), 3.50 (t, J = 9.7 Hz, 1H, H-4A), 3.46–3.39 (m, 2H, H-2A, H-5A), 3.21 (t, J = 7.3 Hz, 2H, H-5_{linker}), 2.07, 2.02 ($2 \times s$, 6H, $2 \times CH_{3Ac}$), 1.70–1.56 (m, 4H, H-2_{linker}), H-4_{linker}), 1.49–1.41 (m, 2H, H-3_{linker}), 0.75 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 170.1 (2 × CO), 159.1 (C-Ar), 138.0, 137.2, 130.3 (3 × C-Ar), 129.4–126.3 (7 × CH-Ar), 113.8 (CH-Ar), 104.2 (C-1A), 101.9 (C-7), 99.2 (C-1B), 83.1 (C-2A), 79.2 (C-4A), 76.2 (C-3A), 75.0 (CH₂Ph), 70.9 (C-3B), 70.3 (CH_{2PMB}), 70.2 (C-1_{linker}), 69.3 (C-4B), 68.9 (C-6), 66.7 (C-2B), 66.4 (C-5A), 64.9 (C-5B), 55.3 (CH_{3PMB}), 51.3 (C-5_{linker}), 29.4 (C-2_{linker}), 28.7 (C-4_{linker}), 23.5 (C-3_{linker}), 21.2, 21.0 (2 \times CH_{3Ac}), 15.9 (CH_{3Tal}). HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{43}H_{53}N_3NaO_{13}$ 842.3471; found 842.3473; m/z [2M + Na]⁺ calcd for $C_{86}H_{106}N_6NaO_{26}$ 1661.7049; found 10661.7047.

(5-Azido-1-pentyl) 2-O-Acetyl-4-O-benzyl-6-deoxy-3-O-methyl- α -L-talopyranosyl-(1 \rightarrow 3)-2-O-benzyl-4,6-O-benzylidene- β -D-glucopyranoside (18).

According to the general procedure for the synthesis of protected disaccharides, acceptor 13 (128) mg, 273 μ mol, 1.0 equiv) and donor 11 (248 mg, 546 μ mol, 2.0 equiv) were reacted in the presence of TMSOTf (0.5 µL, 3 µmol, 0.01 equiv). Purification by combi-flash chromatography (PE/EtOAc 85:15) gave disaccharide 47 (169 mg, 81%) as a white amorphous solid: $R_f 0.6$ (tol/EtOAc 85:15); $[\alpha]_{D}^{20} = -38 (c \ 0.13, \text{CHCl}_{3}); ^{1}\text{H NMR} (400 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}), 5.48 (s, 100 \text{ MHz}, \text{CDCl}_{3}) \delta 7.44 - 7.21 (m, 15\text{H}, \text{CH-Ar}))$ 1H, H-7), 5.37 (dt, J = 3.8, 1.4 Hz, 1H, H-2B), 5.33 (s, 1H, H-1B), 4.90 (d, J = 10.8 Hz, 1H, CHHPh), 4.81 (d, J = 11.8 Hz, 1H, CHHPh), 4.66 (d, J = 10.8 Hz, 1H, CHHPh), 4.56 (d, J = 11.8 Hz, 1H, CHHPh), 4.50 (d, $J_{1A,2A} = 7.8$ Hz, 1H, H-1A), 4.32 (dd, J = 10.6, 4.9 Hz, 1H, H-6aA), 4.12 (dd, J = 13.6, 6.5 Hz, 1H, H-5B), 3.99 (t, J = 9.5 Hz, 1H, H-3A), 3.92 (dt, J = 9.6, 6.5 Hz, 1H, H-1a_{linker}), 3.75 (t, J = 10.6 Hz, 1H, H-6bA), 3.57 (dt, J = 9.6, 6.8 Hz, 1H, H-1b_{linker}), 3.51 (t, *J* = 9.2 Hz, 1H, H-4A), 3.49 (t, *J* = 3.9 Hz, 1H, H-3B), 3.47–3.41 (m, 3H, H-2A, H-4A, H-5A), 3.39 (s, 3H, CH_{3Me}), 3.19 (t, J = 7.3 Hz, 2H, H-5_{linker}), 1.97 (s, 3H, CH_{3Ac}), 1.68–1.55 (m, 4H, H- 2_{linker} , H-4_{linker}), 1.48–1.41 (m, 2H, H-3_{linker}), 0.92 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 170.7 (CO), 139.3, 138.1, 137.4 (3 × C-Ar), 129.3–126.3 (9 × CH-Ar), 104.2 (C-1A), 101.8 (C-7), 99.2 (C-1B), 83.3 (C-2A), 79.4 (C-4A), 77.7 (C-3B), 75.7 (C-4B), 75.4 (C-3A), 74.9 (CH₂Ph), 74.0 (CH₂Ph), 70.2 (C-1_{linker}), 68.9 (C-6), 67.1 (C-5B), 66.6 (C-2B), 66.4 (C-5A), 57.1 (CH_{3Me}), 51.3 (C-5_{linker}), 29.4 (C-2_{linker}), 28.7 (C-4_{linker}), 23.5 (C-3_{linker}), 21.3 (CH_{3Ac}), 16.7 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₄₁H₅₁N₃NaO₁₁ 784.3416; found 784.3435; m/z [2M + Na]⁺ calcd for C₈₂H₁₀₂N₆NaO₂₂ 1545.6939; found 1545.6987.

 $(5-Azido-1-pentyl) 2, 4-Di-O-acetyl-6-deoxy-3-O-methyl-\alpha-L-talopyranosyl-(1 \rightarrow 3)-2-O-benzyl-4, 6-O-benzylidene-\beta-D-glucopyranoside (19).$

According to the general procedure for the synthesis of protected disaccharides, acceptor 13 (153 mg, $326 \,\mu$ mol, 1.0 equiv) and donor **12** (265 mg, 651 μ mol, 2.0 equiv) were reacted in the presence of TMSOTf (0.6 μ L, 3 μ mol, 0.01 equiv). Purification by silica gel flash chromatography (tol/EtOAc 9:1 to 8:2) gave disaccharide 19 (176 mg, 76%) as a white amorphous solid: $R_f 0.4$ $(tol/EtOAc 7:3); [\alpha]_D^{20} = -62 (c 0.13, CHCl_3); {}^{1}H NMR (400 MHz, CDCl_3) \delta 7.44 - 7.26 (m, 10H, 10H)$ CH-Ar), 5.49 (s, 1H, H-7), 5.29 (s, 1H, H-1B), 5.28 (br s, 1H, H-2B), 5.04 (d, J = 3.0 Hz, 1H, H-4B), 4.90 (d, J = 10.7 Hz, 1H, CHHPh), 4.68 (d, J = 10.7 Hz, 1H, CHHPh), 4.51 (d, $J_{1A,2A} = 7.8$ Hz, 1H, H-1A), 4.34 (dd, J = 10.5, 4.9 Hz, 1H, H-6aA), 4.25 (ddd, J = 13.8, 6.5, 1.1 Hz, 1H, H-5B), 3.96–3.90 (m, 2H, H-3A, H-1a_{linker}), 3.77 (t, J = 10.6 Hz, 1H, H-6bA), 3.59–3.42 (m, 5H, H-2A, H-3B, H-4A, H-5A, H-1b_{linker}), 3.34 (s, 3H, CH_{3Me}), 3.21 (t, J = 7.3 Hz, 2H, H-5_{linker}), 2.09, 2.03 (2×s, 6H, 2×CH_{3Ac}), 1.69–1.56 (m, 4H, H-2_{linker}, H-4_{linker}), 1.49–1.40 (m, 2H, H-3_{linker}), 0.76 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 170.1 (2 × CO), 138.0, 137.2 (2 × C-Ar), 129.5–126.3 (6 × CH-Ar), 104.2 (C-1A), 102.0 (C-7), 99.1 (C-1B), 83.1 (C-2A), 79.2 (C-4A), 76.1 (C-3A), 75.0 (CH₂Ph), 73.7 (C-3B), 70.2 (C-1_{linker}), 68.9 (C-6), 68.8 (C-4B), 66.5 (C-5A), 66.4 (C-2B), 65 (C-5B), 57.2 (CH_{3Me}), 51.3 (C-5_{linker}), 29.4 (C-2_{linker}), 28.7 (C-4_{linker}), 23.5 (C- 3_{linker} , 21.2, 21.0 (2 × CH_{3Ac}), 15.6 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{36}H_{47}N_3NaO_{12}$ 736.3052; found 736.3061; m/z [2M + Na]⁺ calcd for $C_{72}H_{94}N_6NaO_{24}$ 1449.6212; found 1449.6246.
(5-Azido-1-pentyl) 2-*O*-Benzyl-4,6-*O*-benzylidene-3-*O*-trimethylsilyl-β-D-glucopyranoside (21).

According to the general procedure for the synthesis of protected disaccharides, this derivative was obtained when the reaction was performed for only 1 h in anhydrous Et₂O with 4 Å molecular sieves. Purification by silica gel combi-flash chromatography (tol/Et₂O) gave silylated derivative **21** (42%) as a white amorphous powder along with disaccharide **15** (43%). Analytical data for **21**: $[\alpha]_D^{20} = -10$ (*c* 1.7, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.27 (m, 10H, CH-Ar), 5.51 (s, 1H, H-7), 4.86 (d, *J* = 11.1 Hz, 1H, CHHPh), 4.76 (d, *J* = 11.1 Hz, 1H, CHHPh), 4.47 (d, *J*_{1,2} = 9.8 Hz, 1H, H-1), 4.33 (dd, *J* = 10.4, 4.9 Hz, 1H, H-6aA), 3.92 (dt, *J* = 9.5, 6.6 Hz, 1H, H-1a_{linker}), 3.82 (t, *J* = 9.2 Hz, 1H, H-3), 3.77 (t, *J* = 10.4 Hz, 1H, H-6bA), 3.55 (dt, *J* = 9.6, 7.0 Hz, 1H, H-1b_{linker}), 3.48 (t, *J* = 9.6 Hz, 1H, H-4), 3.37 (dd, *J* = 9.7, 5.0 Hz, 1H, H-5), 3.32 (dd, *J* = 8.5, 8.0 Hz, 1H, H-2), 3.21 (t, *J* = 7.1 Hz, 2H, H-5_{linker}), 1.69–1.55 (m, 4H, H-2_{linker}, H-4_{linker}), 1.50–1.39 (m, 2H, H-3_{linker}), 0.09 (s, 9H, $3 \times CH_3$); ¹³C NMR (100 MHz, CDCl₃) δ 138.6, 137.4 (2 × C-Ar), 129.1–126.3 (6 × CH-Ar), 104.1 (C-1), 101.6 (C-7), 83.1 (C-2), 81.4 (C-4), 75.4 (CH₂Ph), 74.5 (C-3), 70.2 (C-1_{linker}), 68.9 (C-6), 66.2 (C-5), 51.4 (C-5_{linker}), 29.4 (C-2_{linker}), 28.7 (C-4_{linker}), 23.4 (C-3_{linker}), 0.68 ((CH₃)₃); HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₂₈H₃₉N₃NaO₆Si 564.2500; found 564.2503.

(5-Azido-1-pentyl) 2-*O*-Acetyl-4-*O*-benzyl-6-deoxy- α -L-talopyranosyl-(1 \rightarrow 3)-2-*O*-benzyl-4,6-*O*-benzylidene- β -D-glucopyranoside (20).

According to the general procedure for the deprotection of PMB group, disaccharide 15 (344 mg, 400 μ mol, 1.0 equiv) was reacted in the presence of DDQ (180 mg, 790 μ mol, 2.0 equiv). Purification by silica gel flash chromatography (PE/EtOAc 85:15 to 5:5) gave alcohol 20 (255 mg, 77%) as a white amorphous powder: $R_f 0.4$ (tol/EtOAc 8:2); $[\alpha]_D^{20} = -70$ (c 1.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.16 (m, 15H, CH-Ar), 5.42 (s, 1H, H-7), 5.24 (s, 1H, H-1B), 4.92 (d, J = 4.2 Hz, 1H, H-2B), 4.82 (d, J = 10.9 Hz, 1H, CHHPh), 4.64 (d, J = 11.6 Hz, 1H, CHHPh), 4.63 (d, J = 10.9 Hz, 1H, CHHPh), 4.45 (d, J = 11.6 Hz, 1H, CHHPh), 4.42 (d, J_{1A.2A} = 7.8 Hz, 1H, H-1A), 4.26 (dd, J = 10.4, 5.0 Hz, 1H, H-6aA), 4.12 (dd, J = 14.2, 6.6 Hz, 1H, H-5B), 3.92–3.82 (m, 3H, H-3A, H-3B, H-1alinker), 3.69 (t, J = 10.5 Hz, 1H, H-6bA), 3.51–3.33 (m, 4H, H-1blinker, H-4A, H-2A, H-5A), 3.27 (d, J = 3.5 Hz, 1H, H-4B), 3.13 (t, J = 7.1 Hz, 2H, H-5_{linker}), 2.50 (d, J = 9.2 Hz, 1H, OH), 1.89 (s, 3H, CH_{3Ac}), 1.61–1.48 (m, 4H, H-2_{linker}, H-4_{linker}), 1.42–1.30 (m, 2H, H- 3_{linker} , 0.87 (d, J = 6.6 Hz, 3H, $CH_{3\text{Tal}}$); ¹³C NMR (100 MHz, CDCl₃) δ 171.4 (CO), 138.7, 138.3, 137.4 (3 × C-Ar), 129.3–126.3 (9 × CH-Ar), 104.2 (C-1A), 101.9 (C-7), 98.6 (C-1B), 83.2 (C-2A), 79.4 (C-4B), 79.3 (C-4A), 76.1 (CH₂Ph), 75.6 (C-3A), 74.9 (CH₂Ph), 70.4 (C-2B), 70.2 (C-1_{linker}), 68.9 (C-6), 66.5 (C-3B), 66.4 (C-5A), 66.3 (C-5B), 51.4 (C-5_{linker}), 29.4 (C-2_{linker}), 28.7 (C-4_{linker}), 23.5 (C-3_{linker}), 21.2 (CH_{3Ac}), 16.6 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₄₀H₄₉N₃NaO₁₁ 770.3259; found 770.3270.

 $(5-Azido-1-pentyl) \qquad 4-O-Acetyl-6-deoxy-2-O-methyl-α-L-talopyranosyl-$(1$-$3)-2-O-benzyl-$(1$-$3)$

According to the general procedure for the deprotection of PMB group, disaccharide 16 (50 mg, $60 \,\mu$ mol, 1.0 equiv) was reacted in the presence of DDQ (28 mg, 120 μ mol, 2.0 equiv). Purification by silica gel flash chromatography (PE/EtOAc 8:2 to 5:5) gave alcohol 22 (35 mg, 87%) as a white amorphous powder: $R_f 0.3$ (tol/EtOAc 8:2); ¹H NMR (400 MHz, CDCl₃) δ 7.43–7.23 (m, 10H, CH-Ar), 5.48 (s, 1H, H-7), 5.33 (s, 1H, H-1B), 5.06 (d, *J* = 11.6 Hz, 1H, CHHPh), 4.89 (d, *J* = 4.1 Hz, 10.3, 4.8 Hz, 1H, H-6aA), 4.20 (dd, J = 14.0, 6.4 Hz, 1H, H-5B), 3.96 (t, J = 9.8 Hz, 1H, H-3A), 3.95–3.86 (m, 2H, H-1alinker, H-3B), 3.76 (t, J = 10.7 Hz, 1H, H-6bA), 3.58–3.42 (m, 4H, H-1blinker, H-2A, H-4A, H-5A), 3.20 (d, J = 4.3 Hz, 1H, H-2B), 3.16 (t, J = 7.2 Hz, 2H, H-5_{linker}), 3.01 (s, 3H, CH_{3Me}), 2.67 (d, J = 10.6 Hz, 1H, OH), 2.09 (s, 3H, CH_{3Ac}), 1.67–1.52 (m, 4H, H-2_{linker}, H-4_{linker}), 1.45–1.37 (m, 2H, H-3_{linker}), 0.64 (d, J = 6.6 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 171.5 (CO), 138.4, 137.1 (2 × C-Ar), 129.4–126.3 (6 × CH-Ar), 104.1 (C-1A), 102.1 (C-7), 97.9 (C-1B), 83.4 (C-2A), 79.4 (C-4A), 78.0 (C-2B), 76.7 (C-3A), 74.7 (CH₂Ph), 72.2 (C-4B), 70.1 (C-1_{linker}), 68.9 (C-6), 66.5 (C-5A), 65.1 (C-3B), 64.4 (C-5B), 59.4 (CH_{3Me}), 51.3 (C-5_{linker}), 29.3 (C-2_{linker}), 28.6 (C-4_{linker}), 23.4 (C-3_{linker}), 21.0 (CH_{3Ac}), 15.8 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd C₃₄H₄₅N₃NaO₁₁ 694.2946; found 694.2952; m/zfor [2M + $Na]^+$ calcd for C₆₈H₉₀N₆NaO₂₂ 1365.6000; found 1365.6012.

 $(5-Azido-1-pentyl) 2, 4-Di-O-acetyl-6-deoxy-\alpha-L-talopyranosyl-(1 \rightarrow 3)-2-O-benzyl-4, 6-O-benzylidene-\beta-D-glucopyranoside (23).$

According to the general procedure for the deprotection of PMB group, disaccharide 17 (50 mg, $60 \,\mu$ mol, 1.0 equiv) was reacted in the presence of DDQ (27 mg, 120 μ mol, 2.0 equiv). Purification by silica gel flash chromatography (PE/EtOAc 7:3 to 6:4) gave alcohol 23 (35 mg, 82%) as a white amorphous powder: R_f 0.2 (PE/EtOAc 7:3); ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.27 (m, 10H, CH-Ar), 5.48 (s, 1H, H-7), 5.28 (s, 1H, H-1B), 5.04 (d, J = 3.5 Hz, 1H, H-2B), 4.90 (d, J = 10.9 Hz, 1H, CHHPh), 4.88 (s, 1H, H-4B), 4.68 (d, J = 10.9 Hz, 1H, CHHPh), 4.50 (d, J_{1A,2A} = 7.8 Hz, 1H, H-1A), 4.34 (dd, J = 10.6, 4.8 Hz, 1H, H-6aA), 4.28 (dd, J = 14.7, 6.6 Hz, 1H, H-5B), 4.11 (t, J = 4.3 Hz, 1H, H-3B), 3.95–3.90 (m, 2H, H-1alinker, H-3A), 3.76 (t, J = 10.8 Hz, 1H, H-6bA), 3.58–3.40 (m, 4H, H-1blinker, H-2A, H-4A, H-5A), 3.20 (t, J = 7.3 Hz, 2H, H-5linker), 2.09, 2.04 (2 × s, 6H, 2 × CH_{3Ac}), 1.69–1.56 (m, 4H, H-2_{linker}, H-4_{linker}), 1.48–1.40 (m, 2H, H-3_{linker}), 0.75 (d, J = 6.6 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 171.7, 171.1 (2 × CO), 138.1, 137.1 (2 × C-Ar), 129.4–126.2 (6 × CH-Ar), 104.2 (C-1A), 101.9 (C-7), 98.7 (C-1B), 83.1 (C-2A), 79.2 (C-4A), 76.1 (C-3A), 74.9 (CH₂Ph), 71.8 (C-4B), 70.2 (C-1_{linker}), 69.6 (C-2B), 68.9 (C-6), 66.4 (C-5A), 65.7 (C-3B), 64.7 (C-5B), 51.3 (C-5linker), 29.4 (C-2linker), 28.7 (C-4linker), 23.4 (C-3linker), 21.1, 20.9 $(2 \times CH_{3Ac})$, 15.9 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₅H₄₅N₃NaO₁₂ 722.2895; found 722.2886; *m*/*z* [2M + Na]⁺ calcd for C₇₀H₉₀N₆NaO₂₄ 1421.5899; found 1421.5888.

 $(5-Azido-1-pentyl) 4,6-O-Benzylidene-3-O-tert-butyldimethylsilyl-2-O-levulinoyl-$\beta-D-glucopyranosyl-(1-3)-4-O-acetyl-6-deoxy-2-O-methyl-$\alpha-L-talopyranosyl-(1-3)-2-O-benzyl-4,6-O-benzylidene-$\beta-D-glucopyranoside (25).}$

To a solution of donor 14 (457 mg, 871 μ mol, 1.5 equiv) and acceptor 22 (390 mg, 581 μ mol, 1.0 equiv) in anhydrous Et₂O/DCE (17 mL, 4:1 ν/ν) was added freshly activated 4 Å molecular sieves (1.5 g). The mixture was stirred at rt for 1 h under Ar. Then, the suspension was cooled to -10 °C, AgOTf (149 mg, 581 µmol, 1.0 equiv) and NIS (261 mg, 1.2 mmol, 2.0 equiv) were added and the flask was protected from light. The reaction mixture was stirred for 10 min at -10 °C under Ar and then quenched with a few drops of Et₃N. The suspension was filtered over Celite, rinsed with DCM and the filtrate was concentrated under reduced pressure. The residue was purified by combi-flash chromatography (PE/EtOAc 71:29) to give trisaccharide 25 (432 mg, 65%) as a yellow amorphous solid: $R_f 0.3$ (tol/EtOAc 8:2); $[\alpha]_D^{20} = -57$ (c 1.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.48– 7.28 (m, 15H, CH-Ar), 5.49 (s, 2H, H-7A, H-7C), 5.32 (s, 1H, H-1B), 4.98 (d, J = 11.4 Hz, 1H, CHHPh), 4.96 (s, 1H, H-4B), 4.90 (t, J = 9.0 Hz, 1H, H-2C), 4.62 (d, J = 11.4 Hz, 1H, CHHPh), 4.58 (d, $J_{1C,2C} = 7.8$ Hz, 1H, H-1C), 4.51 (d, $J_{1A,2A} = 7.8$ Hz, 1H, H-1A), 4.31 (ddd, J = 19.6, 10.4, 10.4) 4.9 Hz, 2H, H-6aA, H-6aC), 4.19 (dd, J = 15.8, 5.8 Hz, 1H, H-5B), 3.95–3.90 (m, 3H, H-1a_{linker}, H-3A, H-3B), 3.82 (t, J = 9.3 Hz, 1H, H-3C), 3.78–3.70 (m, 2H, H-6bA, H-6bC), 3.58–3.53 (m, 2H, H-1b_{linker}, H-4A), 3.50 (t, J = 8.9 Hz, 1H, H-4C), 3.46–3.40 (m, 3H, H-2A, H-5A, H-5C), 3.37 (br s, 1H, H-2B), 3.24 (s, 3H, CH_{3Me}), 3.20 (t, J = 7.3 Hz, 2H, H-5_{linker}), 2.77–2.74 (m, 2H, CH_{2Lev}), 2.66-2.62 (m, 2H, CH_{2Lev}), 2.16 (s, 3H, CH_{3Lev}), 2.09 (s, 3H, CH_{3Ac}), 1.69-1.56 (m, 4H, H-2_{linker}, H-4_{linker}), 1.51–1.40 (m, 2H, H-3_{linker}), 0.78 (s, 9H, C(CH₃)₃), 0.71 (d, *J* = 6.5 Hz, 3H, CH_{3Tal}), 0.00, $-0.04 (2 \times s, 6H, 2 \times CH_3)$; ¹³C NMR (100 MHz, CDCl₃) δ 206.6 (CO), 171.5, 171.4 (2 × CO), 138.1, 137.2, 137.1 (3 × C-Ar), 129.4–126.3 (9 × CH-Ar), 104.1 (C-1A), 102.1 (C-7A, C-7C), 100.9 (C-1C), 100.4 (C-1B), 83.2 (C-2A), 81.6 (C-4C), 79.4 (C-4A), 77.8 (C-2B), 77.0 (C-3A), 75.1 (CH₂Ph), 74.7 (C-2C), 74.4 (C-3B), 72.7 (C-3C), 70.2 (C-1_{linker}), 69.5 (C-4B), 68.9 (C-6A), 68.7 (C-6C), 66.5 (C-5A), 66.3 (C-5C), 65.0 (C-5B), 60.1 (CH_{3Me}), 51.4 (C-5_{linker}), 37.9 (CH_{2Lev}), 30.1 (CH_{3Lev}), 29.4 (C-2_{linker}), 28.7 (C-4_{linker}), 28.1 (CH_{2Lev}), 25.7 (C(CH₃)₃), 23.5 (C-3_{linker}), 21.1 (CH_{3Ac}), 18.1 (C(CH₃)₃), 15.7 (CH_{3Tal}), -4.07, -4.83 (2 × CH₃); HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₅₈H₇₉N₃NaO₁₈Si 1156.5020; found 1156.5040.

 $(5-Azido-1-pentyl) 4,6-O-Benzylidene-3-O-tert-butyldimethylsilyl-2-O-levulinoyl-$\beta-D-glucopyranosyl-(1-3)-2,4-di-O-acetyl-6-deoxy-$\alpha-L-talopyranosyl-(1-3)-2-O-benzyl-4,6-O-benzylidene-$\beta-D-glucopyranoside (26).}$

To a solution of donor 14 (105 mg, 200 μ mol, 1.5 equiv) and acceptor 23 (93 mg, 133 μ mol, 1.0 equiv) in anhydrous Et₂O/DCE (4 mL, 4:1 ν/ν) was added freshly activated 4 Å molecular sieves (374 mg). The mixture was stirred at rt for 1 h under Ar. Then, the suspension was cooled to -10°C, AgOTf (34 mg, 133 μ mol, 1.0 equiv) and NIS (60 mg, 267 μ mol, 2.0 equiv) were added and the flask was protected from light. The reaction mixture was stirred for 10 min at -10 °C under Ar and then quenched with a few drops of Et₃N. The suspension was filtered over Celite, rinsed with DCM and the filtrate was concentrated under reduced pressure. The residue was purified by combiflash chromatography (PE/EtOAc 8:2) to give trisaccharide 26 (77 mg, 50%) as a colorless solid: $R_f 0.5$ (tol/EtOAc 8:2); $[\alpha]_D^{20} = -65$ (c 1.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.28 (m, 15H, CH-Ar), 5.53 (s, 1H, H-7A), 5.50 (s, 1H, H-7C), 5.31 (s, 1H, H-1B), 5.24 (d, J = 3.9 Hz, 1H, H-2B), 4.96 (d, J = 3.3 Hz, 1H, H-4B), 4.88 (d, J = 10.6 Hz, 1H, CHHPh), 4.85 (dd, J = 7.9, 7.7 Hz, 1H, H-2C), 4.74 (d, J = 10.6 Hz, 1H, CH*H*Ph), 4.57 (d, $J_{1C,2C} = 7.8$ Hz, 1H, H-1C), 4.52 (d, $J_{1A,2A} = 7.7$ Hz, 1H, H-1A), 4.34 (dt, J = 10.3, 4.9 Hz, 2H, H-6aA, H-6aC), 4.19 (dd, J = 13.9, 6.2 Hz, 1H, H-5B), 3.99–3.90 (m, 3H, H-1alinker, H-3A, H-3B), 3.82–3.72 (m, 3H, H-6bA, H-6bC, H-3C), 3.61–3.37 (m, 6H, H-1b_{linker}, H-4A, H-4C, H-2A, H-5A, H-5C), 3.21 (t, J = 7.2 Hz, 2H, H-5linker), 2.80–2.71 (m, 2H, CH_{2Lev}), 2.67–2.57 (m, 2H, CH_{2Lev}), 2.17 (s, 3H, CH_{3Lev}), 2.10 (s, 3H, CH_{3Ac}), 2.04 (s, 3H, CH_{3Ac}), 1.69–1.56 (m, 4H, H-2_{linker}, H-4_{linker}), 1.50–1.40 (m, 2H, H-3_{linker}), 0.80 (d, J = 6.5 Hz, 3H, CH_{3Tal}), 0.77 (s, 9H, $C(CH_{3})_{3}$), 0.00, -0.04 (2 × s, 6H, 2 × CH_{3}); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta 206.6 (CO), 171.3 (CO), 170.9, 169.9 (2 \times CO), 138.2, 137.2, 137.1 (3 \times \text{C-}))$ Ar), 129.4–126.3 (9 × CH-Ar), 104.2 (C-1A), 102.0 (C-7A), 101.9 (C-7C), 100.6 (C-1C), 98.9 (C-1B), 83.0 (C-2A), 81.3 (C-4C), 79.3 (C-4A), 76.1 (C-3A), 74.9 (CH₂Ph), 74.7 (C-2C), 72.8 (C-3C), 71.3 (C-3B), 70.2 (C-1_{linker}), 68.9 (C-6), 68.8 (C-4B), 68.7 (C-6C), 68.4 (C-2B), 66.3 (C-5A), 66.2 (C-5C), 64.7 (C-5B), 51.3 (C-5linker), 37.9 (CH_{2Lev}), 30.0 (CH_{3Lev}), 29.4 (C-2linker), 28.7 (C-4linker), 28.1 (CH_{2Lev}), 25.7 (C(CH₃)₃), 23.4 (C-3linker), 21.1, 20.9 (2 × CH_{3Ac}), 18.1 (C(CH₃)₃), 15.9 (CH_{3Tal}) , -4.06, -4.87 (2 × CH₃); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₅₉H₇₉N₃NaO₁₉Si 1184.4969; found 1184.4986.

(5-Azido-1-pentyl) 3-*O*-Acetyl-4-*O*-benzyl-6-deoxy- α -L-talopyranosyl-(1 \rightarrow 3)-2-*O*-benzyl-4,6-*O*-benzylidene- β -D-glucopyranoside (27).

The acceptor 20 (15 mg, 20 μ mol, 1.0 equiv) and the donor 14 (21 mg, 40 μ mol, 2.0 equiv) were dissolved in anhydrous DCM/DMF (800 μ L, 1:1 ν/ν). Freshly activated powdered molecular sieves (4 Å, 60 mg) were added and the mixture was stirred for 1 h at rt under Ar. Then, Bu₄NBr (14 mg, 42 μ mol, 2.1 equiv) followed by CuBr₂ (9 mg, 40 μ mol, 2.0 equiv) were added and the mixture was stirred for 4 d at rt under Ar. The solution was filtered over Celite, rinsed and diluted with DCM (20 mL). The organic phase was washed with a saturated NaHCO₃(aq) solution (3×10 mL). The aqueous phase was back extracted with DCM (10 mL). The combined organic phases were washed with brine (15 mL) and the solvents of the dried (MgSO₄) solution were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 85:15 to 8:2) to give alcohol 27 (14 mg, 90%) as a vellow oil: $R_f 0.5$ (tol/EtOAc 85:15); $[\alpha]_D^{20} = -58$ (c 1.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.13 (m, 15H, CH-Ar), 5.48 (s, 1H, H-7), 5.23 (d, J = 1.6 Hz, 1H, H-1B), 5.02 (t, J = 3.4 Hz, 1H, H-3B), 4.85 (d, J = 10.8 Hz, 1H, CHHPh), 4.66 (d, J = 10.8 Hz, 2H, CH₂Ph), 4.51 (d, J = 10.8 Hz, 1H, CHHPh), 4.48 (d, J_{1A,2A} = 7.8 Hz, 1H, H-1A), 4.32 (dd, J = 10.4, 5.0 Hz, 1H, H-6aA), 4.16 (dd, J = 13.8, 6.4 Hz, 1H, H-5B), 4.03 (d, J = 11.2 Hz, 1H, OH), 3.92 (dt, J = 9.8, 6.3 Hz, 1H, H-1a_{linker}), 3.89 (t, J = 9.5 Hz, 1H, H-3A), 3.76 (t, J = 10.4 Hz, 1H, H-6bA), 3.71 (br s, 1H, H-2B), 3.58–3.53 (m, 2H, H-4B, H-1b_{linker}), 3.51 (t, J = 9.8 Hz, 1H, H-4A), 3.45–3.39 (m, 2H, H-5A, H-2A), 3.22 (t, J = 7.3 Hz, 2H, H-5_{linker}), 2.09 (s, 3H, CH_{3Ac}), 1.70–1.58 (m, 4H, H-2_{linker}, H-4_{linker}), 1.52–1.42 (m, 2H, H-3_{linker}), 0.77 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 170.6 (CO), 137.8, 137.4, 137.3 (3 × C-Ar), 129.3–125.4 (9 × CH-Ar), 104.2 (C-1A), 102.2 (C-1B), 102.1 (C-7), 82.7 (C-2A), 79.4 (C-4A), 79.3 (C-4B), 77.6 (C-3A), 76.1, 75.2 (2 × CH₂Ph), 70.2 (C-1_{linker}), 70.1 (C-3B), 69.2 (C-2B), 68.9 (C-6), 66.5 (C-5A), 66.3 (C-5B), 51.4 (C-5_{linker}), 29.4 (C-2_{linker}), 28.7 (C-4_{linker}), 23.5 (C-3_{linker}), 21.3 (CH_{3Ac}), 16.2 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₄₀H₄₉N₃NaO₁₁ 770.3259; found 770.3266; m/z [2M + Na]⁺ calcd for C₈₀H₉₈N₆NaO₂₂ 1517.6626; found 1517.6666.

 $(5-Azido-1-pentyl) 2-O-Acetyl-4-O-benzyl-3-O-tert-butyldimethylsilyl-6-deoxy-a-L-talopyranosyl-(1 \rightarrow 3)-2-O-benzyl-4, 6-O-benzylidene-\beta-D-glucopyranoside (28).$

To a solution of acceptor 20 (15 mg, 20 µmol, 1.0 equiv) in anhydrous toluene (1 mL) was added freshly activated powdered molecular sieves (4 Å, 171 mg) and the mixture was stirred for 40 min at rt under Ar. TBSOTf (2 μ L, 9 μ mol, 0.3 equiv) was injected keeping rigorous anhydrous conditions and the mixture was heated at 75 °C for 15 min. A solution of donor S27 (20 mg, 30 μ mol, 1.5 equiv) in anhydrous toluene (1 mL) was added dropwise at the same temperature over 10 min to the former mixture. After stirring for 1 h at 75 °C, the reaction mixture was allowed to slowly warm up to rt and then quenched with few drops of Et_3N . The suspension was filtered over Celite, rinsed with DCM and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (tol/EtOAc 95:5) to give silylated derivative 28 (10 mg, 60%) as a yellow oil: $R_f 0.5$ (tol/EtOAc 85:15); $[\alpha]_D^{20} = -32$ (c 0.9, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.46–7.20 (m, 15H, CH-Ar), 5.52 (s, 1H, H-7), 5.28 (s, 1H, H-1B), 5.16 (d, J = 4.1 Hz, 1H, H-2B), 4.92 (d, J = 11.6 Hz, 1H, CHHPh), 4.88 (d, J = 10.7 Hz, 1H, CHHPh), 4.68 (d, J = 10.7 Hz, 1H, CHHPh), 4.56 (d, J = 11.6 Hz, 1H, CHHPh), 4.50 (d, J_{1A,2A} = 7.8 Hz, 1H, H-1A), 4.33 (dd, *J* = 10.7, 4.8 Hz, 1H, H-6aA), 4.13 (dd, *J* = 13.9, 6.4 Hz, 1H, H-5B), 4.00–3.96 (m, 2H, H-3A, H-3B), 3.91 (dt, J = 9.6, 6.4 Hz, 1H, H-1a_{linker}), 3.77 (t, J = 10.7 Hz, 1H, H-6bA), 3.58–3.52 (m, 2H, H-1b_{linker}, H-4A), 3.48–3.39 (m, 2H, H-2A, H-5A), 3.23 (t, *J* = 1.6 Hz, 1H, H-4B), 3.19 (t, J = 7.2 Hz, 2H, H-5_{linker}), 1.96 (s, 3H, CH_{3Ac}), 1.68–1.54 (m, 4H, H-2_{linker}, H-4_{linker}), 1.47–1.40 (m, 2H, H-3_{linker}), 0.92 (d, J = 6.4 Hz, 3H, CH_{3Tal}), 0.89 (s, 9H, C(CH₃)₃), 0.12, 0.11 (2 × s, 6H, 2 × CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 170.7 (CO), 139.5, 138.2, 137.5 (3 × C-Ar), 129.3–126.3 (9 × CH-Ar), 104.2 (C-1A), 101.8 (C-7), 99.1 (C-1B), 83.2 (C-2A), 79.3 (C-4A), 78.8 (C-4B), 75.5 (C-3B), 74.8 (2 × CH₂Ph), 70.2 (C-1_{linker}), 70.0 (C-2B), 69.2 (C-3A), 68.9 (C-6), 66.8 (C-5B), 66.4 (C-5A), 51.4 (C-5_{linker}), 29.4 (C-2_{linker}), 28.7 (C-4_{linker}), 25.9 (C(CH₃)₃), 23.5 (C-3_{linker}), 21.2 (CH_{3Ac}) , 18.1 $(C(CH_3)_3)$, 16.7 (CH_{3Tal}) , -4.71, -4.82 $(2 \times CH_3)$; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₄₆H₆₃N₃NaO₁₁Si 884.4124; found 884.4151.

4,6-*O*-Benzylidene-3-*O*-*tert*-butyldimethylsilyl-2-*O*-levulinoyl- β -D-glucopyranosyl-(1 \leftrightarrow 1)-4,6-*O*-benzylidene-3-*O*-*tert*-butyldimethylsilyl-2-*O*-levulinoyl- α -D-glucopyranoside (29).

To a solution of donor 14 (28 mg, 53 μ mol, 2.0 equiv) and acceptor 20 (20 mg, 27 μ mol, 1.0 equiv) in anhydrous DCM (500 μ L) was added freshly activated 4 Å molecular sieves (80 mg). The mixture was stirred at rt for 30 min under Ar. Then, the suspension was cooled to -78 °C and AgOTf (7 mg, 27 µmol, 1.0 equiv) followed by NIS (12 mg, 53 µmol, 2.0 equiv) were added. The flask was protected from light and the reaction mixture was stirred from -78 °C to rt for 7 h under Ar and then quenched with a few drops of Et_3N . The suspension was filtered over Celite, rinsed with DCM and the filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (tol/EtOAc 9:1) to give dimer 29 (major compound, variable yields) as a colorless oil: $R_f 0.7$ (tol/EtOAc 85:15); $[\alpha]_D^{20} = -47$ (c 0.77, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.49–7.46 (m, 4H, CH-Ar), 7.37–7.30 (m, 6H, CH-Ar), 6.15 (d, J = 4.0 Hz, 1H, H-1A), 5.51 (s, 1H, H-7A), 5.45 (s, 1H, H-7B), 4.90 (d, *J* = 7.7 Hz, 1H, H-1B), 4.83 (t, *J* = 8.5 Hz, 1H, H-2B), 4.33 (dd, J = 10.7, 4.9 Hz, 1H, H-6aA), 4.28 (dd, J = 10.4, 4.8 Hz, 1H, H-6aB), 4.12 (t, J = 9.2 Hz, 1H, H-3A), 3.93 (dd, J = 8.4, 3.9 Hz, 1H, H-2A), 3.88 (dd, J = 9.8, 4.7 Hz, 1H, H-5A), 3.80 (t, J = 9.0 Hz, 1H, H-3B), 3.78 (t, J = 10.1 Hz, 1H, H-6bB), 3.66 (t, J = 10.7 Hz, 1H, H-6bA), 3.56 (t, *J* = 9.4 Hz, 1H, H-4B), 3.47 (t, *J* = 9.7 Hz, 1H, H-4A), 3.37 (dd, *J* = 9.7, 4.7 Hz, 1H, H-5), 2.93–2.49 (m, 8H, $4 \times CH_{2Lev}$), 2.22, 2.21 (2 × s, 6H, 2 × CH_{3Lev}), 0.85, 0.79 (2 × s, 18H, 2 × C(CH₃)₃), -0.01, -0.00 (2 × s, 12H, 4 × CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 206.8, 205.9 (2 × CO), 171.6, 171.4 (2 × CO), 137.1, 137.0 (2 × C-Ar), 129.4–126.3 (6 × CH-Ar), 102.6 (C-7B), 101.9 (C-7A), 100.5 (C-1B), 92.2 (C-1A), 81.8 (C-4A), 81.6 (C-4B), 75.6 (C-2A), 75.1 (C-2B), 72.6 (C-3B), 72.3 (C-3A), 68.9 (C-6B), 68.7 (C-6A), 66.5 (C-5B), 64.5 (C-5A), 38.1, 37.8 (2 × CH_{2Lev}), 30.0 (2 × CH_{3Lev}), 28.1, 28.0 (2 × CH_{2Lev}), 26.1, 25.7 (2 × $C(CH_{3})_{3}$), 18.4, 18.1 (2 × $C(CH_3)_3$, -3.74, -4.10, -4.45, -4.84 (4 × CH₃); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₄₈H₇₀NaO₁₅Si₂ 965.4145; found 965.4165.

Allyl 6-Deoxy-2,3-O-isopropylidene-4-O-levulinoyl-α-L-talopyranoside (S28).

Alcohol **S2** (3.5 g, 14.9 mmol, 1.0 equiv) was dissolved in anhydrous py (95 mL) and DMAP (4.4 g, 35.9 mmol, 2.5 equiv) was added. A solution of levulinic anhydride⁵ (24.6 g, 115 mmol, 8.0 equiv) in anhydrous py (127 mL) was added dropwise over 50 min to the former mixture. The reaction mixture was then heated to 50 °C and stirred under Ar for an additional 2 h. The solvents were concentrated under reduced pressure and the residue was purified by silica gel flash chromatography (PE/EtOAc, 8:2 to 7:3) to give derivative **S28** (4.7 g, 95%) as a yellow oil: R_f 0.5 (PE/EtOAc, 6:4); $[\alpha]_D^{20} = -11$ (*c* 2.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.96–5.86 (m, 1H, H-2_{All}), 5.31 (ddd, *J* = 17.2, 3.5, 1.5 Hz, 1H, H-3a_{All}), 5.22 (ddd, *J* = 10.3, 3.3, 1.2 Hz, 1H, H-3b_{All}), 5.10 (dd, *J* = 5.5, 2.2 Hz, 1H, H-4), 5.08 (s, 1H, H-1), 4.39 (t, *J* = 6.4 Hz, 1H, H-3), 4.20 (ddt, *J* = 12.8, 5.3, 1.4 Hz, 1H, H-1aAll), 4.09 (dd, *J* = 6.5, 09 Hz, 1H, H-2), 4.03–3.98 (m, 2H, H-1b_{All}, H-5), 2.87–2.61 (m, 4H, 2 × CH_{2Lev}), 2.19 (s, 3H, CH_{3Lev}), 1.52, 1.34 (2 × s, 6H, 2 × CH₃), 1.23 (d, *J* = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 206.4 (CO), 172.7 (CO), 133.7 (C-2_{All}), 118.0 (C-3_{All}), 109.8 (C(CH₃)₂), 96.9 (C-1), 73.2 (C-2), 71.1 (C-3), 68.5 (C-1_{All}), 67.6 (C-4), 63.6 (C-5), 38.0 (CH_{2Lev}), 30.0 (CH_{3Lev}), 28.3 (CH_{2Lev}), 26.3, 25.8 (2 × CH₃), 16.6 (CH_{3Tal}); HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₁₇H₂₆NaO₇ 365.1571; found 365.1580.

Allyl 2-O-Acetyl-3-O-chloroacetyl-6-deoxy-4-O-levulinoyl-α-L-talopyranoside (S30).

Compound **S28** (4.6 g, 13.6 mmol, 1.0 equiv) was dissolved in a 80% HOAc(aq) solution (170 mL). The reaction mixture was stirred at 60 °C for 1 h. Then, the mixture was concentrated under reduced pressure and co-evaporated with toluene $(3 \times)$. Crude diol **S29** was obtained as a yellow amorphous solid [$R_f 0.3$ (DCM/MeOH 98:2)], which was used directly for the next step without purification in order to avoid migration of the levulinoyl group. Diol S29 (250 mg, 730 μ mol, 1.0 equiv) was dissolved in anhydrous acetonitrile (3 mL). Trimethyl orthoactetate (186 μ L, 1.5 mmol, 2.0 equiv) and PTSA (7 mg, 37 μ mol, 0.05 equiv) were added sequentially. The reaction mixture was stirred for 2 h at rt under Ar. The suspension was then cooled to 0 °C and a 80% HOAc(aq) solution (3 mL) was added. The mixture was stirred at 0 °C for 10 min, then allowed to slowly warm up to rt. After 2 h, cooled water (20 mL) was added and the mixture was diluted with DCM (30 mL). The aqueous layer was extracted with DCM (2×10 mL). The combined organic phases were washed with brine (30 mL). The solvents of the dried solution (MgSO₄) were concentrated under reduced pressure. The residue was dissolved in anhydrous py (6 mL), then chloroacetyl anhydride (437 mg, 2.5 mmol, 3.5 equiv) and DMAP (9 mg, 73 μ mol, 0.1 equiv) were added. The reaction mixture was stirred at rt for 10 min under Ar. Then, the suspension was diluted with EtOAc (30 mL) and the organic phase was washed with a saturated NH₄Cl(aq) solution (3×15 mL) and brine (20 mL). The solvents of the dried solution (MgSO₄) were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 8:2 to 6:4) to give derivative S30 (254 mg, 83%, four steps) as a yellow oil: $R_f 0.3$ (tol/EtOAc 8:2); $[\alpha]_D^{20} = -57$ $(c \ 1.3, \text{CHCl}_3)$; ¹H NMR (400 MHz, CDCl₃) δ 5.93–5.83 (m, 1H, H-2_{All}), 5.35 (t, J = 4.0 Hz, 1H, H-3), 5.30 (ddd, J = 17.2, 3.6, 1.6 Hz, 1H, H-3a_{All}), 5.23 (ddd, J = 10.4, 3.1, 2.0 Hz, 1H, H-3b_{All}), 5.19 (d, *J* = 3.7 Hz, 1H, H-4), 5.17 (dt, *J* = 3.9, 1.5 Hz, 1H, H-2), 4.91 (d, *J*_{1,2} = 1.1 Hz, 1H, H-1), 4.20–4.13 (m, 2H, H-1aAll, H-5), 4.02 (ddt, J = 13.3, 6.1, 1.6 Hz, 1H, H-1b_{All}), 4.01 (d, J = 2.9 Hz, 2H, CH_{2Cl}), 2.91–2.82 (m, 1H, CHH_{Lev}), 2.75–2.58 (m, 3H, CH_{2Lev}), 2.20 (CH_{3Lev}), 2.19 (s, 3H, CH_{3Ac}), 1.23 (d, J = 6.4 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 206.4 (CO), 172.8, 170.4, 166.4 (3 × CO), 133.2 (C-2_{All}), 118.3 (C-3_{All}), 97.5 (C-1), 68.8 (C-4), 68.6 (C-1_{All}), 67.9 (C-3), 66.8 (C-2), 64.7 (C-5), 40.7 (CH_{2Cl}), 37.7 (CH_{2Lev}), 30.0 (CH_{3Lev}), 27.8 (CH_{2Lev}), 21.1 (CH_{3Ac}), 16.2 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₁₈H₂₅ClNaO₉443.1079; found 443.1097.

Allyl 4,6-*O*-Benzylidene-3-*O*-*tert*-butyldimethylsilyl-2-*O*-levulinoyl- β -D-glucopyranosyl-(1 \rightarrow 2)-6-deoxy-4-*O*-levulinoyl- α -L-talopyranoside (S32).

To a solution of donor 14 (56 mg, 108 μ mol, 1.3 equiv), acceptor S29 (25 mg, 83 μ mol, 1.0 equiv) and DTBMP (51 mg, 248 µmol, 3.0 equiv) in anhydrous DCE (1.5 mL) was added freshly activated 4 Å powdered molecular sieves (100 mg). The mixture was stirred for 30 min at rt under Ar. Then, Me₂S₂ (22 μ L, 248 μ mol, 3.0 equiv) and MeOTf (28 μ L, 248 μ mol, 3.0 equiv) were added. The solution was stirred for an additional 2 h at rt. Then, the reaction mixture was quenched with few drops of Et₃N, filtered over Celite and rinsed with DCM. The filtrate was concentrated under reduced pressure and purified by silica gel flash chromatography (PE/EtOAc 7:3 to 4:6) to give disaccharide S32 (26 mg, 42%, major regioisomer) as a yellow oil: $R_f 0.5$ (tol/EtOAc 5:5); $[\alpha]_D^{20}$ = -5.6 (c 2.5, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.42–7.40 (m, 2H, CH-Ar), 7.31–7.28 (m, 3H, CH-Ar), 5.88–5.78 (m, 1H, H-2_{All}), 5.64 (d, *J*_{1C,2C} = 5.7 Hz, 1H, H-1C), 5.47 (s, 1H, H-7), 5.22 = 3.5 Hz, 1H, H-4B), 4.84 (d, *J*_{1A,2A} = 1.4 Hz, 1H, H-1B), 4.30 (dd, *J* = 10.6, 3.8 Hz, 1H, H-6aC), 4.24 (dd, J = 5.6, 3.9 Hz, 1H, H-2C), 4.10 (ddt, J = 13.0, 5.1, 1.4 Hz, 1H, H-1a_{All}), 3.97–3.93 (m, 3H, H-1b_{All}, H-3B, H-5B), 3.86 (dd, J = 8.8, 3.8 Hz, 1H, H-3C), 3.65–3.58 (m, 3H, H-2B, H-5C, H-6bC), 3.46 (t, J = 9.3 Hz, 1H, H-4C), 2.79–2.67 (m, 4H, 2 × CH_{2Lev}), 2.64–2.54 (m, 4H, 2 × CH_{2Lev}), 2.13 (s, 3H, CH_{3Lev}), 2.11 (s, 3H, CH_{3Lev}), 1.09 (d, J = 6.6 Hz, 3H, CH_{3Tal}), 0.82 (s, 9H, C(CH₃)₃), 0.45, 0.00 (2 × s, 6H, 2 × CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 207.4, 206.2 (2 × CO), 172.2, 172.1 (2 × CO), 137.2 (C-Ar), 133.7 (C-2_{All}), 129.8, 128.3, 126.1 (3 × CH-Ar), 117.7 (C-3_{All}), 101.4 (C-7), 99.8 (C-1B), 98.8 (C-1C), 80.5 (C-2C), 80.1 (C-4C), 74.4 (C-3C), 73.1 (C-4B), 69.7 (C-2B), 68.7 (C-6C), 68.4 (C-1_{All}), 66.8 (C-3B), 65.1 (C-5B), 63.3 (C-5C), 38.2, 38.0 (2 × CH_{2Lev}), 30.2, 30.1 (2 × CH_{3Lev}), 28.0 (2 × CH_{2Lev}), 25.8 (C(CH₃)₃), 18.2 (C(CH₃)₃), 16.3 (CH_{3Tal}), $-4.40, -4.82 (2 \times CH_3)$; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₈H₅₆NaO₁₄Si 787.3332; found 787.3347.

Allyl 2,3,4,6-Tetra-*O*-benzyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -6-deoxy- α -L-talopyranoside (S34).

To a solution of donor $\mathbf{S33}^6$ (75 mg, 134 μ mol, 1.0 equiv) and acceptor $\mathbf{S3}$ (30 mg, 147 μ mol, 1.1 equiv) in anhydrous acetonitrile (1.5 mL) were added silver(I) oxide (62 mg, 267 μ mol, 2.0 equiv) and 2-aminoethyl diphenylborinate (8 mg, 33 μ mol, 0.25 equiv). The flask was purged with a stream of Ar for 5 min, then protected from light. The reaction mixture was stirred at 60 °C under Ar for 48 h. The solution was then quenched with a few drops of MeOH, diluted with DCM and filtered through a plug of Celite. The filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (tol/EtOAc 95:5 to 85:15) to give disaccharide S34 (25 mg, 25%, major regioisomer) as a yellow amorphous solid: $R_f 0.5$ (tol/EtOAc 7:3); $[\alpha]_D^{20} = -$ 14 (c 2.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.25 (m, 18H, CH-Ar), 7.19–7.15 (m, 2H, CH-Ar), 5.92–5.82 (m, 1H, H-2_{All}), 5.27 (ddd, J = 17.2, 3.8, 1.5 Hz, 1H, H-3a_{All}), 5.19 (ddd, J = 17.2, 1H, H-3a_{All}), 5.19 (ddd, J = 17.2 10.4, 3.4, 1.2 Hz, 1H, H-3b_{All}), 4.97 (d, *J* = 11.3 Hz, 1H, CHHPh), 4.92 (d, *J*_{1B,2B} = 1.6 Hz, 1H, H-1B), 4.91 (d, *J* = 10.8 Hz, 1H, CH*H*Ph), 4.82 (d, *J* = 10.8 Hz, 1H, C*H*HPh), 4.81 (d, *J* = 11.3 Hz, 1H, CH*H*Ph), 4.80 (d, *J* = 10.8 Hz, 1H, C*H*HPh), 4.60 (d, *J*_{1B,2B} = 7.7 Hz, 1H, H-1C), 4.53 (d, *J* = 11.8 Hz, 1H, CHHPh), 4.52 (d, J = 10.8 Hz, 1H, CHHPh), 4.48 (d, J = 11.8 Hz, 1H, CHHPh), 4.16 $(ddt, J = 13.0, 5.2, 1.4 Hz, 1H, H-1a_{AII}), 4.01-3.95 (m, 2H, H-1b_{AII}, H-2B), 3.89-3.83 (m, 2H, H-1b_{AII}, H-2B), 3.89-3.83 (m, 2H, H-1b_{AII}), 4.01-3.95 (m, 2H, H-1b_{AII}), 4.$ 3B, H-5B), 3.69-3.63 (m, 3H, H-4B, H-4C, H-6aC), 3.61-3.49 (m, 5H, H-2C, H-3C, H-5C, H-6bC, OH), 3.29 (d, J = 8.8 Hz, 1H, OH), 1.30 (d, J = 6.6 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 138.4, 138.3, 137.9, 137.8 (4 × C-Ar), 133.8 (C-2_{All}), 128.4–127.5 (12 × CH-Ar), 117.6 (C-3_{All}), 101.8 (C-1C), 99.3 (C-1B), 84.7 (C-4B), 81.9 (C-2C), 77.7 (C-3C), 75.7 (C-3B), 75.8 (CH₂Ph), 75.1 (CH₂Ph), 74.9 (CH₂Ph), 74.6 (C-5B), 73.5 (CH₂Ph), 70.8 (C-4C), 69.4 (C-2B), 69.0 (C-6C), 68.6 (C-1_{All}), 66.8 (C-5B), 16.5 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for $C_{43}H_{57}NaO_{10}$ 749.3296; found 749.3303; m/z [2M + Na]⁺ calcd for $C_{86}H_{100}NaO_{20}$ 1475.6700; found 1475.6737.

Allyl 2,3,4,6-Tetra-*O*-benzyl- β -D-glucopyranosyl- $(1\rightarrow 2)$ -3-*O*-acetyl-4-*O*-benzyl-6-deoxy- α -L-talopyranoside (S35).

To a solution of donor $\mathbf{S33}^6$ (52 mg, 93 μ mol, 1.0 equiv) and acceptor $\mathbf{S5}$ (30 mg, 102 μ mol, 1.1 equiv) in anhydrous acetonitrile (3 mL) were added silver(I) oxide (42 mg, 186 µmol, 2.0 equiv) and 2-aminoethyl diphenylborinate (34 mg, 149 μ mol, 1.6 equiv). The round bottom flask was purged with a stream of Ar for 5 min, then protected from light and the reaction mixture was stirred at 60 °C under Ar. After 16 h, the reaction was quenched with a few drops of MeOH, diluted with DCM and filtered through a plug of Celite. The filtrate was concentrated under reduced pressure. The residue was dissolved in anhydrous py (0.4 mL), then Ac₂O (0.4 mL) and DMAP (1.1 mg, 9 μ mol, 0.1 equiv) were added. The suspension was stirred at rt overnight under Ar. Then, the mixture was concentrated under reduced pressure and co-evaporated with toluene (3 \times). The residue was purified by silica gel flash chromatography (tol/EtOAc 98:2 to 96:4) to give disaccharide **S35** (45 mg, 58%, two steps) as a yellow oil: $R_f 0.5$ (tol/EtOAc 9:1); $[\alpha]_D^{20} = -1.3$ (c 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.14 (m, 25H, CH-Ar), 5.88–5.78 (m, 1H, H-2_{All}), 5.29 (s, 1H, H-1B), 5.24 (d, *J* = 12.2 Hz, 1H, CHHPh), 5.23–5.18 (m, 1H, H-3a_{All}), 5.13 (t, *J* = 4.0 Hz, 1H, H-3B), 5.10 (ddd, J = 10.4, 3.3, 1.2 Hz, 1H, H-3b_{All}), 4.85 (d, J = 10.2 Hz, 1H, CH*H*Ph), 4.81 (d, *J* = 10.8 Hz, 1H, C*H*HPh), 4.72 (d, *J* = 12.1 Hz, 1H, CH*H*Ph), 4.71 (d, *J* = 10.8 Hz, 1H, CHHPh), 4.62 (d, J = 12.1 Hz, 1H, CHHPh), 4.55–4.49 (m, 4H, 2 × CH₂Ph), 4.46 (d, J_{1C,2C} = 7.5 Hz, 1H, H-1C), 4.07 (ddt, J = 12.7, 5.2, 1.5 Hz, 1H, H-1a_{All}), 3.96 (dd, J = 13.7, 6.8 Hz, 1H, H-5B), 3.91-3.89 (m, 1H, H-2B), 3.86 (ddt, J = 13.0, 5.9, 1.7 Hz, 1H, H-1b_{All}), 3.67-3.65 (m, 2H, H-6aC, H-6bC), 3.62-3.59 (m, 3H, H-2C, H-3C, H-4B), 3.52 (dd, J = 9.5, 7.7 Hz, 1H, H-4C), 3.47–3.39 (m, 1H, H-5C), 1.87 (s, 3H, CH_{3Ac}), 1.19 (d, J = 6.6 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 170.7 (CO), 139.5, 138.7, 138.3, 138.2, 138.1 (5 × C-Ar), 134.2 (C-2_{All}), 129.2– 127.5 (15 × CH-Ar), 117.1 (C-3_{All}), 106.4 (C-1C), 99.8 (C-1B), 84.7 (C-3C), 82.1 (C-4B), 77.8 (C-4C), 76.7 (C-2B), 75.8 (CH₂Ph), 75.4 (C-2C), 75.1 (CH₂Ph), 74.9 (CH₂Ph), 74.8 (C-5C), 74.1 (CH₂Ph), 73.6 (CH₂Ph), 70.6 (C-3B), 69.5 (C-6C), 68.2 (C-1_{All}), 66.2 (C-5B), 21.1 (CH_{3Ac}), 16.9 (CH_{3Tal}) ; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₅₂H₅₈N₃NaO₁₁ 881.3871; found 881.3885.

Allyl 2,3-*O*-Isopropylidene-4-*O*-levulinoyl-α-L-rhamnopyranoside (30).

Alcohol **S1** (9.8 g, 40 mmol, 1.0 equiv) was dissolved in anhydrous py (240 mL) and DMAP (9.8 g, 80 mmol, 2.0 equiv) was added. A solution of levulinic anhydride⁵ (25.7 g, 120 mmol, 3.0 equiv) in anhydrous py (200 mL) was added dropwise over 1 h to the former mixture. The reaction mixture was then heated to 50 °C and stirred under Ar for an additional 2 h. The solvents were concentrated under reduced pressure and the residue was purified by silica gel flash chromatography (PE/EtOAc 9:1 to 75:25) to give derivative **30** (13.6 g, 99%) as a yellow oil: R_f 0.5 (tol/EtOAc 8:2); $[\alpha]_D^{20} = -10 (c 1.7, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ 5.96–5.86 (m, 1H, H-2_{All}), 5.32 (ddd, J = 17.2, 3.5, 1.6 Hz, 1H, H-3a_{All}), 5.23 (ddd, J = 10.4, 3.0, 1.2 Hz, 1H, H-3b_{All}), 5.05 (s, 1H, H-1), 4.85 (dd, J = 10.3, 7.1 Hz, 1H, H-4), 4.21–4.15 (m, 3H, H-1a_{All}, H-2, H-3), 4.01 (ddt, J = 12.8, 6.2, 1.3 Hz, 1H, H-1b_{All}), 3.80–3.72 (m, 1H, H-5), 2.91–2.84 (m, 1H, CH_{2Lev}), 2.72–2.52 (m, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 206.5 (CO), 172.2 (CO), 133.7 (C-2_{All}), 118.0 (C-3_{All}), 109.9 (*C*(CH₃₎₂), 96.2 (C-1), 76.1 (C-2), 75.8 (C-3), 74.9 (C-4), 68.2 (C-1_{All}), 64.2 (C-5), 38.0 (CH_{2Lev}), 29.9 (CH_{3Lev}), 28.1 (CH_{2Lev}), 27.8, 26.5 (2 × CH₃), 17.0 (CH_{3Tal}); HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₁₇H₂₆NaO₇ 365.1571; found 365.1585.

Allyl 4-*O*-Levulinoyl-*α*-L-rhamnopyranoside (70).

Compound **30** (13.6 g, 39.8 mmol, 1.0 equiv) was dissolved in a 80% HOAc(aq) solution (500 mL). The reaction mixture was stirred at 60 °C for 6 h. Then, the mixture was concentrated under reduced pressure and co-evaporated with toluene (3 ×). Purification by silica gel flash chromatography (DCM/MeOH 98:2 to 96:4) gave diol **31** (9.9 g, 82%) as a white amorphous solid: R_f 0.3 (DCM/MeOH 95:5); $[\alpha]_D^{20} = -71$ (*c* 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.95–5.85 (m, 1H, H-2_{All}), 5.30 (ddd, *J* = 17.2, 3.7, 1.5 Hz, 1H, H-3a_{All}), 5.21 (ddd, *J* = 10.4, 3.4, 1.3 Hz, 1H, H-3b_{All}), 4.91 (t, *J* = 9.7 Hz, 1H, H-4), 4.86 (s, 1H, H-1), 4.18 (ddt, *J* = 12.9, 5.1, 1.4 Hz, 1H, H-1a_{All}), 4.03–3.97 (m, 2H, H-1b_{All}, H-2), 3.94 (dd, *J* = 9.4, 3.5 Hz, 1H, H-3), 3.84–3.77 (m, 1H, H-5), 2.82 (t, *J* = 6.7 Hz, 1H, CHH_{Lev}), 2.60–2.56 (m, 3H, CH_{2Lev}), 2.20 (s, 3H, CH_{3Lev}), 1.21 (d, *J* = 6.2 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 207.6 (CO), 173.5 (CO), 133.8 (C-2_{All}), 117.6 (C-3_{All}), 98.6 (C-1), 75.6 (C-4), 71.0 (C-2), 70.2 (C-3), 68.2 (C-1_{All}), 65.8 (C-5), 38.4 (CH_{2Lev}), 29.9 (CH_{3Lev}), 28.3 (CH_{2Lev}), 17.4 (CH_{3Tal}); HRMS (ESI-TOF) *m*/z [M + Na]⁺ calcd for C₁₄H₂₂NaO₇ 325.1258; found 325.1258; *m*/z [2M + Na]⁺ calcd for C₂₈H₄₄NaO₁₄ 627.2623; found 627.2654.

Allyl 2,3,4,6-Tetra-*O*-benzyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -2-*O*-acetyl-4-*O*-levulinoyl- α -L-rhamnopyranoside (32).

To a solution of donor S33 (13.4 mg, 2.4 mmol, 1.5 equiv) and acceptor 31 (482 mg, 1.6 mmol, 1.0 equiv) in anhydrous acetonitrile (32 mL) was added freshly activated 4 Å powdered molecular sieves (2.0 g) and the suspension was stirred for 1 h at rt under Ar. Then, silver(I) oxide (738 mg, 3.2 mmol, 2.0 equiv) and 2-aminoethyl diphenylborinate (89.6 mg, 398 μ mol, 0.25 equiv) were added and the round bottom flask was protected from light. The reaction mixture was stirred overnight at 60 °C under Ar, quenched with a few drops of MeOH, diluted with DCM (10 mL) and filtered through a plug of Celite. The filtrate was concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 8:2 to 6:4) to give allyl 2,3,4,6-tetra-*O*-benzyl- β -D-glucopyranosyl-(1 \rightarrow 3)-4-*O*-levulinoyl- α -L-rhamnopyranoside (978 mg, 74%) as a white amorphous solid: $R_f 0.3$ (tol/EtOAc 9:1); $[\alpha]_D^{20} = -13$ (c 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.33–7.16 (m, 20H, CH-Ar), 5.93–5.83 (m, 1H, H-2_{All}), 5.29 (ddd, J = 17.2, 3.6, 1.6 Hz, 1H, H-3a_{All}), 5.21 (ddd, J = 10.4, 3.3, 1.2 Hz, 1H, H-3b_{All}), 5.18 (t, J = 9.9 Hz, 1H, H-4B), 4.86 (d, $J_{1B,2B} = 1.5$ Hz, 1H, H-1B), 4.85 (d, J = 10.9 Hz, 1H, CHHPh), 4.84 (d, J = 11.5 Hz, 1H, CH*H*Ph), 4.80 (d, *J* = 10.9 Hz, 1H, C*H*HPh), 4.75 (d, *J* = 10.9 Hz, 1H, CH*H*Ph), 4.63 (d, *J* = 11.5 Hz, 1H, CHHPh), 4.54 (d, *J*_{1C,2C} = 7.7 Hz, 1H, H-1C), 4.52 (d, *J* = 10.9 Hz, 1H, CHHPh), 4.49 (s, 2H, CH₂Ph), 4.16–4.13 (m, 2H, H-1a_{All}, H-2B), 4.05 (dd, J = 9.6, 3.4 Hz, 1H, H-3B), 3.97 (ddt, J = 12.9, 6.2, 1.2 Hz, 1H, H-1b_{All}), 3.85–3.78 (m, 1H, H-5B), 3.68 (dd, *J* = 10.4, 1.7 Hz, 1H, H-6aC), 3.62 (t, J = 9.1 Hz, 1H, H-3C), 3.57 (dd, J = 10.9, 5.2 Hz, 1H, H-6bC), 3.53 (t, J = 9.4 Hz, 1H, H-4C), 3.51-3.43 (m, 2H, H-2C, H-5C), 2.57-2.49 (m, 1H, CH_{2Lev}), 2.44-2.36 (m, 1H, CH_{2Lev}), 2.28-2.20 (m, 1H, CH_{2Lev}), 2.13–2.06 (m, 1H, CH_{2Lev}), 2.04 (s, 3H, CH_{3Lev}), 1.32 (d, J = 6.3 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 206.5 (CO), 172.1 (CO), 138.5, 138.3, 138.1, 138.0 (4 × C-Ar), 133.8 (C-2_{All}), 128.6–127.7 (12 × CH-Ar), 117.9 (C-3_{All}), 103.6 (C-1C), 98.5 (C-1B), 84.7 (C-3C), 81.8 (C-2C), 78.9 (C-3B), 77.7 (C-4C), 75.8 (CH₂Ph), 75.1 (CH₂Ph), 74.7 (C-5C), 74.5 (CH2Ph), 73.7 (CH2Ph), 72.7 (C-4B), 70.1 (C-2B), 69.0 (C-6C), 68.2 (C-1All), 66.5 (C-5B), 37.7 (CH_{2Lev}), 29.8 (CH_{3Lev}), 27.8 (CH_{2Lev}), 17.5 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₄₈H₅₆NaO₁₂ 847.3664; found 847.3661.

The latter compound (2.9 g, 3.6 mmol, 1.0 equiv) was dissolved in anhydrous py (15 mL), then Ac₂O (15 mL) and DMAP (44 mg, 360 μ mol, 0.1 equiv) were added. The reaction mixture was stirred at rt for 3 h under Ar. The mixture was then concentrated under reduced pressure and the residue was purified by silica gel flash chromatography (PE/EtOAc 9:1 to 75:25) to give disaccharide **32** (3.0 g, 98%) as a colorless oil: R_f 0.5 (tol/EtOAc 8:2); $[\alpha]_D^{20} = +6.6$ (*c* 1.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.15 (m, 20H, CH-Ar), 5.89–5.79 (m, 1H, H-2_{All}), 5.29–5.24 (m, 2H, H-2B, H-3a_{All}), 5.18 (t, *J* = 9.9 Hz, 1H, H-4B), 5.17 (ddd, *J* = 10.4, 3.1, 1.3 Hz, 1H, H-3b_{All}), 4.86 (d, *J* = 10.9 Hz, 1H, CHHPh), 4.84 (d, $J_{1B,2B} = 1.6$ Hz, 1H, H-1B), 4.81 (d, *J* = 11.6 Hz,

1H, CH*H*Ph), 4.77 (d, J = 10.8 Hz, 1H, C*H*HPh), 4.76 (d, J = 10.9 Hz, 1H, CH*H*Ph), 4.63 (d, J = 12.2 Hz, 1H, C*H*HPh), 4.61 (d, J = 11.6 Hz, 1H, C*H*HPh), 4.55 (d, J = 12.2 Hz, 1H, C*H*HPh), 4.54 (d, J = 10.8 Hz, 1H, C*H*HPh), 4.50 (d, $J_{1C,2C} = 7.7$ Hz, 1H, H-1C), 4.22 (dd, J = 9.9, 3.5 Hz, 1H, H-3B), 4.13 (ddt, J = 12.9, 5.3, 1.4 Hz, 1H, H-1a_{All}), 3.98 (ddt, J = 12.9, 6.1, 1.3 Hz, 1H, H-1b_{All}), 3.85–3.78 (m, 1H, H-5B), 3.73–3.66 (m, 2H, H-6aC, H-6bC), 3.61–3.56 (m, 2H, H-3C, H-4C), 3.46–3.42 (m, 1H, H-5C), 3.37 (td, J = 7.6, 2.4 Hz, 1H, H-2C), 2.55–2.42 (m, 2H, CH_{2Lev}), 2.27–2.17 (m, 2H, CH_{2Lev}), 2.10 (s, 3H, CH_{3Ac}), 2.04 (s, 3H, CH_{3Lev}), 1.21 (d, J = 6.3 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 206.6 (CO), 172.2, 170.5 (2 × CO), 138.8, 138.7, 138.6, 138.3 (4 × C-Ar), 133.6 (C-2A_{II}), 128.5–127.5 (12 × CH-Ar), 117.9 (C-3_{All}), 104.5 (C-1C), 96.6 (C-1B), 84.7 (C-4C), 82.0 (C-2C), 77.8 (C-3C), 75.7 (CH₂Ph), 75.3 (C-5C), 75.1 (CH₂Ph), 74.6 (C-3B), 74.5 (CH₂Ph), 73.7 (CH₂Ph), 73.1 (C-4B), 72.7 (C-2B), 68.9 (C-6C), 68.5 (C-1_{All}), 66.8 (C-5B), 37.7 (CH₂_{Lev}), 29.7 (CH_{3Lev}), 27.9 (CH_{2Lev}), 21.2 (CH_{3Ac}), 17.5 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₅₀H₅₈NaO₁₃ 889.3770; found 889.3750.

Allyl 2,3,4,6-Tetra-*O*-benzyl-*B*-D-glucopyranosyl- $(1\rightarrow 3)$ -2-*O*-acetyl- α -L-rhamnopyranoside (33).

To a solution of disaccharide **32** (983 mg, 1.1 mmol, 1.0 equiv) in anhydrous DCM (5 mL) were added MeOH (11 mL) and hydrazine acetate (209 mg, 2.3 mmol, 2.0 equiv). After stirring at rt overnight, the reaction mixture was concentrated under reduced pressure and co-evaporated with toluene $(3 \times)$. The residue was purified by silica gel flash chromatography (PE/EtOAc 9:1 to 75:25) to give alcohol **33** (715 mg, 82%) as a yellow oil: $R_f 0.5$ (tol/EtOAc 8:2); $[\alpha]_D^{20} = -72$ (c 0.90, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.15 (m, 20H, CH-Ar), 5.92–5.82 (m, 1H, H-2_{All}), 5.28 (ddd, J = 17.2, 3.8, 1.6 Hz, 1H, H-3a_{All}), 5.19–5.17 (m, 2H, H-2B, H-3b_{All}), 4.88 (d, J = 11.1Hz, 1H, CHHPh), 4.84 (d, J = 10.5 Hz, 1H, CHHPh), 4.81 (d, J = 11.1 Hz, 1H, CHHPh), 4.79 (d, $J_{1B,2B} = 1.8$ Hz, 1H, H-1B), 4.78 (d, J = 10.5 Hz, 1H, CH*H*Ph), 4.65 (d, $J_{1C,2C} = 7.8$ Hz, 1H, H-1C), 4.61 (d, J = 12.1 Hz, 1H, CHHPh), 4.59 (d, J = 11.8 Hz, 1H, CHHPh), 4.58 (d, J = 11.8 Hz, 1H, CHHPh), 4.52 (d, J = 12.1 Hz, 1H, CHHPh), 4.13 (ddt, J = 12.9, 5.3, 1.6 Hz, 1H, H-1a_{All}), 4.00– 3.95 (m, 2H, H-1b_{All}, H-3B), 3.73–3.60 (m, 5H, H-3C, H-4C, H-5B, H-6aC, H-6bC), 3.53 (t, J = 9.6 Hz, 1H, H-4B), 3.48 (t, J = 8.5 Hz, 1H, H-2C), 3.42 (dt, J = 9.3, 3.2 Hz, 1H, H-5C), 2.97 (d, J = 2.4 Hz, 1H, OH), 2.07 (s, 3H, CH_{3Ac}), 1.25 (d, J = 6.3 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 170.4 (CO), 138.5, 138.3, 138.2, 137.9 (4 × C-Ar), 133.6 (C-2_{All}), 128.6–127.7 (12 × CH-Ar), 117.9 (C-3_{All}), 103.9 (C-1C), 96.7 (C-1B), 85.2 (C-3C), 82.3 (C-2C), 79.1 (C-3B), 77.9 (C-4C), 75.7 (CH₂Ph), 75.6 (CH₂Ph), 75.2 (CH₂Ph), 75.1 (C-5C), 73.6 (CH₂Ph), 72.5 (C-4B), 72.3 (C-2B), 68.7 (C-6C), 68.4 (C-1_{All}), 68.0 (C-5B), 21.2 (CH_{3Ac}), 17.7 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₄₅H₅₂NaO₁₁791.3402; found 791.3399.

Allyl 2,3,4,6-Tetra-O-benzyl- β -D-glucopyranosyl- $(1\rightarrow 3)$ -2-O-acetyl-6-deoxy- α -L-talopyranoside (34).

Dess-Martin periodinane (857 mg, 2.0 mmol, 2.2 equiv) was added to a solution of alcohol 33 (706 mg, 918 μ mol, 1.0 equiv) in anhydrous DCE (18 mL) and the combined mixture was heated at 70 °C under Ar for 1 h. The mixture was cooled to rt, then diluted with DCM (25 mL) and quenched with a 10% Na₂S₂O₃(aq) solution (25 mL). The organic phase was washed with brine (30 mL) and dried (MgSO₄). The solvents were concentrated under reduced pressure to give a ketone. To a cooled (-10 °C) solution of the ketone in MeOH/DCM (22 mL, 5:1 v/v), NaBH₄ (69 mg, 1.8 mmol, 2.0 equiv) was slowly added and the mixture was stirred from -10 °C to rt under Ar for 2 h. The reaction mixture was treated with a 10% HOAc(aq) solution (2 mL) and then concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 85:15 to 8:2) to give alcohol 34 (504 mg, 71%, two steps) as a colorless oil: $R_f 0.4$ (tol/EtOAc 8:2); $[\alpha]_D^{20}$ = -64 (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.14 (m, 20H, CH-Ar), 5.93–5.83 (m, 1H, H-2_{All}), 5.29 (ddd, J = 17.2, 3.6, 1.6 Hz, 1H, H-3a_{All}), 5.21–5.19 (m, 2H, H-2B, H-3b_{All}), 4.98 (d, J = 11.0 Hz, 1H, CHHPh), 4.89 (d, J = 11.0 Hz, 1H, CHHPh), 4.86 (d, J_{1B,2B} = 1.4 Hz, 1H, H-1B), 4.80 (d, J = 10.8 Hz, 1H, CHHPh), 4.77 (d, J = 11.0 Hz, 1H, CHHPh), 4.73 (d, J = 11.0 Hz, 10.8 Hz, 1H, CHHPh), 4.51 (d, J = 12.1 Hz, 1H, CHHPh), 4.21 (t, J = 3.8 Hz, 1H, H-3B), 4.15 (ddt, J = 12.9, 5.3, 1.4 Hz, 1H, H-1a_{All}), 4.01 (ddt, J = 12.9, 6.0, 1.6 Hz, 1H, H-1b_{All}), 3.89 (dd, J = 13.3, 6.6 Hz, 1H, H-5B), 3.76 (br s, 1H, H-4B), 3.69–3.68 (m, 2H, H-6aC, H-6bC), 3.66–3.60 (m, 2H, H-3C, H-4C), 3.45-3.40 (m, 1H, H-5C), 1.99 (s, 3H, CH_{3Ac}), 1.32 (d, J = 6.6 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 169.7 (CO), 138.7, 138.6, 138.3, 138.2 (4 × C-Ar), 133.6 (C-2_{All}), 128.5–127.7 (12 × CH-Ar), 117.9 (C-3_{All}), 101.2 (C-1C), 97.2 (C-1B), 84.6 (C-3C), 82.1 (C-2C), 77.6 (C-4C), 75.7 (CH₂Ph), 75.2 (CH₂Ph), 75.1 (C-5C), 74.7 (CH₂Ph), 73.5 (CH₂Ph), 71.9 (C-3B), 70.9 (C-2B), 69.1 (C-4B), 68.7 (C-6C), 68.6 (C-1_{All}), 66.8 (C-5B), 21.2 (CH_{3Ac}), 16.5 (CH_{3Tal}) ; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₄₅H₅₂NaO₁₁791.3402; found 791.3418.

2,3,4,6-Tetra-*O*-benzyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -2-*O*-acetyl-6-deoxy- α -L-talopyranosyl 2,2,2-Trichloroacetimidate (35).

Allyl taloside **34** (458 mg, 600 μ mol, 1.0 equiv) was reacted according to the general procedure for the synthesis of trichloroacetimidate donors (first part). Purification by silica gel flash chromatography (PE/EtOAc 9:1 to 5:5) gave a hemiacetal (292 mg, 77%, ratio $\alpha/\beta \sim 3:1$) as a yellow amorphous solid: $R_f 0.2$ (tol/EtOAc 8:2); ¹H NMR (400 MHz, CDCl₃) δ 7.37–7.14 (m, 20H, CH-Ar), 5.24–5.19 (m, 2H, H-1B, H-2B), 4.98 (d, J = 11.1 Hz, 1H, CHHPh), 4.90 (d, J = 11.1 Hz, 1H, CH*H*Ph), 4.80 (d, *J* = 10.8 Hz, 1H, C*H*HPh), 4.77 (d, *J* = 11.7 Hz, 1H, CH*H*Ph), 4.74 (d, *J* = 11.7 Hz, 1H, CHHPh), 4.65 (d, $J_{1C,2C} = 7.7$ Hz, 1H, H-1C), 4.60 (d, J = 12.1 Hz, 1H, CHHPh), 4.52 (d, *J* = 10.8 Hz, 1H, CHHPh), 4.50 (d, *J* = 12.1 Hz, 1H, CHHPh), 4.26 (t, *J* = 3.7 Hz, 1H, H-3B), 4.16-4.11 (m, 1H, H-5B), 3.78-3.75 (m, 1H, H-4B), 3.70-3.67 (m, 2H, H-6aC, H-6bC), 3.65-3.3.62 (m, 2H, H-3C, H-4C), 3.52 (dd, J = 7.5, 1.8 Hz, 1H, H-2C), 3.45–3.41 (m, 1H, H-5C), 2.92 $(d, J = 3.8 \text{ Hz}, 1\text{H}, OH), 2.59 (d, J = 9.1 \text{ Hz}, 1\text{H}, OH), 2.00 (s, 3\text{H}, CH_{3Ac}), 1.32 (d, J = 6.6 \text{ Hz}, 3\text{H}, OH)$ CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 169.8 (CO), 138.7, 138.6, 138.3, 138.2 (4 × C-Ar), 128.1– 127.5 (12 × CH-Ar), 101.3 (C-1C), 92.7 (C-1B), 84.6 (C-3C), 82.1 (C-2C), 77.6 (C-4C), 75.7 (CH₂Ph), 75.2 (CH₂Ph), 75.0 (C-5C), 74.7 (CH₂Ph), 73.5 (CH₂Ph), 71.5 (C-3B), 71.2 (C-2B), 69.2 (C-4B), 68.8 (C-6C), 66.9 (C-5B), 21.2 (CH_{3Ac}), 16.6 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₄₂H₄₈NaO₁₁751.3089; found 751.3100; m/z [2M + Na]⁺ calcd for C₈₄H₉₆NaO₂₂ 1479.6285; found 1479.6306. Then, the hemiacetal (282 mg, 390 µmol, 1.0 equiv) was reacted in the presence of Cs_2CO_3 (25 mg, 80 μ mol, 0.2 equiv) and CCl_3CN (190 μ L, 1.9 mmol, 5.0 equiv). Purification by silica gel flash chromatography (PE/EtOAc 8:2 to 6:4 + 1% Et₃N) gave imidate 35 (285 mg, 84%) as a yellow oil: $R_f 0.4$ (tol/EtOAc 8:2); $[\alpha]_D^{20} = +32$ (c 0.82, CHCl₃); ¹H NMR (400 MHz, py-d₅) δ 7.65–7.29 (m, 20H, CH-Ar), 6.94 (s, 1H, H-1B), 5.93 (br s, 1H, H-2B), 5.42 (d, J = 11.1 Hz, 1H, CHHPh), 5.21 (d, $J_{1C,2C} = 7.7$ Hz, 1H, H-1C), 5.13 (d, J = 11.1 Hz, 1H, CH*H*Ph), 5.00 (d, J = 10.9 Hz, 1H, C*H*HPh), 4.97–4.91 (m, 2H, $2 \times CH_2$ Ph), 4.80 (t, J = 4.3Hz, 1H, H-3B), 4.76 (d, J = 11.1 Hz, 1H, CHHPh), 4.73 (d, J = 12.1 Hz, 1H, CHHPh), 4.65 (d, J = 12.1 Hz, 1H, CHHPh), 4.48 (dd, J = 14.2, 6.3 Hz, 1H, H-5B), 3.33 (br s, 1H, H-4B), 3.96–3.88 (m, 4H, H-3C, H-4C, H-6aC, H-6bC), 3.80–3.75 (m, 2H, H-2C, H-5C), 1.96 (s, 3H, CH_{3Ac}), 1.53 (d, J = 6.6 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, py- d_5) δ 169.7 (CO), 139.6, 139.1, 138.3, 138.2 (4×C-Ar), 128.5–127.7 (12×CH-Ar), 101.9 (C-1C), 96.3 (C-1B), 84.8 (C-4C), 82.6 (C-2C), 78.2 (C-3C), 75.6 (CH₂Ph), 75.5 (C-5C), 74.9 (CH₂Ph), 74.6 (CH₂Ph), 73.7 (CH₂Ph), 72.9 (C-3B), 70.7 (C-5B), 69.5 (C-6C), 69.2 (C-2B), 68.4 (C-4B), 20.9 (CH_{3Ac}), 16.9 (CH_{3Tal}).

2,3,4,6-Tetra-*O*-benzyl- β -D-glucopyranosyl- $(1 \rightarrow 3)$ -6-deoxy-1,2,4-*O*-orthoacetyl- β -L-talopyranose (36).

A mixture of acceptor 13 (223 mg, 476 μ mol, 1.5 equiv) and donor 35 (277 mg, 317 μ mol, 1.0 equiv) in anhydrous Et₂O/DCE (8 mL, 5:1 ν/ν) was cooled to -10 °C and TMSOTf (0.6 μ L, 3 μ mol, 0.01 equiv) was added keeping rigorous anhydrous conditions. The mixture was stirred for 10 min at -10 °C under Ar and then quenched with a few drops of Et₃N. The suspension was filtered over Celite, rinsed with DCM and the filtrate was concentrated under reduced pressure. The residue was purified by combi-flash chromatography (PE/acetone 92:8) to give tricyclic orthoester **36** (92 mg, 41%) as a white amorphous powder, which was recrystallized in EtOAc: R_f 0.6 (tol/EtOAc 8:2); $[\alpha]_D^{20} = +17$ (c 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41–7.25 (m, 18H, CH-Ar), 7.18–7.15 (m, 2H, CH-Ar), 5.68 (d, J_{1,2} = 5.1 Hz, 1H, H-1B), 5.08 (d, J = 10.8 Hz, 1H, CHHPh), 4.95 (d, J = 11.0 Hz, 1H, CHHPh), 4.82 (d, J = 11.1 Hz, 1H, CHHPh), 4.79 (d, J = 11.1 Hz, 1H, CHHPh), 4.78 (d, J = 10.9 Hz, 1H, CHHPh), 4.74–4.70 (m, 1H, H-2B), 4.58–4.49 (m, 4H, H-1C, CH₂Ph, CHHPh), 4.06–4.00 (m, 2H, H-4B, H-5B), 3.75–3.69 (m, 2H, H-6aC, H-3B), 3.67–3.59 (m, 3H, H-2C, H-3C, H-6bC), 3.56 (t, $J_{3,4} \approx J_{4,5} \approx 9.6$ Hz, 1H, H-4C), 3.47 (ddd, $J_{4,5} = 9.6$ Hz, $J_{5,6a} = 5.4$ Hz, $J_{5,6b} = 1.8$ Hz, 1H, H-5C), 1.69 (s, 3H, CH_{3orthoester}), 1.39 (d, $J_{5,6} = 6.4$ Hz, 3H, H-6B); ¹³C NMR (100 MHz, CDCl₃) δ 138.7, 138.6, 138.2, 138.1 (4 × C-Ar), 128.6–127.8 (CH-Ar), 118.2 (Corthoester), 103.1 (C-1C), 99.1 (C-1B), 84.7 (C-2C), 81.9 (C-3C), 77.8 (C-4C), 76.7 (C-5B), 75.8 (CH₂Ph), 75.5 (C-2B), 75.2 (CH₂Ph), 75.1 (C-5C), 75.0 (CH₂Ph), 73.6 (CH₂Ph), 73.5 (C-4B), 70.8 (C-3B), 69.3 (C-6C), 20.9 (CH_{3orthoester}), 19.4 (C-6B); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₄₂H₄₆NaO₁₀ 733.2983; found 733.2995.

2,3,4,6-Tetra-*O*-benzyl- β -D-glucopyranosyl- $(1\rightarrow 3)$ -2-*O*-acetyl-4-*O*-levulinoyl- α -L-rhamnopyranosyl 2,2,2-Trichloroacetimidate (37).

Taloside 32 (1.0 g, 1.2 mmol, 1.0 equiv) was reacted according to the general procedure for the synthesis of trichloroacetimidate donors (first part). Purification by silica gel flash chromatography (PE/EtOAc 85:15 to 65:35) gave a hemiacetal (881 mg, 89%, ratio $\alpha/\beta \sim 10:1$) as a white foam: R_f 0.2 (tol/EtOAc 8:2); ¹H NMR (400 MHz, CDCl₃) δ 7.38–7.15 (m, 20H, CH-Ar), 5.30 (dd, J = 3.5, 1.8 Hz, 1H, H-2B), 5.19 (d, $J_{1B,2B} = 1.7$ Hz, 1H, H-1B), 5.18 (t, J = 10.0 Hz, 1H, H-4B), 4.87 (d, J= 10.9 Hz, 1H, CHHPh), 4.81 (d, J = 11.7 Hz, 1H, CHHPh), 4.77 (d, J = 10.9 Hz, 1H, CHHPh), 4.76 (d, J = 10.9 Hz, 1H, CHHPh), 4.62 (d, J = 12.1 Hz, 1H, CHHPh), 4.61 (d, J = 11.7 Hz, 1H, CH*H*Ph), 4.55 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 4.54 (d, *J* = 10.9 Hz, 1H, CH*H*Ph), 4.51 (d, *J*_{1C.2C} = 7.8 Hz, 1H, H-1C), 4.27 (dd, J = 10.0, 3.4 Hz, 1H, H-3B), 4.07–4.00 (m, 1H, H-5B), 3.73 (dd, J = 10.9, 1.9 Hz, 1H, H-6aC), 3.66 (dd, J = 10.6, 4.7 Hz, 1H, H-6bC), 3.60 (t, J = 9.0 Hz, 1H, H-3C), 3.56 (t, J = 8.8 Hz, 1H, H-4C), 3.48-3.43 (m, 1H, H-5C), 3.37 (dd, J = 8.4, 7.9 Hz, 1H, H-2C), 3.01 (d, J = 3.9 Hz, 1H, OH), 2.53–2.43 (m, 2H, CH_{2Lev}), 2.26–2.23 (m, 2H, CH_{2Lev}), 2.19 (s, 3H, CH_{3Ac}), 2.04 (s, 3H, CH_{3Lev}), 1.20 (d, J = 6.3 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 206.7 (CO), 172.2, 170.5 (2 × CO), 138.8, 138.7, 138.5, 138.2 (4 × C-Ar), 128.5–127.5 (12 × CH-Ar), 104.6 (C-1C), 92.1 (C-1B), 84.7 (C-3C), 81.9 (C-2C), 77.9 (C-4C), 75.7 (CH₂Ph), 75.1 (CH₂Ph), 75.0 (C-5C), 74.5 (CH₂Ph), 74.2 (C-3B), 73.6 (CH₂Ph), 73.1 (C-2B, C-4B), 69.1 (C-6C), 66.8 (C-5B), 37.7 (CH_{2Lev}), 29.8 (CH_{3Lev}), 27.9 (CH_{2Lev}), 21.2 (CH_{3Ac}), 17.6 (CH_{3Tal}); HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₄₇H₅₄NaO₁₃ 849.3457; found 849.3489. Then, the hemiacetal (861 mg, 1.0 mmol, 1.0 equiv) was reacted in the presence of Cs_2CO_3 (68 mg, 210 μ mol, 0.2 equiv) and CCl₃CN (630 µL, 6.5 mmol, 6.0 equiv). Purification by silica gel flash chromatography (PE/EtOAc 8:2 to 6:4 + 1% Et₃N) gave imidate 37 (921 mg, 91%) as a white foam: $R_f 0.4$ (tol/EtOAc 8:2); $[\alpha]_{D^{20}} = +44 (c \ 0.82, CHCl_3/THF \ 1:1); {}^{1}H \ NMR (400 \ MHz, CDCl_3) \ \delta \ 7.33 - 7.14 (m, 20H, CH-Ar),$ 6.26 (d, *J*_{1B,2B} = 1.9 Hz, 1H, H-1B), 5.46 (dd, *J* = 3.5, 1.9 Hz, 1H, H-2B), 5.28 (t, *J* = 10.2 Hz, 1H, H-4B), 4.88 (d, J = 11.0 Hz, 1H, CHHPh), 4.81 (d, J = 11.0 Hz, 1H, CHHPh), 4.78 (d, J = 10.8Hz, 1H, CHHPh), 4.77 (d, J = 10.8 Hz, 1H, CHHPh), 4.62 (d, J = 12.3 Hz, 1H, CHHPh), 4.59 (d, *J* = 11.9 Hz, 1H, CH*H*Ph), 4.56 (d, *J* = 11.9 Hz, 1H, C*H*HPh), 4.52 (d, *J*_{1C,2C} = 7.8 Hz, 1H, H-1C), 4.51 (d, J = 12.3 Hz, 1H, CHHPh), 4.25 (dd, J = 10.1, 3.5 Hz, 1H, H-3B), 4.03–3.95 (m, 1H, H-5B), 3.72 (dd, J = 11.0, 3.9 Hz, 1H, H-6aC), 3.66 (t, J = 9.4 Hz, 1H, H-3C), 3.62–3.57 (m, 2H, H-4C, H-6bC), 3.43-3.37 (m, 2H, H-2C, H-5C), 2.55-2.46 (m, 2H, CH_{2Lev}), 2.26-2.18 (m, 2H, CH_{2Lev}), 2.16 (s, 3H, CH_{3Ac}), 2.04 (s, 3H, CH_{3Lev}), 1.25 (d, J = 6.3 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 206.6 (CO), 172.1, 170.0 (2 × CO), 159.9 (C-Ar), 138.7, 138.4, 138.3 (3 × C-Ar), 128.5–127.5 (12 × CH-Ar), 104.7 (C-1C), 94.6 (C-1B), 84.7 (C-4C), 81.9 (C-2C), 77.7 (C-3C), 75.7 (CH₂Ph), 75.2 (C-5C), 75.1 (CH₂Ph), 74.6 (CH₂Ph), 74.2 (C-3B), 73.6 (CH₂Ph), 72.3 (C-4B), 71.1 (C-2B), 69.7 (C-5B), 68.6 (C-6C), 37.7 (CH_{2Lev}), 29.8 (CH_{3Lev}), 27.8 (CH_{2Lev}), 21.1 (CH_{3Ac}), 17.6 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₄₉H₅₄Cl₃NNaO₁₃992.2553; found 992.2552.

 $(5-Azido-1-pentyl) 2,3,4,6-Tetra-O-benzyl-\beta-D-glucopyranosyl-(1\rightarrow 3)-2-O-acetyl-\alpha-L-rhamnopyranosyl-(1\rightarrow 3)-2-O-benzyl-4,6-O-benzylidene-\beta-D-glucopyranoside (38).$

Acceptor 13 (350 mg, 745 μ mol, 1.0 equiv) and donor 37 (869 mg, 895 μ mol, 1.2 equiv) were dried for 4 h under high vacuum and then dissolved in anhydrous Et₂O/DCE (18 mL, 5:1 v/v). Freshly activated 4 Å powdered molecular sieves (1.4 g) were added and the suspension was stirred for 40 min at rt under Ar. Then, the reaction mixture was cooled to -10 °C and TMSOTf (14 μ L, 75 μ mol, 0.1 equiv) was injected. The mixture was stirred at -10 °C for 10 min under Ar. The reaction was then quenched with Et₃N (100 μ L), filtered over Celite and rinsed with DCM. The filtrate was concentrated under reduced pressure and purified by combi-flash chromatography (PE/EtOAc 7:3) to give (5-azido-1-pentyl) 2,3,4,6-tetra-O-benzyl- β -D-glucopyranosyl-(1 \rightarrow 3)-2-*O*-acetyl-4-*O*-levulinoyl-α-L-rhamnopyranosyl-(1→3)-2-*O*-benzyl-4,6-*O*-benzylidene-β-Dglucopyranoside (768 mg, 81%) as a white foam: R_f 0.6 (tol/EtOAc 8:2); $[\alpha]_D^{20} = -17$ (c 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.48–7.15 (m, 30H, CH-Ar), 5.48 (s, 1H, H-7A), 5.43 (dd, J = 3.6, 1.5 Hz, 1H, H-2B), 5.24 (d, J = 1.3 Hz, 1H, H-1B), 5.08 (t, J = 10.2 Hz, 1H, H-4B), 4.85 (d, J = 11.0 Hz, 1H, CHHPh), 4.78 (d, J = 11.7 Hz, 1H, CHHPh), 4.77 (d, J = 10.8 Hz, 1H, CHHPh), 4.76 (d, J = 10.8 Hz, 1H, CHHPh), 4.75 (d, J = 11.0 Hz, 1H, CHHPh), 4.73 (d, J = 10.8 Hz, 1H, CH*H*Ph), 4.63 (d, *J* = 12.1 Hz, 1H, C*H*HPh), 4.57 (d, *J* = 12.1 Hz, 1H, CH*H*Ph), 4.56 (d, *J* = 11.7 Hz, 1H, CHHPh), 4.53 (d, *J* = 10.9 Hz, 1H, CHHPh), 4.49 (d, *J*_{1C,2C} = 7.6 Hz, 1H, H-1C), 4.45 (d, *J*_{1A,2A} = 7.7 Hz, 1H, H-1A), 4.32 (dd, *J* = 10.5, 4.8 Hz, 1H, H-6aA), 4.18 (dd, *J* = 10.0, 3.6 Hz, 1H, H-3B), 4.15–4.09 (m, 1H, H-5B), 3.92 (t, J = 9.5 Hz, 1H, H-3A), 3.90–3.86 (m, 1H, H-1alinker), 3.77-3.68 (m, 3H, H-6bA, H-6aC, H-6bC), 3.59-3.49 (m, 3H, H-1blinker, H-3C, H-4A), 3.44 (t, J = 9.5 Hz, 1H, H-4C), 3.40–3.32 (m, 4H, H-2A, H-2C, H-5A, H-5C), 3.20 (t, J = 7.2 Hz, 2H, H-5_{linker}), 2.50–2.33 (m, 2H, CH_{2Lev}), 2.25–2.16 (m, 2H, CH_{2Lev}), 2.04 (s, 3H, CH_{3Ac}), 2.02 (s, 3H, CH_{3Lev}), 1.66–1.55 (m, 4H, H-2_{linker}, H-4_{linker}), 1.46–1.37 (m, 2H, H-3_{linker}), 0.82 (d, J = 6.3 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 206.6 (CO), 171.9, 169.7 (2 × CO), 138.7, 138.6, 138.4, 138.2, 138.1, 137.1 (6 × C-Ar), 129.2–126.2 (18 × CH-Ar), 104.1 (C-1A), 103.9 (C-1C), 101.6 (C-7A), 97.7 (C-1B), 84.6 (C-3C), 82.9 (C-2A), 82.1 (C-2C), 79.0 (C-4C*), 77.8 (C-4A*), 75.9 (C-3A), 75.5 (CH2Ph), 75.3 (C-5C), 74.9 (CH2Ph), 74.8 (CH2Ph), 74.4 (CH2Ph), 74.2 (C-3B), 73.7 (CH₂Ph), 73.1 (C-4B), 71.9 (C-2B), 70.0 (C-1_{linker}), 69.2 (C-6A*), 68.8 (C-6C*), 66.3 (C-5A*), 66.2 (C-5B*), 51.3 (C-5_{linker}), 37.5 (CH_{2Lev}), 29.7 (CH_{3Lev}), 29.3 (C-2_{linker}), 28.6 (C-4_{linker}), 27.7 (CH_{2Lev}), 23.3 (C-3_{linker}), 20.9 (CH_{3Ac}), 16.8 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₇₂H₈₃N₃NaO₁₈ 1300.5564; found 1300.5586.

Acetic acid (2.6 mL) and hydrazine monohydrate (151 μ L, 3.1 mmol, 5.0 equiv) were slowly added to a stirred solution of the latter compound (796 mg, 620 μ mol, 1.0 equiv) in anhydrous py (4 mL) at 0 °C under Ar. Then, the reaction mixture was stirred from 0 °C to rt overnight. After this time,

solvents were concentrated and co-evaporated with toluene $(3 \times)$. The residue was purified by silica gel flash chromatography (PE/EtOAc 9:1 to 8:2) to give alcohol 38 (696 mg, 95%) as a colorless oil: $R_f 0.6$ (tol/EtOAc 8:2); $[\alpha]_D^{20} = -20$ (c 0.79, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.47–7.15 (m, 30H, CH-Ar), 5.49 (s, 1H, H-7A), 5.34 (dd, J = 3.7, 1.5 Hz, 1H, H-2B), 5.21 (d, J = 1.4 Hz, 1H, H-1B), 4.87 (d, J = 11.1 Hz, 1H, CHHPh), 4.83–4.76 (m, 6H, $3 \times CH_2$ Ph), 4.67 (d, $J_{1C,2C} =$ 7.8 Hz, 1H, H-1C), 4.60 (d, J = 12.1 Hz, 1H, CHHPh), 4.54 (d, J = 10.8 Hz, 1H, CHHPh), 4.52 (d, J = 12.1 Hz, 1H, CHHPh), 4.46 (d, J_{1A,2A} = 7.8 Hz, 1H, H-1A), 4.32 (dd, J = 10.4, 4.9 Hz, 1H, H-6aA), 4.04–4.00 (m, 1H, H-5B), 3.98 (dd, J = 9.6, 3.5 Hz, 1H, H-3B), 3.92 (t, J = 9.5 Hz, 1H, H-3A), 3.90–3.86 (m, 1H, H-1a_{linker}), 3.74 (t, J = 10.7 Hz, 1H, H-6bA), 3.70–3.67 (m, 2H, H-6aC, H-6bC), 3.63–3.57 (m, 2H, H-3C, H-4C), 3.54 (dd, *J* = 6.9, 2.9 Hz, 1H, H-4A), 3.51–3.40 (m, 5H, H-1b_{linker}, H-2A, H-2C, H-4B, H-5C), 3.37 (dd, *J* = 9.8, 4.8 Hz, 1H, H-5A), 3.19 (t, *J* = 7.3 Hz, 2H, H-5_{linker}), 2.75 (s, 1H, OH), 2.02 (s, 3H, CH_{3Ac}), 1.66–1.55 (m, 4H, H-2_{linker}, H-4_{linker}), 1.46–1.39 (m, 2H, H-3_{linker}), 0.89 (d, J = 6.2 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 169.9 (CO), 138.6, 138.4, 138.3, 138.2, 137.9, 137.2 (6 × C-Ar), 129.1–126.3 (18 × CH-Ar), 104.2 (C-1A), 103.5 (C-1C), 101.6 (C-7A), 98.1 (C-1B), 85.1 (C-3C), 83.0 (C-2A), 82.2 (C-2C), 79.2 (C-4A), 78.8 (C-3B), 77.9 (C-4C), 76.4 (C-3A), 75.7 (CH₂Ph), 75.5 (CH₂Ph), 75.2 (C-5C), 75.1 (CH₂Ph), 74.9 (CH₂Ph), 73.6 (CH₂Ph), 72.3 (C-4B), 71.9 (C-2B), 70.1 (C-1_{linker}), 68.9 (C-6A*), 68.8 (C-6C*), 67.9 (C-5B), 66.4 (C-5A), 51.4 (C-5_{linker}), 29.4 (C-2_{linker}), 28.7 (C-4_{linker}), 23.4 (C-3_{linker}), 21.1 (CH_{3Ac}), 17.2 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₆₇H₇₇N₃NaO₁₆1202.5196; found 1202.5220.

(5-Azido-1-pentyl) 2,3,4,6-Tetra-*O*-benzyl- β -D-glucopyranosyl-(1 \rightarrow 3)-2-*O*-acetyl-6-deoxy- α -L-talopyranosyl-(1 \rightarrow 3)-2-*O*-benzyl-4,6-*O*-benzylidene- β -D-glucopyranoside (39).

To a solution of DMSO ($20 \,\mu$ L, $216 \,\mu$ mol, $10 \,$ equiv) in anhydrous DCM ($0.4 \,$ mL) at $-10 \,$ °C under Ar were sequentially added PDCP (20 μ L, 130 μ mol, 6.0 equiv) and Et₃N (40 μ L, 216 μ mol, 10 equiv). Then, a solution of trisaccharide 38 (26 mg, 22 µmol, 1.0 equiv) in DCM (0.1 mL) was added dropwise. The reaction mixture was stirred at -10 °C for 10 min, then allowed to slowly warm up to rt. After 1 h, DCM (6 mL) was added. The organic phase was washed with water (3 \times 3 mL). The aqueous layer was back extracted with DCM (6 mL). The combined organic phases were washed with brine (5 mL). Then, the solvents of the dried solution (MgSO₄) were concentrated under reduced pressure to give a ketone. To a cooled (-10 °C) solution of the ketone in MeOH/DCM (0.4 mL, 3:1 v/v), NaBH₄ (3.2 mg, 86 µmol, 4.0 equiv) was slowly added. The mixture was stirred from -10 °C to rt under Ar for 1 h. Then, the reaction mixture was diluted with DCM (6 mL) and the organic phase was washed with water (3×4 mL). The aqueous layer was extracted with DCM (2×3 mL). The combined organic phases were washed with brine, dried (MgSO₄) and then concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 8:2 to 75:25) to give alcohol 39 (22 mg, 85%, two steps) as a colorless solid: $R_f 0.5$ (tol/EtOAc 8:2); $[\alpha]_D^{20} = -45$ (c 0.34, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.41– 7.13 (m, 30H, CH-Ar), 5.37 (s, 1H, H-7A), 5.32 (dd, J = 3.7, 1.2 Hz, 1H, H-2B), 5.30 (d, J = 1.2 Hz, 1H, H-1B), 4.92 (d, J = 11.0 Hz, 1H, CHHPh), 4.88 (d, J = 11.0 Hz, 1H, CHHPh), 4.85 (d, J= 10.2 Hz, 1H, CHHPh), 4.79 (d, J = 10.8 Hz, 1H, CHHPh), 4.77 (d, J = 10.2 Hz, 1H, CHHPh), 4.75 (d, J = 10.8 Hz, 1H, CH*H*Ph), 4.69 (d, J = 11.1 Hz, 1H, C*H*HPh), 4.63 (d, $J_{1C,2C} = 7.6$ Hz, 1H, H-1C), 4.56 (d, J = 12.2 Hz, 1H, CHHPh), 4.54 (d, J = 11.1 Hz, 1H, CHHPh), 4.49 (d, J_{1A.2A} = 7.8 Hz, 1H, H-1A), 4.46 (d, J = 12.2 Hz, 1H, CHHPh), 4.31 (dd, J = 10.5, 4.8 Hz, 1H, H-6aA), 4.19–4.14 (m, 2H, H-3B, H-5B), 3.97 (t, J = 9.4 Hz, 1H, H-3A), 3.91 (dt, J = 9.5, 6.8 Hz, 1H, H- $1a_{linker}$), 3.72 (t, J = 10.4 Hz, 1H, H-6bA), 3.67 (d, J = 2.9 Hz, 2H, H-6aC, H-6bC), 3.63–3.57 (m, 3H, H-3C, H-4B, H-4C), 3.53 (dt, J = 9.5, 6.9 Hz, 1H, H-1b_{linker}), 3.49–3.42 (m, 4H, H-2A, H-2C, H-4A, H-5C), 3.37 (dd, J = 9.6, 4.7 Hz, 1H, H-5A), 3.19 (t, J = 7.3 Hz, 2H, H-5_{linker}), 1.88 (s, 3H, CH_{3Ac}), 1.67–1.54 (m, 4H, H-2_{linker}, H-4_{linker}), 1.47–1.37 (m, 2H, H-3_{linker}), 0.96 (d, J = 6.4 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 169.2 (CO), 138.7, 138.6, 138.4, 138.3, 138.2, 137.3 (6 × C-Ar), 129.1–126.3 (18 × CH-Ar), 104.2 (C-1A), 101.7 (C-7A), 100.6 (C-1C), 98.3 (C-1B), 84.6 (C-3C), 83.1 (C-2A), 82.1 (C-2C), 79.2 (C-4A), 77.6 (C-4C), 75.8 (C-3A), 75.7 (CH₂Ph), 75.2 (C-5C), 75.1 (CH₂Ph), 74.8 (CH₂Ph), 74.7 (CH₂Ph), 73.4 (CH₂Ph), 71.6 (C-3B), 70.2 (C-1_{linker}), 70.1 (C-2B), 68.9 (C-4B, C-6A*), 68.8 (C-6C*), 66.6 (C-5B), 66.4 (C-5A), 51.4 (C-5_{linker}), 29.4 (C-2linker), 28.7 (C-4linker), 23.4 (C-3linker), 21.0 (CH_{3Ac}), 16.1 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₆₇H₇₇N₃NaO₁₆ 1202.5196; found 1202.5225.

 $(5-Azido-1-pentyl) 2,3,4,6-Tetra-O-benzyl-\beta-D-glucopyranosyl-(1\rightarrow 3)-6-deoxy-\alpha-L-talopyranosyl-(1\rightarrow 3)-2-O-benzyl-4,6-O-benzylidene-\beta-D-glucopyranoside (40).$

To a solution of compound **39** (29 mg, 25 μ mol, 1.0 equiv) in anhydrous MeOH/DCM (0.8 mL, 2:1 ν/ν) was added NaOMe (25% in MeOH, 2.4 μ L, 10 μ mol, 0.4 equiv). The reaction mixture was stirred overnight at rt under Ar. Dowex H⁺ was added until neutralization, then the solution was filtered off and the solvents were concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 85:15 to 7:3) to give diol 40 (23 mg, 81%) as a colorless solid: $R_f 0.6$ (tol/EtOAc 8:2); $[\alpha]_D^{20} = -34$ (c 0.20, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.45–7.13 (m, 30H, CH-Ar), 5.43 (s, 1H, H-7A), 5.30 (br s, 1H, H-1B), 4.93 (d, J = 11.1 Hz, 1H, CHHPh), 4.91 (d, J = 10.9 Hz, 1H, CHHPh), 4.85–4.78 (m, 4H, $2 \times CH_2$ Ph), 4.65 (d, J = 10.9 Hz, 1H, CHHPh), 4.59 (d, J_{1C,2C} = 7.7 Hz, 1H, H-1C), 4.49 (d, J = 10.8 Hz, 1H, CHHPh), 4.48 (d, J_{1A,2A} = 7.8 Hz, 1H, H-1A), 4.45 (d, J = 12.2 Hz, 1H, CHHPh), 4.40 (d, J = 12.2 Hz, 1H, CHHPh), 4.32 (dd, J = 10.7, 4.6 Hz, 1H, H-6aA), 4.09 (dd, J = 13.9, 6.2 Hz, H-5B), 3.96 (t, J = 9.4 Hz, 1H, H-6aA)3A), 3.94–3.89 (m, 2H, H-2B, H-1alinker), 3.83 (t, J = 3.6 Hz, 1H, H-3B), 3.74 (t, J = 10.4 Hz, 1H, H-6bA), 3.64 (t, J = 9.3 Hz, 1H, H-3C), 3.60–3.37 (m, 10H, H-1b_{linker}, H-2A, H-2C, H-4A, H-4B, H-4C, H-5A, H-5C, H-6aC, H-6bC), 3.22 (t, *J* = 7.3 Hz, 2H, H-5_{linker}), 3.14 (d, *J* = 8.5 Hz, OH), 1.69–1.57 (m, 4H, H-2_{linker}, H-4_{linker}), 1.50–1.43 (m, 2H, H-3_{linker}), 0.89 (d, *J* = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 138.5, 138.4, 138.0, 137.9, 137.8, 137.3 (6 × C-Ar), 129.1–126.3 (18 × CH-Ar), 104.2 (C-1A), 101.9 (C-7A), 101.4 (C-1C), 100.8 (C-1B), 84.7 (C-3C), 82.7 (C-2A), 81.9 (C-2C), 79.4 (C-4A), 77.8 (C-4C), 76.3 (C-3A), 75.8 (CH₂Ph), 75.3 (C-3B), 75.2 (CH₂Ph), 75.1 (CH₂Ph), 75.0 (CH₂Ph), 74.9 (C-5C), 73.6 (CH₂Ph), 70.7 (C-4B), 70.2 (C-1_{linker}), 69.7 (C-2B), 69.0 (C-6A*), 68.9 (C-6C*), 66.7 (C-5B), 66.4 (C-5A), 51.4 (C-5_{linker}), 29.4 (C-2_{linker}), 28.7 (C-4_{linker}), 23.4 (C-3_{linker}), 16.1 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₆₅H₇₅N₃NaO₁₅ 1160.5090; found 1160.5083.

 $(5-Azido-1-pentyl) 2,3,4,6-Tetra-O-benzyl-\beta-D-glucopyranosyl-(1\rightarrow 3)-2,4-di-O-acetyl-6-deoxy-\alpha-L-talopyranosyl-(1\rightarrow 3)-2-O-benzyl-4,6-O-benzylidene-\beta-D-glucopyranoside (41).$

Ac₂O (0.4 mL) and DMAP (500 μ g, 4.2 μ mol, 0.1 equiv) were added to a solution of alcohol **39** $(50 \text{ mg}, 40 \,\mu\text{mol}, 1.0 \text{ equiv})$ in anhydrous py (0.4 mL). The reaction mixture was stirred at rt for 4 h under Ar. The solution was then concentrated under reduced pressure and co-evaporated with toluene $(3 \times)$. The residue was purified by silica gel flash chromatography (PE/EtOAc 9:1 to 7:3) to give diacetylated trisaccharide 41 (49 mg, 94%) as a colorless oil: $[\alpha]_D^{20} = -46$ (c 0.34, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.39–7.12 (m, 30H, CH-Ar), 5.34–5.32 (m, 3H, H-1B, H-2B, H-7A), 5.13 (d, J = 3.1 Hz, 1H, H-4B), 4.86 (d, J = 10.8 Hz, 1H, CHHPh), 4.83 (d, J = 10.9 Hz, 1H, CH*H*Ph), 4.82 (d, *J* = 11.6 Hz, 1H, C*H*HPh), 4.78 (d, *J* = 10.7 Hz, 1H, CH*H*Ph), 4.75 (d, *J* = 10.7 Hz, 1H, CHHPh), 4.71 (d, J = 10.9 Hz, 1H, CHHPh), 4.61 (d, J = 11.6 Hz, 1H, CHHPh), 4.59 (d, J = 12.4 Hz, 1H, CHHPh), 4.57 (d, J_{1C.2C} = 7.4 Hz, 1H, H-1C), 4.50 (d, J = 10.8 Hz, 1H, CHHPh), 4.49 (d, *J* = 12.4 Hz, 1H, CH*H*Ph), 4.48 (d, *J*_{1A,2A} = 7.4 Hz, 1H, H-1A), 4.33–4.26 (m, 3H, H-3B, H-5B, H-6aA), 3.94 (t, J = 9.3 Hz, 1H, H-3A), 3.90 (dt, J = 9.5, 6.9 Hz, 1H, H-1a_{linker}), 3.72–3.65 (m, 3H, H-6bA, H-6aC, H-6bC), 3.64–3.58 (m, 2H, H-3C, H-4C), 3.54 (dt, J = 9.5, 6.9 Hz, 1H, H- $1b_{linker}$, 3.49–3.36 (m, 5H, H-2A, H-2C, H-4A, H-5A, H-5C), 3.19 (t, J = 7.4 Hz, 2H, H-5_{linker}), 2.00 (s, 3H, CH_{3Ac}), 1.95 (s, 3H, CH_{3Ac}), 1.67–1.55 (m, 4H, H-2_{linker}, H-4_{linker}), 1.47–1.40 (m, 2H, H-3_{linker}), 0.77 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 170.8, 169.2 (2 × CO), 138.7, 138.6, 138.4, 138.3, 138.2, 137.2 (6 × C-Ar), 129.4–126.2 (18 × CH-Ar), 104.2 (C-1A), 101.8 (C-7A), 100.2 (C-1C), 98.8 (C-1B), 84.5 (C-3C), 83.2 (C-2A), 81.8 (C-2C), 79.1 (C-5C), 77.5 (C-4C), 75.9 (C-3A), 75.5 (CH₂Ph), 75.1 (C-4A), 75.0 (CH₂Ph), 74.9 (CH₂Ph), 74.1 (CH₂Ph), 73.4 (CH₂Ph), 70.2 (C-1_{linker}), 69.7 (C-3B), 68.9 (C-6A*), 68.8 (C-6C*), 68.3 (C-2B), 68.0 (C-4B), 66.3 (C-5A), 64.9 (C-5B), 51.3 (C-5_{linker}), 29.4 (C-2_{linker}), 28.7 (C-4_{linker}), 23.4 (C-3_{linker}), 21.2, 21.0 $(2 \times CH_{3Ac})$, 15.9 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₆₉H₇₉N₃NaO₁₇ 1244.5302; found 1244.5309.

Allyl 4-*O*-Levulinoyl-3-*O*-methyl-*α*-L-rhamnopyranoside (S36).

To a solution of diol **31** (500 mg, 1.7 mmol, 1.0 equiv) in toluene (7 mL) was added Bu₂SnO (465 mg, 1.9 mmol, 1.1 equiv) and the mixture was refluxed using a Dean-Stark apparatus for 5 h. The temperature was cooled to 30 °C, then CsF (263 mg, 1.7 mmol, 1.02 equiv) and MeI (5.2 mL, 85 mmol, 50 equiv) were successively added. After stirring overnight at 80 °C, the mixture was concentrated under reduced pressure. Purification by silica gel flash chromatography (PE/EtOAc 8:2 to 5:5) gave alcohol **S36** (503 mg, 96%) as a yellow oil: $[\alpha]_D^{20} = -48$ (*c*, 1.0, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.89 (dddd, *J* = 16.6, 10.4, 6.1, 5.3 Hz, 1H, H-2_{All}), 5.29 (ddd, *J* = 17.2, 3.1, 1.6 Hz, 1H, H-3a_{All}), 5.20 (ddd, *J* = 11.6, 2.6, 1.2 Hz, 1H, H-3b_{All}), 4.97 (t, *J* = 9.7 Hz, 1H, H-4), 4.87 (d, *J* = 1.5 Hz, 1H, H-1), 4.15 (ddt, *J* = 12.9, 5.2, 1.4 Hz, 1H, H-1a_{All}), 4.07 (dd, *J* = 3.3, 1.7 Hz, 1H, H-2), 3.98 (ddt, *J* = 12.9, 6.2, 1.3 Hz, 1H, H-1b_{All}), 3.77 (dq, *J* = 10.1, 6.3 Hz, 1H, H-5), 3.52 (dd, *J* = 9.6, 3.4 Hz, 1H, H-3), 3.41 (s, 3H, -OCH₃), 2.85–2.54 (m, 4H, (CH₂)_{2Lev}), 2.17 (s, 3H, CH_{3Lev}), 1.17 (d, 3H, *J* = 6.3 Hz, CH_{3Rha}); ¹³C NMR (100 MHz, CDCl₃) δ 206.6 (CO), 172.3 (CO), 133.8 (C-2_{All}), 117.8 (C-3_{All}), 98.3 (C-1), 78.9 (C-3), 73.0 (C-4), 68.2 (C-1_{All}), 67.8 (C-2), 66.2 (C-5), 57.7 (-OCH₃), 38.0 (CH_{2Lev}), 29.9 (CH_{3Lev}), 28.1 (CH_{2Lev}), 17.5 (CH_{3Rha}); HRMS (ESI-TOF) *m*/z [M + Na]⁺ calcd for C₁₅H₂₄NaO₇ 339.1414; found 339.1407.

Allyl 2-*O*-Acetyl-4-*O*-levulinoyl-3-*O*-methyl-α-L-rhamnopyranoside (S37).

Alcohol **S36** (473 mg, 1.5 mmol, 1.0 equiv) was dissolved in anhydrous py (10 mL). Ac₂O (10 mL) and DMAP (2 mg, 15 µmol, 0.01 equiv) were added. The reaction mixture was stirred for 16 h at rt under Ar. Then, solvents were concentrated under reduced pressure and co-evaporated with toluene (3 ×). The residue was purified by silica gel flash chromatography (PE/EtOAc 8:2 to 65:35) to give derivative **S37** (520 mg, 88%) as a colorless oil: $[\alpha]_D^{20} = -39$ (*c*, 1.8, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.89 (ddd, *J* = 22.3, 10.9, 5.9 Hz, 1H, H-2_{All}) 5.32 (m, 2H, H-2, H-3a_{All}), 5.22 (dd, *J* = 10.4, 1.3 Hz, 1H, H-3b_{All}), 4.96 (t, *J* = 9.8 Hz, 1H, H-4), 4.78 (d, *J* = 1.6 Hz, 1H, H-1), 4.16 (ddt, *J* = 12.8, 5.2, 1.3 Hz, 1H, H-1a_{All}), 3.98 (ddt, *J* = 12.8, 6.2, 1.1 Hz, 1H, H-1b_{All}), 3.80 (dq, *J* = 9.8, 6.3 Hz, 1H, H-5), 3.61 (dd, *J* = 9.9, 3.4 Hz, 1H, H-3), 3.33 (s, 3H, -OCH₃), 2.88 – 2.48 (m, 4H, (CH₂)_{2Lev}), 2.18 (s, 3H, CH_{3Lev}), 2.11 (s, 3H, CH_{3Ac}), 1.20 (d, 3H, *J* = 6.3 Hz, CH_{3Rha}); ¹³C NMR (100 MHz, CDCl₃) δ 206.6 (CO_{Lev}), 172.2 (CO_{Lev}), 170.5 (CO_{Ac}), 133.5 (C-2_{All}), 118.1 (C-3_{All}), 96.9 (C-1), 77.0 (C-3), 72.9 (C-4), 68.4 (C-1_{All}), 68.2 (C-2), 66.7 (C-5), 57.8 (-OCH₃), 38.0 (CH_{2Lev}), 30.0 (CH_{3Lev}), 28.1 (CH_{2Lev}), 21.1 (CH_{3Ac}), 17.5 (CH_{3Rha}); HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₁₇H₂₆NaO₈ 381.1520; found 381.1514.

2-O-Acetyl-4-O-levulinoyl-3-O-methyl-α-L-rhamnopyranosyl 2,2,2-Trichloroacetimidate (S38).

Derivative **S37** (500 mg, 1.4 mmol, 1.0 equiv) was reacted according to the general procedure for the synthesis of trichloroacetimidate donors. Purification by silica gel flash chromatography (PE/EtOAc 7:3 to 4:6 + 1% Et₃N) gave trichloroacetimidate donor **S38** (560 mg, 87%, over three steps) as a yellow oil: $[\alpha]_D^{20} = -28$ (*c*, 2.4, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 8.72 (s, 1H, NH), 6.20 (d, *J* = 1.9 Hz, 1H, H-1), 5.49 (dd, *J* = 3.3, 2.0, 1H, H-2), 5.06 (t, *J* = 9.9 Hz, 1H, H-4), 3.99 (dq, *J* = 10.0, 6.3 Hz, 1H, H-5), 3.66 (dd, *J* = 9.9, 3.4 Hz, 1H, H-3), 3.37 (s, 3H, CH_{3Me}), 2.90 – 2.48 (m, 4H, (CH₂)_{2Lev}), 2.18 (s, 3H, CH_{3Lev}), 2.15 (s, 3H, CH_{3Ac}), 1.24 (d, 3H, *J* = 6.4 Hz, CH_{3Rha}); ¹³C NMR (100 MHz, CDCl₃) δ 206.5 (CO_{Lev}), 172.2 (CO_{Lev}), 170.1 (CO_{Ac}), 160.0 (C_{imine}), 95.1(C-1), 91.0 (CCl₃), 77.0 (C-3), 72.2 (C-4), 69.5 (C-5), 66.6 (C-2), 58.1 (CH_{3Me}), 38.0 (CH_{2Lev}), 29.9 (CH_{3Lev}), 28.0 (CH_{2Lev}), 21.0 (CH_{3Ac}), 17.5 (CH_{3Rha}); HRMS (ESI-TOF) *m/z* [M + Na]⁺ calcd for C₁₆H₂₂Cl₃NNaO₈ 484.0303; found 484.0288.

(5-Azido-1-pentyl) 2-*O*-Acetyl-4-*O*-levulinoyl-3-*O*-methyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-*O*-benzyl-4,6-*O*-benzylidene- β -D-glucopyranoside (S39).

Acceptor 13 (222 mg, 473 μ mol, 1.0 equiv) and donor S38 (263 mg, 567 μ mol, 1.2 equiv) were dried for 4 h under high vacuum and then dissolved in anhydrous Et₂O/DCE (11 mL, 5:1 v/v). Freshly activated 4 Å powdered molecular sieves (890 mg) were added and the suspension was stirred for 40 min at rt under Ar. Then, the reaction mixture was cooled to -10 °C and TMSOTf (8.6 μ L, 47 μ mol, 0.1 equiv) was injected. The mixture was stirred at -10 °C for 10 min under Ar and after that time 20 min at rt. The reaction was then quenched with Et₃N (63 μ L), filtered over Celite and rinsed with DCM. The filtrate was concentrated under reduced pressure and purified by flash chromatography (PE/EtOAc 8:2 to 65:35) to give disaccharide **S39** (336 mg, 92%) as a white amorphous solid: $[\alpha]_D^{20} = -41$ (c, 1.3, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.50-7.20 (m, 10H, *CH*-Ar), 5.54 (s, 1H, H-7), 5.41 (dd, *J* = 3.3, 1.7 Hz, 1H, H-2B), 5.18 (d, *J* = 1.3 Hz, 1H, H-1B), 4.89 (d, J = 10.8 Hz, 1H, CHHPh), 4.83 (t, J = 9.9 Hz, 1H, H-4B), 4.70 (d, J = 10.8 Hz, 1H, CH*H*Ph), 4.50 (d, *J* = 7.8 Hz, 1H, H-1), 4.36 (dd, *J* = 10.5, 4.9 Hz, 1H, H-6aA), 4.12 (dq, *J* = 12.6, 6.3 Hz, 1H, H-5B), 3.98 - 3.88 (m, 2H, H-3, H-1a_{linker}), 3.78 (t, J = 10.2 Hz, 1H, H-6bA), 3.61 - 3.283.52 (m, 3H, H-4, H-3B, H-1b_{linker}), 3.49 – 3.38 (m, 2H, H-2, H-5), 3.34 (s, 3H, CH_{3Me}), 3.23 (t, J = 6.8 Hz, 2H, H-5_{linker}), 2.81 - 2.60 (m, 2H, CH₂-3_{Lev}), 2.50 (t, J = 6.7 Hz, 2H, CH₂-2_{Lev}), 2.17 (s, 3H, CH_{3Lev}), 2.06 (s, 3H, CH_{3Ac}), 1.72 – 1.57 (m, 4H, H-2_{linker}, H-4_{linker}), 1.52- 1.41 (m, 2H, H- 3_{linker} , 0.80 (d, J = 6.2 Hz, 3H, CH₃-6B); ¹³C NMR (100 MHz, CDCl₃) δ 206.4 (CO_{Lev}), 172.1 (CO_{Lev}), 170.1 (CO_{Ac}), 137.9, 137.2 (2 × C-Ar), 129.3 – 126.3 (6 × C-Ar), 104.3 (C-1), 101.8 (C-7), 98.2 (C-1B), 82.7 (C-2), 79.3 (C-4), 77.1 (C-3B), 76.1 (C-3), 75.0 (CH₂Ph), 72.9 (C-4B), 70.2 (C-1_{linker}), 68.9 (C-6), 67.9 (C-2B), 66.5 (C-5), 66.3 (C-5B), 57.8 (CH_{3Me}), 51.4 (C-5_{Linker}), 38.0 (C-3_{Lev}), 30.0 (CH_{3Lev}), 29.4 (C-2_{linker}), 28.8 (C-4_{linker}), 28.1 (C-2_{Lev}), 23.5 (C-3_{linker}), 21.1 (CH_{3Ac}), 16.9 (C-6B); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₉H₅₁N₃NaO₁₃ 792.3314; found 792.3296.

(5-Azido-1-pentyl) 2-*O*-Acetyl-3-*O*-methyl- α -L-rhamnopyranosyl-(1 \rightarrow 3)-2-*O*-benzyl-4,6-*O*-benzylidene- β -D-glucopyranoside (S40).

Acetic acid (2.1 mL) and hydrazine monohydrate (124 µL, 2.6 mmol, 5.0 equiv) were slowly added to a stirred solution of disaccharide S39 (394 mg, 511 μ mol, 1.0 equiv) in anhydrous Py (3.3 mL) at 0 °C under Ar. Then, the reaction mixture was stirred from 0 °C to rt overnight. After this time, solvents were concentrated and co-evaporated with toluene $(3 \times)$. The residue was purified by silica gel flash chromatography (PE/EtOAc 85:15 to 8:2) to give alcohol S40 (340 mg, 99%) as a white amorphous solid: $[\alpha]_D^{20} = -36 (c, 1.5, CHCl_3)$; ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.23 (m, 10H, CH-Ar), 5.52 (s, 1H, H-7), 5.39 (dd, J = 3.0, 1.7 Hz, 1H, H-2B), 5.16 (d, J = 1.4 Hz, 1H, H-1B), 4.90 (d, J = 10.8 Hz, 1H, CHHPh), 4.70 (d, J = 10.8 Hz, 1H, CHHPh), 4.50 (d, J = 7.8 Hz, 1H, H-1), 4.35 (dd, J = 10.5, 4.9 Hz, 1H, H-6aA), 4.02 (dq, J = 9.0, 6.2 Hz, 1H, H-5B), 3.97 - 3.89 (m, 2H, H-3, H-1alinker), 3.77 (t, J = 10.2 Hz, 1H, H-6bA), 3.61 – 3.51 (m, 2H, H-4, H-1blinker), 3.48 – 3.36 (m, 4H, H-2, H-3B, H-4B, H-5), 3.40 (s, 3H, CH_{3Me}), 3.22 (t, J = 6.8 Hz, 2H, H-5_{linker}), 2.04 (s, 3H, CH_{3Ac}), 1.72 - 1.56 (m, 4H, H-2_{linker}, H-4_{linker}), 1.52 - 1.38 (m, 2H, H-3_{linker}), 0.93 (d, J = 1.56 (m, 2H, H-3_{linker})), 0.93 (d, J = 1.56 (m, 2H, H-3_{linke} 6.2 Hz, 3H, CH₃-6B); ¹³C NMR (100 MHz, CDCl₃) δ 170.1 (CO_{Ac}), 138.0, 137.2 (2 × C-Ar), 129.2 - 126.3 (6 × C-Ar), 104.3 (C-1), 101.8 (C-7), 98.7 (C-1B), 82.8 (C-2), 79.7 (C-3B), 79.3 (C-4), 76.5 (C-3), 75.0 (CH₂Ph), 71.8 (C-4B), 70.2 (C-1_{Linker}), 68.9 (C-6), 68.1 (C-5B), 67.5 (C-2B), 66.5 (C-5), 57.5 (CH_{3Me}), 51.4 (C-5_{Linker}), 29.4 (C-2_{Linker}), 28.8 (C-4_{Linker}), 23.5 (C-3_{Linker}), 21.0 (CH_{3Ac}), 17.2 (C-6B); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₄H₄₅N₃NaO₁₁ 694.2946; found 694.2934.

 $(5-Azido-1-pentyl) 2-O-Acetyl-6-deoxy-3-O-methyl-\alpha-L-talopyranosyl-(1 \rightarrow 3)-2-O-benzyl-4, 6-O-benzylidene-\beta-D-glucopyranoside (S41).$

To a solution of DMSO (172 μ L, 5 equiv) in anhydrous DCM (7 mL) at -10 °C under Ar were sequentially added phenyl dichlorophosphate (PDCP, 216 µL, 1.45 mmol, 3 equiv) and Et₃N (337 μ L, 5 equiv). Then, a solution of disaccharide **S40** (324 mg, 483 μ mol, 1.0 equiv) in DCM (4 mL) was added dropwise. The reaction mixture was stirred at -10 °C for 10 min, then allowed to slowly warm up to rt. After 1 h, DCM (20 mL) was added. The organic phase was washed with water (3 \times 20 mL). The aqueous layer was back extracted with DCM (20 mL). The combined organic phases were washed with brine (20 mL). Then, the solvents of the dried solution (MgSO₄) were concentrated under reduced pressure to give a ketone. To a cooled (-10 °C) solution of the ketone in MeOH/DCM (10 mL, 3:1 v/v), NaBH₄ (55 mg, 1.4 mmol, 3.0 equiv) was slowly added. The mixture was stirred from -10 °C to rt under Ar for 1 h. Then, the reaction mixture was diluted with DCM (10 mL) and the organic phase was washed with water (3×10 mL). The aqueous layer was extracted with DCM (2×5 mL). The combined organic phases were washed with brine, dried (MgSO₄) and then concentrated under reduced pressure. The residue was purified by silica gel flash chromatography (PE/EtOAc 9:1 to 8:2) to give alcohol S41 (213 mg, 66%, two steps) as a white solid: $[\alpha]_D^{20} = -57$ (c, 1.1, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.46 – 7.27 (m, 10H, CH-Ar), 5.50 (s, 1H, H-7), 5.33 (m, 1H, H-2B), 5.27 (s, 1H, H-1B), 4.90 (d, J = 10.9 Hz, 1H, CHHPh), 4.71 (d, J = 10.9 Hz, 1H, CHHPh), 4.51 (d, J = 7.8 Hz, 1H, H-1), 4.34 (dd, J = 10.5, 4.8 Hz, 1H, H-1)6aA), 4.15 (q, J = 6.3 Hz, 1H, H-5B), 3.97 (t, J = 9.1, 1H, H-3), 3.93 (dt, J = 9.5, 6.4 Hz, 1H, H- $1a_{linker}$), 3.77 (t, J = 10.2 Hz, 1H, H-6bA), 3.60 - 3.42 (m, 6H, H-1b_{linker}, H-2, H-3B, H-4, H-4B, H-5), 3.40 (s, 3H, CH_{3Me}), 3.21 (t, J = 6.9 Hz, 2H, H-5_{linker}), 2.04 (s, 3H, CH_{3Ac}), 1.70 – 1.55 (m, 4H, H-2_{linker}, H-4_{linker}), 1.50- 1.40 (m, 2H, H-3_{linker}), 0.94 (d, J = 6.6 Hz, 3H, CH₃-6B); ¹³C NMR (100 MHz, CDCl₃) δ 169.43 (CO_{Ac}), 138.1, 137.3 (2 × C-Ar), 129.4 – 126.3 (6 × C-Ar), 104.3 (C-1), 101.7(C-7), 98.7 (C-1B), 83.0 (C-2), 79.37 (C-4), 75.9 (C-3), 74.9 (CH₂Ph), 74.3 (C-3B), 70.3 (C-1_{Linker}), 69.6 (C-4B), 69.0 (C-6), 67.8 (C-5B), 66.9 (C-2B), 66.4 (C-5), 56.4 (CH_{3Me}), 51.4 (C-5_{Linker}), 29.4 (C-2_{Linker}), 28.7 (C-4_{Linker}), 23.5 (C-3_{Linker}), 21.2 (CH_{3Ac}), 16.1 (C-6B); HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₃₄H₄₅N₃NaO₁₁ 694.2946; found 694.2945.

$(5-Amino-1-pentyl) \qquad \beta-D-Glucopyranosyl-(1\rightarrow 3)-4-O-acetyl-6-deoxy-2-O-methyl-\alpha-L-talopyranosyl-(1\rightarrow 3)-\beta-D-glucopyranoside Hydrochloride (4).$

To a solution of trisaccharide 25 (983 mg, 1.1 mmol, 1.0 equiv) in anhydrous MeOH/DCM (0.3 mL, 5:2 v/v) was added hydrazine acetate (209 mg, 2.3 mmol, 2.0 equiv). After being stirred overnight at rt under Ar, the reaction mixture was concentrated under reduced pressure and coevaporated with toluene $(3 \times)$ to give an alcohol. For analytical data, a small sample was purified by silica gel flash chromatography (DCM/MeOH 98:2): $\left[\alpha\right]_{D}^{20} = -52 (c \ 1.2, CHCl_3); {}^{1}H NMR (400)$ MHz, CDCl₃) δ 7.50–7.27 (m, 15H, CH-Ar), 5.51 (s, 1H, H-7A*), 5.49 (s, 1H, H-7C*), 5.35 (s, 1H, H-1B), 4.99 (d, J = 11.2 Hz, 1H, CHHPh), 4.93 (br s, 1H, H-4B), 4.66 (d, J = 11.2 Hz, 1H, CHHPh), 4.52 (d, J_{1A,2A} = 7.7 Hz, 1H, H-1A), 4.42 (d, J_{1C,2C} = 7.6 Hz, 1H, H-1C), 4.33 (td, J = 11.0, 4.9 Hz, 2H, H-6aA, H-6aC), 4.22 (dd, J = 13.9, 6.4 Hz, 1H, H-5B), 3.92–3.88 (m, 1H, H-1alinker), 3.91 (t, J = 9.7 Hz, 1H, H-3A), 3.86 (t, J = 4.1 Hz, 1H, H-3B), 3.79–3.71 (m, 3H, H-3C, H-6bA, H-6bC), 3.55–3.51 (m, 1H, H-1b_{linker}), 3.52 (t, J = 9.8 Hz, 1H, H-4A), 3.44–3.34 (m, 4H, H-2A, H-4C, H-5A, H-5C), 3.35–3.31 (m, 2H, H-2B, H-2C), 3.21 (s, 3H, CH_{3Me}), 3.20 (t, J = 7.0 Hz, 2H, H-5_{linker}), 1.69–1.56 (m, 4H, H-2_{linker}, H-4_{linker}), 1.50–1.42 (m, 2H, H-3_{linker}), 0.86 (s, 9H, C(CH₃)₃), 0.70 (d, J = 6.5 Hz, 3H, CH_{3Tal}), 0.10, 0.04 (2 × s, 6H, 2 × CH₃); ¹³C NMR (100 MHz, CDCl₃) δ 173.0 (CO), 138.2, 137.4, 137.2 (3 × C-Ar), 129.5–126.3 (9 × CH-Ar), 105.7 (C-1C), 104.2 (C-1A), 102.2 (C-7A*), 101.7 (C-7C*), 99.7 (C-1B), 83.1 (C-2A), 81.5 (C-4C), 79.4 (C-4A), 78.1 (C-2B), 76.9 (C-3B), 76.8 (C-3A), 75.4 (C-2C), 74.9 (CH2Ph), 74.2 (C-3C), 71.1 (C-4B), 70.2 (C-1_{linker}), 68.9 (C-6A), 68.8 (C-6C), 66.6 (C-5A), 66.5 (C-5C), 64.7 (C-5B), 60.0 (CH_{3Me}), 51.4 (C-5_{linker}), 29.4 (C-2_{linker}), 28.7 (C-4_{linker}), 25.9 (C(CH₃)₃), 23.5 (C-3_{linker}), 21.1 (CH_{3Ac}) , 18.5 $(C(CH_3)_3)$, 15.7 (CH_{3Tal}) , -4.41, -4.44 $(2 \times CH_3)$; HRMS (ESI-TOF) m/z [M + Na]⁺ calcd for C₅₃H₇₃N₃NaO₁₆Si 1058.4652; found 1058.4690.

To a solution of the latter alcohol in anhydrous THF (5 mL) was added TREAT-HF (372 μ L, 2.3 mmol, 15 equiv). The mixture was refluxed for 24 h under Ar, then additional TREAT-HF (124 μ L, 760 μ mol, 5.0 equiv) was added and the reaction was refluxed for another 24 h under Ar. The solution was cooled to rt and diluted with EtOAc (10 mL). The organic phase was washed with a saturated NaHCO₃(aq) solution (2 × 5 mL) and brine (10 mL). The solvents of the dried (MgSO₄) solution were concentrated under reduced pressure and the residue was purified by silica gel flash chromatography (PE/EtOAc 3:7 to 1:9) to give (5-azido-1-pentyl) 4,6-*O*-benzylidene- β -D-glucopyranosyl-(1 \rightarrow 3)-4-*O*-acetyl-6-deoxy-2-*O*-methyl- α -L-talopyranosyl-(1 \rightarrow 3)-2-*O*-benzyl-4,6-*O*-benzylidene- β -D-glucopyranoside (128 mg, 92%, two steps) as a white amorphous solid: *R*_f 0.4 (DCM/MeOH 98:2); [α]_D²⁰ = -67 (*c* 1.2, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.51–7.27 (m, 15H, CH-Ar), 5.54 (s, 1H, H-7A*), 5.49 (s, 1H, H-7C*), 5.35 (s, 1H, H-1B), 5.00 (d, *J* = 11.4 Hz, 1H, CHHPh), 4.92 (br s, 1H, H-4B), 4.65 (d, *J* = 11.4 Hz, 1H, CHHPh), 4.53 (d, *J*_{1A,2A} = 7.8 Hz, 1H, H-1A), 4.47 (d, *J*_{1C,2C} = 7.5 Hz, 1H, H-1C), 4.35 (dd, *J* = 10.5, 4.8 Hz, 2H, H-6aA, H-6aC),

4.24 (dd, J = 13.9, 6.5 Hz, 1H, H-5B), 3.96 (t, J = 9.7 Hz, 1H, H-3A), 3.95–3.91 (m, 2H, H-1a_{linker}, H-3B), 3.82 (t, J = 9.6 Hz, 1H, H-3C), 3.77 (td, J = 10.8, 6.2 Hz, 2H, H-6bA, H-6bC), 3.59–3.52 (m, 3H, H-1b_{linker}, H-4A, H-4C), 3.50–3.44 (m, 3H, H-2A, H-5A, H-5C), 3.40 (dd, J = 9.1, 7.8 Hz, 1H, H-2C), 3.32 (d, J = 3.5 Hz, 1H, H-2B), 3.20 (t, J = 7.8 Hz, 2H, H-5_{linker}), 3.19 (s, 3H, CH_{3Me}), 2.12 (s, 3H, CH_{3Ac}), 1.69–1.56 (m, 4H, H-2_{linker}, H-4_{linker}), 1.50–1.40 (m, 2H, H-3_{linker}), 0.72 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR (100 MHz, CDCl₃) δ 173.3 (CO), 138.2, 137.2, 137.1 (3 × C-Ar), 129.5–126.4 (9 × CH-Ar), 105.3 (C-1C), 104.2 (C-1A), 102.2 (C-7A*), 102.0 (C-7C*), 99.5 (C-1B), 83.1 (C-2A), 80.4 (C-4C), 79.4 (C-4A), 78.1 (C-2B), 77.4 (C-3B), 76.9 (C-3A), 74.9 (CH₂Ph), 74.6 (C-2C), 73.1 (C-3C), 71.1 (C-4B), 70.2 (C-1_{linker}), 68.9 (C-6A), 68.8 (C-6C), 66.6 (C-5A), 66.5 (C-5C), 64.5 (C-5B), 59.9 (CH_{3Me}), 51.3 (C-5_{linker}), 29.4 (C-2_{linker}), 28.7 (C-4_{linker}), 23.5 (C-3_{linker}), 21.4 (CH_{3Ac}), 15.7 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₄₇H₆₀N₃O₁₆922.3968; found 922.3986; m/z [M + Na]⁺ calcd for C₄₇H₅₉N₃NaO₁₆944.3788; found 944.3807; m/z [2M + Na]⁺ calcd for C₉₄H₁₁₈N₆NaO₃₂1865.7683; found 1865.7707.

The latter compound (42.4 mg, 46.0 μ mol) was reacted according to the general procedure for hydrogenolysis using the H-Cube system giving target trisaccharide **4** (24 mg, 78%) as a white amorphous powder: $[\alpha]_D^{20} = -56$ (*c* 0.11, H₂O); ¹H NMR (400 MHz, D₂O) δ 5.40–5.36 (m, 2H, H-1B, H-4B), 4.58 (d, $J_{1,2} = 7.8$ Hz, 1H, H-1A), 4.49–4.44 (m, 1H, H-5B), 4.47 (d, $J_{1,2} = 8.2$ Hz, 1H, H-1C), 4.37 (t, $J_{2,3} \approx J_{3,4} \approx 3.8$ Hz, 1H, H-3B), 3.95–3.88 (m, 3H, H-6aA, H-1a_{linker}, H-6aC), 3.76–3.65 (m, 4H, H-6bA, H-1b_{linker}, H-6bC, H-2B), 3.61 (t, $J_{2,3} \approx J_{3,4} \approx 8.8$ Hz, 1H, H-3A), 3.52–3.35 (m, 6H, H-3C, H-5A, H-5C, H-4A, H-4C, H-2A), 3.42 (s, 3H, OCH₃), 3.28 (dd, $J_{2,3} = 9.1$ Hz, $J_{1,2} = 7.9$ Hz, 1H, H-2C), 3.00 (t, J = 7.5 Hz, 2H, H-5ab_{linker}), 2.17 (s, 3H, COCH₃), 1.73–1.63 (m, 4H, H-4ab_{linker}, H-2ab_{linker}), 1.50–1.42 (m, 2H, H-3ab_{linker}), 1.09 (d, $J_{5,6} = 6.6$ Hz, 3H, H-6B); ¹³C NMR (100 MHz, D₂O) δ 174.5 (COCH₃), 102.6 (C-1A), 100.8 (C-1C), 95.5 (C-1B), 83.4 (C-3A), 78.3 (C-2B), 76.6, 76.5 (C-5A, C-5C), 74.4 (C-2C), 73.6 (C-2A), 71.5 (C-3B), 70.8 (C-6C), 70.2, 69.9 (C-4B, C-4A*), 68.6 (C-4C*), 66.1 (C-5B), 61.3 (C-6A, C-1_{linker}), 58.5 (OCH₃), 40.0 (C-5_{linker}), 28.8 (C-2_{linker}), 27.0 (C-4_{linker}), 22.7 (C-3_{linker}), 21.0 (COCH₃), 15.8 (C-6B); HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₆H₄₈NO₁₆ 630.2973; found 630.3018.
(5-Amino-1-pentyl) β -D-Glucopyranosyl-(1 \rightarrow 3)-6-deoxy-2-*O*-methyl- α -L-talopyranosyl-(1 \rightarrow 3)- β -D-glucopyranoside Hydrochloride (3).

NaOMe (25% in MeOH, 40 μ L, 168 μ mol, 1.1 equiv) was added to a solution of trisaccharide 25 (173 mg, 153 μ mol, 1.0 equiv) in anhydrous MeOH/DCM (5 mL, 2:1 ν/ν). The reaction mixture was stirred overnight at rt under Ar. Dowex H⁺ resin was added to neutralize the reaction, then the suspension was filtered off and the solvents were concentrated under reduced pressure and coevaporated with toluene $(3 \times)$. The residue was dissolved in THF (8 mL). The solution was cooled to 0 °C and TBAF (1.5 mL, 1.0 M solution in THF, 1.5 mmol, 10 equiv) was added. After being stirred under Ar from 0 °C to rt overnight, the mixture was concentrated under reduced pressure. Purification by silica gel flash chromatography (DCM/MeOH 99:1 to 98:2) gave (5-azido-1-pentyl) 4,6-*O*-benzylidene- β -D-glucopyranosyl-(1 \rightarrow 3)-6-deoxy-2-*O*-methyl- α -L-talopyranosyl-(1 \rightarrow 3)-2-*O*-benzyl-4,6-*O*-benzylidene- β -D-glucopyranoside (120 mg, 89%, two steps) as a white foam: R_f 0.5 (DCM/MeOH 95:5); $[\alpha]_D^{20} = -58 (c \ 1.3, CHCl_3)$; ¹H NMR (400 MHz, CDCl_3) δ 7.50–7.32 (m, 15H, CH-Ar), 5.54 (s, 1H, H-7A*), 5.49 (s, 1H, H-7C*), 5.27 (d, J = 1.5 Hz, 1H, H-1B), 5.05 (d, J = 11.5 Hz, 1H, CHHPh), 4.58 (d, J = 11.5 Hz, 1H, CHHPh), 4.52 (d, J_{1A,2A} = 7.8 Hz, 1H, H-1A), 4.51 (d, *J*_{1C,2C} = 7.6 Hz, 1H, H-1C), 4.34 (td, *J* = 10.3, 5.2, 4.8 Hz, 2H, H-6aA, H-6aC), 4.05 (dd, J = 13.7, 6.4 Hz, 1H, H-5B), 3.97–3.90 (m, 3H, H-1a_{linker}, H-3A, H-3B), 3.84–3.74 (m, 3H, H-3C, H-6bA, H-6bC), 3.61–3.45 (m, 8H, H-1blinker, H-2B, H-2C, H-4A, H-4B, H-4C, H-5A, H-5C), 3.42 (dd, J = 9.2, 7.8 Hz, 1H, H-2A), 3.19 (t, J = 7.2 Hz, 2H, H-5_{linker}), 3.10 (s, 3H, CH_{3Me}), 1.69–1.56 (m, 4H, H-2_{linker}, H-4_{linker}), 1.48–1.40 (m, 2H, H-3_{linker}), 0.87 (d, J = 6.5 Hz, 3H, CH_{3Tal}); ¹³C NMR $(100 \text{ MHz}, \text{CDCl}_3) \delta 138.3, 137.2, 137.1 (3 \times \text{C-Ar}), 129.5-126.4 (9 \times \text{CH-Ar}), 104.2 (C-1A),$ 102.1 (C-7A*), 102.0 (C-7C*), 101.6 (C-1C), 98.4 (C-1B), 83.5 (C-2A), 80.4 (C-4C), 79.4 (C-4A), 79.3 (C-2B), 77.2 (C-3A), 75.1 (CH₂Ph), 74.9 (C-2C), 74.2 (C-3B), 73.3 (C-3C), 70.7 (C-4B), 70.2 (C-1_{linker}), 68.9 (C-6A), 68.8 (C-6C), 66.9 (C-5A), 66.8 (C-5C), 66.5 (C-5B), 59.5 (CH_{3Me}), 51.4 (C-5linker), 29.4 (C-2linker), 28.7 (C-4linker), 23.5 (C-3linker), 16.0 (CH_{3Tal}); HRMS (ESI-TOF) m/z [M $+ Na^{+}$ calcd for C₄₅H₅₇N₃NaO₁₅ 902.3682; found 902.3659.

The latter compound (62.8 mg, 71.4 μ mol) was reacted according to the general procedure for hydrogenolysis using the H-Cube system giving target trisaccharide **3** (35 mg, 78%) as a white amorphous powder: [α]_D²⁰ = -53 (*c* 0.18, H₂O); ¹H NMR (400 MHz, D₂O) δ 5.38 (s, 1H, H-1B), 4.63 (d, $J_{1,2} = 7.8$ Hz, 1H, H-1C), 4.47 (d, $J_{1,2} = 8.1$ Hz, 1H, H-1A), 4.28 (q, $J_{5,6} = 6.5$ Hz, 1H, H-5B), 4.13 (t, $J_{2,3} \approx J_{3,4} \approx 3.3$ Hz, 1H, H-3B), 3.94–3.88 (m, 3H, H-6aC, H-6aA, H-1a_{linker}), 3.86 (br s, 1H, H-4_B), 3.79 (br s, 1H, H-2_B), 3.76–3.66 (m, 3H, H-6bA, H-1b_{linker}, H-6bC), 3.61 (t, $J_{2,3} \approx J_{3,4} \approx 8.9$ Hz, 1H, H-3A), 3.53–3.32 (m, 7H, H-3C, H-5A, H-5C, H-4A, H-4C, H-2A, H-2C), 3.42 (s, 3H, OCH₃), 2.99 (t, J = 7.5 Hz, 2H, H-5ab_{linker}), 1.73–1.62 (m, 4H, H-4ab_{linker}, H-2ab_{linker}), 1.49–1.41 (m, 2H, H-3ab_{linker}), 1.21 (d, $J_{5,6} = 6.5$ Hz, 3H, H-6B); ¹³C NMR (100 MHz, D₂O) δ 102.6 (C-

1A), 101.9 (C-1C), 98.4 (C-1B), 83.1 (C-3A), 79.2 (C-2B), 76.6, 76.5 (C-5A, C-5C), 76.1 (C-3C), 74.4, 74.3, 73.6 (C-2A, C-2B, C-2C), 70.6 (C-6C), 70.2, 70.1 (C-4B, C-4A*), 68.7 (C-4C*), 68.2 (C-5B), 61.4, 61.3 (C-6A, C-1_{linker}), 58.6 (OCH₃), 40.0 (C-5_{linker}), 28.8 (C-2_{linker}), 27.0 (C-4_{linker}), 22.7 (C-3_{linker}), 16.0 (C-6B); HRMS (ESI-TOF) m/z [M + H]⁺ calcd for C₂₄H₄₆NO₁₅ 588.2867; found 588.2849.

(5-Amino-1-pentyl) β -D-Glucopyranosyl-(1 \rightarrow 3)-2-O-acetyl-6-deoxy- α -L-talopyranosyl-(1 \rightarrow 3)- β -D-glucopyranoside Hydrochloride (2).

Protected trisaccharide **39** (50 mg, 42 μ mol, 1.0 equiv) was reacted according to the general procedure for hydrogenolysis under heterogeneous conditions to give target trisaccharide **2** (28 mg, quant.) as a white foam: $[\alpha]_D^{20} = -37$ (*c* 0.27, H₂O); ¹H NMR (400 MHz, D₂O) δ 5.22–5.19 (m, 2H, H-1B, H-2B), 4.63 (d, $J_{1,2} = 7.9$ Hz, 1H, H-1C), 4.45 (d, $J_{1,2} = 8.1$ Hz, 1H, H-1A), 4.36 (q, $J_{5,6} = 6.6$ Hz, 1H, H-5B), 4.27–4.24 (m, 1H, H-3B), 3.98–3.82 (m, 4H, H-4B, H-6aC, H-6aA, H-1a_{linker}), 3.75–3.64 (m, 3H, H-6bA, H-1b_{linker}, H-6bC), 3.58 (t, $J_{2,3} \approx J_{3,4} \approx 8.4$ Hz, 1H, H-3A), 3.52–3.29 (m, 7H, H-3C, H-5A, H-5C, H-4A, H-4C, H-2A, H-2C), 3.06–2.97 (m, 2H, H-5ab_{linker}), 2.16 (s, 3H, COC*H*₃), 1.73–1.61 (m, 4H, H-4ab_{linker}, H-2ab_{linker}), 1.49–1.41 (m, 2H, H-3ab_{linker}), 1.23 (d, $J_{5,6} = 6.4$ Hz, 3H, H-6B); ¹³C NMR (100 MHz, D₂O) δ 176.2 (COCH₃), 104.7 (C-1A), 104.6 (C-1C), 101.4 (C-1B), 85.0 (C-3A), 78.62, 78.60 (C-5A, C-5C), 78.3 (C-3C), 76.4 (C-2C), 75.72, 75.66 (C-2A, C-3B), 72.9 (C-2B, C-6C), 72.1 (C-4A*), 71.2 (C-4B), 70.9 (C-4C*), 69.9 (C-5B), 63.5, 63.3 (C-6A, C-1_{linker}), 42.2 (C-5_{linker}), 30.9 (C-2_{linker}), 29.2 (C-4_{linker}), 24.8 (C-3_{linker}), 23.4 (COCH₃), 18.1 (C-6B); HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₅H₄₆NO₁₆ 616.2817; found 616.2775.

(5-Amino-1-pentyl) β -D-Glucopyranosyl- $(1\rightarrow 3)$ -6-deoxy- α -L-talopyranosyl- $(1\rightarrow 3)$ - β -D-glucopyranoside Hydrochloride (1).

Trisaccharide **40** (20.2 mg, 17.7 μ mol, 1.0 equiv) was reacted according to the general procedure for hydrogenolysis under heterogeneous conditions to give target trisaccharide **1** (10.8 mg, quant.) as a white amorphous powder: $[\alpha]_D{}^{20} = -42$ (*c* 0.48, H₂O); ¹H NMR (400 MHz, D₂O) δ 5.25 (br s, 1H, H-1B), 4.66 (d, $J_{1,2} = 7.7$ Hz, 1H, H-1C), 4.47 (d, $J_{1,2} = 8.0$ Hz, 1H, H-1A), 4.33 (dt, $J_{4,5} = 12.9$ Hz, $J_{5,6a} \approx J_{5,6b} \approx 6.4$ Hz, 1H, H-5B), 4.15–4.07 (m, 2H, H-2B, H-3B), 3.97–3.87 (m, 4H, H-4B, H-6aA, H-6aC, H-1a_{linker}), 3.76–3.59 (m, 4H, H-1b_{linker}, H-6bA, H-6bC, H-3A), 3.54–3.33 (m, 7H, H-3C, H-5A, H-5C, H-4A, H-4C, H-2A, H-2C), 3.00 (t, J = 6.9 Hz, 2H, H-5ab_{linker}), 1.73–1.60 (m, 4H, H-4ab_{linker}, H-2ab_{linker}), 1.50–1.40 (m, 2H, H-3ab_{linker}), 1.24 (d, $J_{5,6} = 6.4$ Hz, 3H, H-6B); ¹³C NMR (100 MHz, D₂O) δ 104.7 (C-1A), 104.2 (C-1B), 103.9 (C-1C), 84.9 (C-3A), 78.7 (C-5C), 78.6 (C-5A), 78.3 (C-3C), 76.5 (C-2C), 76.3 (C-3B), 75.8 (C-2A), 72.9 (C-6C), 72.6 (C-4B), 72.4 (C-2B), 72.3 (C-4C), 70.9 (C-4A), 70.3 (C-5B), 63.5, 63.4 (C-6A, C-1_{linker}), 42.1 (C-5_{linker}), 30.9 (C-2_{linker}), 29.2 (C-4_{linker}), 24.8 (C-3_{linker}), 18.2 (C-6B); HRMS (ESI-TOF) *m/z* [M + H]⁺ calcd for C₂₃H₄₄NO₁₅ 574.2711; found 574.2762.

(5-Amino-1-pentyl) β -D-Glucopyranosyl-(1 \rightarrow 3)-2,4-di-*O*-acetyl-6-deoxy- α -L-talopyranosyl-(1 \rightarrow 3)- β -D-glucopyranoside Hydrochloride (5).

Trisaccharide **41** (45.0 mg, 36.8 μ mol) was reacted according to the general procedure for hydrogenolysis under heterogeneous conditions giving deprotected trisaccharide **5** (26 mg, quant.) as a white foam: $[\alpha]_D{}^{20} = -40$ (*c* 0.17, H₂O); ¹H NMR (400 MHz, D₂O) δ 5.40 (br s, 1H, H-4B), 5.26–5.22 (m, 2H, H-1B, H-2B), 4.60 (d, $J_{1,2} = 7.9$ Hz, 1H, H-1C), 4.54 (q, $J_{5,6} = 6.5$ Hz, 1H, H-5B), 4.49 (t, $J_{2,3} \approx J_{3,4} \approx 3.5$ Hz, 1H, H-3B), 4.45 (d, $J_{1,2} = 8.1$ Hz, 1H, H-1A), 3.96–3.83 (m, 3H, H-6aC, H-6aA, H-1a_{linker}), 3.74–3.65 (m, 3H, H-6bA, H-1b_{linker}, H-6bC), 3.62–3.60 (m, 1H, H-3A), 3.50–3.35 (m, 6H, H-3C, H-5A, H-5C, H-4A, H-4C, H-2A), 3.22 (t, $J_{1,2} \approx J_{2,3} \approx 8.3$ Hz, 1H, H-2C), 3.00 (t, J = 7.4 Hz, 2H, H-5ab_{linker}), 2.22 (s, 3H, COC*H*₃), 2.18 (s, 3H, COC*H*₃), 1.73–1.62 (m, 4H, H-4ab_{linker}, H-2ab_{linker}), 1.46–1.41 (m, 2H, H-3ab_{linker}), 1.13 (d, $J_{5,6} = 6.5$ Hz, 3H, H-6B); ¹³C NMR (100 MHz, D₂O) δ 174.5, 173.9 (2 × COCH₃), 102.6 (C-1A), 101.9 (C-1C), 99.4 (C-1B), 83.0 (C-3A), 76.51, 76.46 (C-5A, C-5C), 76.1 (C-3C), 74.2 (C-2A), 73.4 (C-2C), 71.7 (C-3B), 70.7 (C-6C), 70.2 (C-4B), 70.0, 69.9 (C-2B, C-4A*), 68.7 (C-4C*), 66.3 (C-5B), 61.3, 61.2 (C-6B, C-1_{linker}), 40.0 (C-5_{linker}), 28.8 (C-2_{linker}), 27.0 (C-4_{linker}), 22.7 (C-3_{linker}), 21.2, 21.0 (2 × COCH₃), 15.7 (C-6B); HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₇H₄₈NO₁₇ 658.2922; found 658.2925.

$(5-Amino-1-pentyl) 2-O-Acetyl-6-deoxy-3-O-methyl-\alpha-L-talopyranosyl-(1 \rightarrow 3)-\beta-D-glucopyranoside Hydrochloride (6).$

Disaccharide **18** (15.4 mg, 20.2 μ mol) or disaccharide **S41** (50 mg, 74 μ mol) was reacted according to the representative procedure for hydrogenolysis under heterogeneous conditions giving target disaccharide **6** (10.2 mg or 38 mg, quant.) as a white amorphous powder: $[\alpha]_D^{20} = -16$ (*c* 0.12, H₂O); ¹H NMR (400 MHz, D₂O) δ 5.25–5.23 (m, 1H, H-2B), 5.21 (s, 1H, H-1B), 4.45 (d, J_{1,2} = 8.1 Hz, 1H, H-1A), 4.34 (q, J_{5,6} = 6.5 Hz, 1H, H-5B), 3.97–3.89 (m, 3H, H-4B, H-6aA, H-1a_{linker}), 3.78 (t, J_{2,3} \approx J_{3,4} \approx 3.6 Hz, 1H, H-3B), 3.74–3.65 (m, 2H, H-1b_{linker}, H-6bA), 3.58 (t, J_{2,3} \approx J_{3,4} \approx 8.9 Hz, 1H, H-3A), 3.47–3.34 (m, 3H, H-5A, H-4A, H-2A), 3.41 (s, 3H, OCH₃), 3.07–2.98 (m, 2H, H-5ab_{linker}), 2.14 (s, 3H, COCH₃), 1.73–1.62 (m, 4H, H-4ab_{linker}, H-2ab_{linker}), 1.49–1.41 (m, 2H, H-3ab_{linker}), 1.23 (d, J_{5,6} = 6.6 Hz, 3H, H-6B); ¹³C NMR (100 MHz, D₂O) δ 173.9 (COCH₃), 102.6 (C-1A), 99.5 (C-1B), 82.9 (C-3A), 76.5 (C-5A); 74.3 (C-3B, C-2A), 70.7 (C-6A), 68.8 (C-4A), 68.6 (C-2B), 68.1 (C-4B), 67.7 (C-5B), 61.3 (C-1_{linker}), 56.1 (OCH₃), 40.0 (C-5_{linker}), 28.8 (C-2_{linker}), 27.0 (C-4_{linker}), 22.7 (C-3_{linker}), 21.1 (COCH₃), 16.0 (C-6B); HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₀H₃₈NO₁₁ 468.2445; found 468.2449.

(5-Amino-1-pentyl) 2,4-Di-*O*-acetyl-6-deoxy-3-*O*-methyl- α -L-talopyranosyl- $(1\rightarrow 3)$ - β -D-glucopyranoside Hydrochloride (7).

Disaccharide **19** (99 mg, 14 μ mol) was reacted according to the representative procedure for hydrogenolysis under heterogeneous conditions giving target disaccharide **7** (76 mg, quant.) as a white amorphous powder: $[\alpha]_D^{20} = -24$ (*c* 0.08, H₂O); ¹H NMR (400 MHz, D₂O) δ 5.37 (br d, *J*_{3,4} = 3.2 Hz, 1H, H-4B), 5.27 (br d, *J*_{2,3} = 3.8 Hz, 1H, H-2B), 5.25 (s, 1H, H-1B), 4.52 (q, *J*_{5,6} = 6.6 Hz, 1H, H-5B), 4.45 (d, *J*_{1,2} = 8.1 Hz, 1H, H-1A), 3.97 (t, *J*_{2,3} \approx *J*_{3,4} \approx 3.6 Hz, 1H, H-3B), 3.95–3.88 (m, 2H, H-6aA, H-1a_{linker}), 3.74–3.65 (m, 2H, H-1b_{linker}, H-6bA), 3.62–3.57 (m, 1H, H-3A), 3.47–3.34 (m, 3H, H-5A, H-4A, H-2A), 3.40 (s, 3H, OCH₃), 3.06–2.97 (m, 2H, H-5ab_{linker}), 2.21 (s, 3H, COCH₃), 2.16 (s, 3H, COCH₃), 1.73–1.62 (m, 4H, H-4ab_{linker}, H-2ab_{linker}), 1.49–1.41 (m, 2H, H-3ab_{linker}), 1.13 (d, *J*_{5,6} = 6.6 Hz, 3H, H-6B); ¹³C NMR (100 MHz, D₂O) δ 174.4, 173.7 (2 × COCH₃), 102.6 (C-1A), 99.6 (C-1B), 83.1 (C-3A), 76.5 (C-5A), 74.3 (C-2A), 73.6 (C-3B), 70.8 (C-6A), 70.1 (C-4B), 68.7 (C-4A), 68.1 (C-2B), 66.2 (C-5B), 61.3 (C-1_{linker}), 57.3 (OCH₃), 40.0 (C-5_{linker}), 28.8 (C-2_{linker}), 27.0 (C-4_{linker}), 22.7 (C-3_{linker}), 21.1, 20.9 (2 × COCH₃), 15.7 (C-6B); HRMS (ESI-TOF) *m*/*z* [M + H]⁺ calcd for C₂₂H₄₀NO₁₂ 510.2551; found 510.2541.

Biotinylated Disaccharide 6 (BIO-6).

Disaccharide **6** (10 mg, 20 μ mol, 1.0 equiv) was reacted according to the general procedure for the synthesis of biotinylated oligosaccharides to give derivative **BIO-6** (11 mg, 69%) as a white amorphous powder: $[\alpha]_D^{20} = 12$ (*c*, 1.0, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 5.32 (s, 1H, H-1B), 5.28 (s, 1H, H-2B), 4.50 (dd, J = 7.1, 4.7 Hz, 1H, H-8_{biotin}), 4.42-4.35 (m, 1H, H-5B), 4.34-4.28 (m, 1H, H-7_{biotin}), 4.28-4.22 (m, 1H, H-1A), 3.96-3.83 (m, 2H, H-6aA, H-1_{linker}), 3.76 (s, 1H, H-4B), 3.73-3.62 (m, 2H, H-3B, H-1_{linker}), 3.60-3.50 (m, 2H, H-3A, H-6bA), 3.41 (s, 3H, *CH*_{3Me}), 3.38-3.27 (m, 2H, H-2A, H-5H), 3.26-3.27 (m, 5H, H-5_{linker}, H-6_{biotin}, H-1'_{biotin}), 2.93 (dd, J = 12.7, 4.7 Hz, 1H, H-9a_{biotin}), 2.71 (d, J = 13.0 Hz, 1H, H-9b_{biotin}), 2.24-2.14 (m, 4H, H-2_{biotin}, H-5'_{biotin}), 2.10 (s, 3H, *CH*_{3Ac}), 1.80-1.28 (m, 18H, H-2_{linker}, H-3_{linker}, H-4_{linker}, H-3_{biotin}, H-4_{biotin}, H-5'_{biotin}, H-2'_{biotin}, H-3'_{biotin}), 1.26 (d, J = 6.5 Hz, 3H, *CH*₃-6B); ¹³C NMR (100 MHz, CDCl₃) δ 176.0-171.8 (3 × CO), 166.1 (C-10_{biotin}), 104.2 (C-1A), 100.2 (C-1B), 83.1 (C-3A), 77.8 (C-5A), 75.9, 75.8 (C-2A, C-3B), 70.7 (C-6A), 70.1 (C-4A), 70.1 (C-4B), 69.1 (C-2B), 68.0 (C-5B), 63.4 (C-7_{biotin}), 62.7 (C-1_{linker}), 61.6 (C-8_{biotin}), 57.0 (C-6_{biotin}), 56.6 (*C*H_{3Me}), 41.04 (C-9_{biotin}), 40.3, 40.2 (C-1'_{biotin}, C-5_{linker}), 37.0, 36.8 (C-2_{biotin}, C-5'_{biotin}), 30.3-24.4 (9 × CH₂), 20.9 (*C*H_{3Ac}), 16.7 (C-6B); HRMS (ESI-TOF) *m*/z [M + Na]⁺ calcd for C₃₆H₆₂N4NaO₁₄S 829.3875; found 829.3881.

Biotinylated Disaccharide 7 (BIO-7).

Disaccharide **7** (10 mg, 18 μ mol, 1.0 equiv) was reacted according to the general procedure for the synthesis of biotinylated oligosaccharides to give derivative **BIO-7** (11 mg, 69%) as a white amorphous powder: $[\alpha]_D^{20} = -8$ (*c*, 0.9, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 5.36 (s, 1H, H-1B), 5.24 (m, 2H, H-2B and H-4B), 4.52 (m, 2H, H-5B, H-8_{biotin}), 4.31 (dd, *J* = 7.6, 4.3 Hz, 1H, H-7_{biotin}), 4.24 (m, 1H, H-1A), 3.89 (m, 2H, H-6aA, H-1a_{linker}), 3.78 (t, *J* = 3.4 Hz, 1H, H-3B), 3.68 (m, 1H, H-1b_{linker}), 3.54 (m, 2H, H-6aA and H-3A), 3.37 (s, 3H, CH_{3Me}), 3.36 – 3.29 (m, 3H, H-2A, H-4A, H-5A), 3.26 – 3.12 (m, 5H, H-5_{linker}, H-1'_{biotin}, H-6_{biotin}), 2.93 (dd, *J* = 12.7, 4.8, 1H, H-9a _{biotin}), 2.71 (d, *J* = 13.2 Hz, 1H, H-9b _{biotin}), 2.19 (m, 4H, H-2_{biotin}, H-5'_{biotin}), 2.11, 2.09 (2 × s, 6H, 2 × CH_{3Ac}), 1.79 – 1.26 (m, 18H, 9 × CH₂), 1.12 (d, *J* = 6.4 Hz, 3H, CH₃-6B); ¹³C NMR (100 MHz, CDCl₃) δ 176.0 - 172.0 (4 × CO), 166.1 (C-10_{biotin}), 104.2 (C-1A), 100.2 (C-1B), 82.8 (C-3A), 77.8 (C-5A), 75.9 (C-2A), 74.9 (C-3B), 70.7 (C-6A), 70.4 (C-4B), 70.1 (C-4A), 68.4 (C-2B), 66.4 (C-5B), 63.4 (C-7_{biotin}), 62.7 (C-1_{linker}), 61.6 (C-8_{biotin}), 57.3 (CH_{3Me}), 57.0 (C-6_{biotin}), 47.9 (C-1_{Et3N}), 41.1 (C-9_{biotin}), 40.3, 40.2 (C-5_{linker}, C-1'_{biotin}), 30.3 – 24.4 (9 × CH₂), 21.0, 20.9 (2 × CH_{3Ac}), 16.5 (C-6B), 9.2 (C-2_{Et3N}); HRMS (ESI-TOF) *m*/*z* [M + Na]⁺ calcd for C₃₈H₆₄N₄NaO₁₅S 871.3981; found 871.3992.

Biotinylated Trisaccharide 2 (BIO-2).

Trisaccharide 2 (10 mg, 15 μ mol, 1.0 equiv) was reacted according to the general procedure for the synthesis of biotinylated oligosaccharides to give derivative **BIO-2** (8 mg, 55%) as a white amorphous powder: $[\alpha]_D^{20} = 11$ (c, 0.7, MeOH); ¹H NMR (400 MHz, CDCl₃) δ 5.32 (s, 1H, H-1B), 5.24 (d, J = 3.7 Hz, H-2B), 4.52 – 4.46 (m, 2H, H-1C, H-8_{biotin}), 4.43-4.37 (m, 1H, H-5B), 4.34-4.28 (m, 1H, H-7_{biotin}), 4.24 (d, J = 7.9 Hz, 1H, H-1A), 4.20 (t, J = 3.6 Hz, 1H, H-3B), 3.93-3.81 (m, 4H, H-6aA, H-4B, H-6aC, H-1alinker), 3.72-3.62 (m, 2H, H-6bC, H-1blinker), 3.58-3.51 (m, 2H, H-3A, H-6bA), 3.40-3.14 (m, 12H, H-2A, H-4A, H-5A, H-2C, H-3C, H-4C, H-5C, H-5linker, H-6_{biotin}, H-1'_{biotin}), 2.94 (dd, J = 12.8, 4.9 Hz, 1H, H-9a_{biotin}), 2.71 (d, J = 12.8 Hz, 1H, H-9b_{biotin}), 2.25-2.14 (m, 4H, H-2biotin, H-5'biotin), 2.12 (s, 3H, CH_{3Ac}), 1.80-1.31 (m, 18H, H-2linker, H-3linker, H-4linker, H-3biotin, H-4biotin, H-5biotin, H-2'biotin, H-3'biotin, H-4'biotin), 1.28 (d, J = 6.6 Hz, 3H, CH₃-6B); ¹³C NMR (100 MHz, CDCl₃) δ 176.1-172.4 (3 × CO), 166.2 (C-10_{biotin}), 104.3 (C-1A), 103.1 (C-1C), 99.9 (C-1B), 82.8 (C-3A), 78.1-77.8 (C-5A, C-3C, C-5C), 75.8, 75.0 (C-2A, C-2C), 73.9 (C-3B), 71.6 (C-2B), 71.4 (C-4A), 70.7 (C-6A), 70.2, 70.1 (C-4B, C-4C), 67.8 (C-5B), 63.4 (C-7biotin), 62.7, 62.7 (C-6C, C-1linker), 61.6 (C-8biotin), 57.0 (C-6biotin), 41.0 (C-9biotin), 40.3, 40.2 (C-5linker, C-1'biotin), 36.8 (C-2 biotin, C-5'biotin), 30.3-24.4 (9 × CH₂), 21.1 (CH_{3Ac}), 16.7 (C-6B); HRMS $(\text{ESI-TOF}) m/_{Z} [\text{M} + \text{Na}]^+$ calcd for C₄₁H₇₀N₄NaO₁₉S 977.4247; found 977.4261.

Crystal data and structure refinement of compound 36

Identification code	bl7_a	
Empirical formula	C ₄₂ H ₄₆ O ₁₀	
Formula weight	710.79	
Temperature	200(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P21	
Unit cell dimensions	a = 13.068(2) Å	α= 90°.
	b = 8.6099(13) Å	$\beta = 102.761(7)^{\circ}.$
	c = 16.359(2) Å	$\gamma = 90^{\circ}$.
Volume	1795.1(5) Å ³	
Z	2	
Density (calculated)	1.315 Mg/m ³	
Absorption coefficient	0.093 mm ⁻¹	
F(000)	756	
Crystal size	0.300 x 0.080 x 0.040 mm ³	
Theta range for data collection	2.255 to 30.062°.	
Index ranges	-18<=h<=18, -12<=k<=12, -23<=l<=22	
Reflections collected	122253	
Independent reflections	10457 [R(int) = 0.0505]	
Completeness to theta = 25.242°	99.4 %	
Absorption correction	Semi-empirical from equivalents	
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	10457 / 1 / 471	
Goodness-of-fit on F ²	1.147	
Final R indices [I>2sigma(I)]	R1 = 0.0465, wR2 = 0.1322	
R indices (all data)	R1 = 0.0637, wR2 = 0.1548	
Absolute structure parameter	0.06(13)	
Extinction coefficient	n/a	
Largest diff. peak and hole	0.777 and -0.912 e.Å ⁻³	

Supplementary Table 2 | Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters (Å²x 10³). U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	У	Z	U(eq)
C(1)	4627(2)	4249(3)	5691(1)	22(1)
C(2)	4984(2)	4696(3)	4897(1)	22(1)
C(3)	4194(2)	4168(2)	4118(1)	21(1)
C(4)	3102(2)	4762(3)	4148(1)	24(1)
O(5)	2833(1)	4293(2)	4914(1)	26(1)
C(6)	3527(2)	4892(3)	5637(1)	23(1)
O(7)	3172(2)	4378(2)	6332(1)	30(1)
C(8)	2541(2)	5447(3)	6667(1)	25(1)
C(9)	1460(2)	4781(4)	6651(2)	33(1)
C(10)	936(2)	5755(4)	7253(2)	37(1)
O(11)	1372(2)	7231(3)	7435(1)	37(1)
C(12)	2484(2)	7234(3)	7812(2)	30(1)
C(13)	3002(2)	5755(3)	7591(1)	24(1)
O(14)	1611(2)	3300(2)	7062(1)	36(1)
C(15)	1866(2)	3731(3)	7911(2)	32(1)
O(16)	2872(1)	4427(2)	8106(1)	27(1)
O(17)	1083(2)	4824(3)	7986(1)	38(1)
C(18)	2691(3)	7591(4)	8740(2)	41(1)
C(19)	1850(3)	2376(4)	8479(2)	47(1)
O(20)	5343(1)	4887(2)	6396(1)	27(1)
C(21)	5594(3)	3825(3)	7082(2)	43(1)
C(22)	6424(2)	4515(3)	7773(2)	37(1)
C(23)	6273(3)	4452(4)	8584(2)	47(1)
C(24)	7035(4)	5024(5)	9246(2)	56(1)
C(25)	7939(3)	5651(5)	9111(2)	58(1)
C(26)	8091(3)	5740(6)	8298(3)	62(1)
C(27)	7334(3)	5164(5)	7635(2)	50(1)
O(28)	5989(1)	4054(2)	4892(1)	26(1)
C(29)	6770(2)	5238(4)	4935(3)	51(1)
C(30)	7783(2)	4512(3)	4842(2)	31(1)

C(31)	8281(3)	3381(4)	5367(2)	46(1)
C(32)	9199(3)	2750(5)	5275(3)	66(1)
C(33)	9648(3)	3225(6)	4671(3)	66(1)
C(34)	9194(3)	4381(6)	4109(3)	70(2)
C(35)	8226(3)	5051(4)	4196(2)	45(1)
O(36)	4435(1)	4826(2)	3381(1)	27(1)
C(37)	5079(3)	3876(4)	2982(2)	42(1)
C(38)	4941(2)	4423(3)	2089(1)	28(1)
C(39)	5534(2)	5654(4)	1899(2)	36(1)
C(40)	5416(3)	6172(5)	1089(3)	58(1)
C(41)	4715(4)	5446(7)	450(2)	73(2)
C(42)	4129(3)	4235(8)	628(2)	73(2)
C(43)	4234(3)	3699(5)	1458(2)	49(1)
C(44)	2259(2)	4127(4)	3441(2)	34(1)
O(45)	1346(2)	5070(3)	3291(1)	47(1)
C(46)	1313(3)	6161(5)	2651(2)	55(1)
C(47)	1041(2)	5446(4)	1782(2)	37(1)
C(48)	1578(3)	5886(6)	1181(4)	70(1)
C(49)	1282(5)	5223(7)	364(3)	84(2)
C(50)	480(4)	4178(7)	186(2)	70(1)
C(51)	-28(3)	3773(6)	780(2)	59(1)
C(52)	252(2)	4378(4)	1578(2)	41(1)

C(1)-O(20)	1.425(3)
C(1)-C(2)	1.522(3)
C(1)-C(6)	1.525(3)
C(1)-H(1)	1.0000
C(2)-O(28)	1.427(3)
C(2)-C(3)	1.522(3)
C(2)-H(2)	1.0000
C(3)-O(36)	1.428(2)
C(3)-C(4)	1.527(3)
C(3)-H(3)	1.0000
C(4)-O(5)	1.433(2)
C(4)-C(44)	1.512(3)
C(4)-H(4)	1.0000
O(5)-C(6)	1.419(3)
C(6)-O(7)	1.391(3)
C(6)-H(6)	1.0000
O(7)-C(8)	1.424(3)
C(8)-C(9)	1.520(3)
C(8)-C(13)	1.522(3)
C(8)-H(8)	1.0000
C(9)-O(14)	1.434(4)
C(9)-C(10)	1.562(4)
C(9)-H(9)	1.0000
C(10)-O(11)	1.398(4)
C(10)-O(17)	1.420(4)
C(10)-H(10)	1.0000
O(11)-C(12)	1.447(4)
C(12)-C(18)	1.512(4)
C(12)-C(13)	1.523(3)
C(12)-H(12)	1.0000
C(13)-O(16)	1.453(3)
C(13)-H(13)	1.0000
O(14)-C(15)	1.404(3)
C(15)-O(17)	1.415(3)

Supplementary Table 3 | Bond lengths [Å] and angles [°].

C(15)-O(16)	1.416(3)
C(15)-C(19)	1.495(4)
C(18)-H(18A)	0.9800
C(18)-H(18B)	0.9800
C(18)-H(18C)	0.9800
C(19)-H(19A)	0.9800
C(19)-H(19B)	0.9800
C(19)-H(19C)	0.9800
O(20)-C(21)	1.429(3)
C(21)-C(22)	1.505(4)
C(21)-H(21A)	0.9900
C(21)-H(21B)	0.9900
C(22)-C(27)	1.376(5)
C(22)-C(23)	1.385(4)
C(23)-C(24)	1.389(5)
C(23)-H(23)	0.9500
C(24)-C(25)	1.360(6)
C(24)-H(24)	0.9500
C(25)-C(26)	1.389(7)
C(25)-H(25)	0.9500
C(26)-C(27)	1.388(5)
C(26)-H(26)	0.9500
C(27)-H(27)	0.9500
O(28)-C(29)	1.433(3)
C(29)-C(30)	1.502(4)
C(29)-H(29A)	0.9900
C(29)-H(29B)	0.9900
C(30)-C(31)	1.364(4)
C(30)-C(35)	1.392(4)
C(31)-C(32)	1.355(6)
C(31)-H(31)	0.9500
C(32)-C(33)	1.321(7)
C(32)-H(32)	0.9500
C(33)-C(34)	1.396(8)
C(33)-H(33)	0.9500
C(34)-C(35)	1.426(6)

C(34)-H(34)	0.9500
C(35)-H(35)	0.9500
O(36)-C(37)	1.431(3)
C(37)-C(38)	1.508(3)
C(37)-H(37A)	0.9900
C(37)-H(37B)	0.9900
C(38)-C(43)	1.373(4)
C(38)-C(39)	1.388(4)
C(39)-C(40)	1.374(4)
C(39)-H(39)	0.9500
C(40)-C(41)	1.378(8)
C(40)-H(40)	0.9500
C(41)-C(42)	1.363(9)
C(41)-H(41)	0.9500
C(42)-C(43)	1.411(6)
C(42)-H(42)	0.9500
C(43)-H(43)	0.9500
C(44)-O(45)	1.419(3)
C(44)-H(44A)	0.9900
C(44)-H(44B)	0.9900
O(45)-C(46)	1.400(5)
C(46)-C(47)	1.517(5)
C(46)-H(46A)	0.9900
C(46)-H(46B)	0.9900
C(47)-C(52)	1.368(4)
C(47)-C(48)	1.381(5)
C(48)-C(49)	1.425(9)
C(48)-H(48)	0.9500
C(49)-C(50)	1.363(9)
C(49)-H(49)	0.9500
C(50)-C(51)	1.339(7)
C(50)-H(50)	0.9500
C(51)-C(52)	1.377(5)
C(51)-H(51)	0.9500
C(52)-H(52)	0.9500

O(20)-C(1)-C(2)	108.85(17)
O(20)-C(1)-C(6)	110.41(17)
C(2)-C(1)-C(6)	108.80(17)
O(20)-C(1)-H(1)	109.6
C(2)-C(1)-H(1)	109.6
C(6)-C(1)-H(1)	109.6
O(28)-C(2)-C(3)	109.55(17)
O(28)-C(2)-C(1)	111.30(18)
C(3)-C(2)-C(1)	111.09(17)
O(28)-C(2)-H(2)	108.3
C(3)-C(2)-H(2)	108.3
C(1)-C(2)-H(2)	108.3
O(36)-C(3)-C(2)	110.71(17)
O(36)-C(3)-C(4)	106.00(17)
C(2)-C(3)-C(4)	109.86(16)
O(36)-C(3)-H(3)	110.1
C(2)-C(3)-H(3)	110.1
C(4)-C(3)-H(3)	110.1
O(5)-C(4)-C(44)	106.78(19)
O(5)-C(4)-C(3)	110.22(17)
C(44)-C(4)-C(3)	112.54(18)
O(5)-C(4)-H(4)	109.1
C(44)-C(4)-H(4)	109.1
C(3)-C(4)-H(4)	109.1
C(6)-O(5)-C(4)	113.06(17)
O(7)-C(6)-O(5)	107.38(18)
O(7)-C(6)-C(1)	108.56(18)
O(5)-C(6)-C(1)	109.72(17)
O(7)-C(6)-H(6)	110.4
O(5)-C(6)-H(6)	110.4
C(1)-C(6)-H(6)	110.4
C(6)-O(7)-C(8)	115.81(18)
O(7)-C(8)-C(9)	111.4(2)
O(7)-C(8)-C(13)	111.06(19)
C(9)-C(8)-C(13)	104.20(18)
O(7)-C(8)-H(8)	110.0

C(9)-C(8)-H(8)	110.0
C(13)-C(8)-H(8)	110.0
O(14)-C(9)-C(8)	107.2(2)
O(14)-C(9)-C(10)	102.5(2)
C(8)-C(9)-C(10)	108.8(2)
O(14)-C(9)-H(9)	112.6
C(8)-C(9)-H(9)	112.6
C(10)-C(9)-H(9)	112.6
O(11)-C(10)-O(17)	111.2(2)
O(11)-C(10)-C(9)	114.0(2)
O(17)-C(10)-C(9)	103.5(2)
O(11)-C(10)-H(10)	109.3
O(17)-C(10)-H(10)	109.3
C(9)-C(10)-H(10)	109.3
C(10)-O(11)-C(12)	114.6(2)
O(11)-C(12)-C(18)	111.7(2)
O(11)-C(12)-C(13)	110.8(2)
C(18)-C(12)-C(13)	114.7(2)
O(11)-C(12)-H(12)	106.4
C(18)-C(12)-H(12)	106.4
C(13)-C(12)-H(12)	106.4
O(16)-C(13)-C(8)	111.54(19)
O(16)-C(13)-C(12)	113.90(18)
C(8)-C(13)-C(12)	106.43(19)
O(16)-C(13)-H(13)	108.3
C(8)-C(13)-H(13)	108.3
C(12)-C(13)-H(13)	108.3
C(15)-O(14)-C(9)	101.9(2)
O(14)-C(15)-O(17)	104.1(2)
O(14)-C(15)-O(16)	109.93(19)
O(17)-C(15)-O(16)	110.6(2)
O(14)-C(15)-C(19)	112.1(3)
O(17)-C(15)-C(19)	110.8(2)
O(16)-C(15)-C(19)	109.2(2)
C(15)-O(16)-C(13)	115.10(18)
C(15)-O(17)-C(10)	105.47(19)

C(12)-C(18)-H(18A)	109.5
C(12)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(12)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
C(15)-C(19)-H(19A)	109.5
C(15)-C(19)-H(19B)	109.5
H(19A)-C(19)-H(19B)	109.5
C(15)-C(19)-H(19C)	109.5
H(19A)-C(19)-H(19C)	109.5
H(19B)-C(19)-H(19C)	109.5
C(1)-O(20)-C(21)	112.67(19)
O(20)-C(21)-C(22)	109.9(2)
O(20)-C(21)-H(21A)	109.7
C(22)-C(21)-H(21A)	109.7
O(20)-C(21)-H(21B)	109.7
C(22)-C(21)-H(21B)	109.7
H(21A)-C(21)-H(21B)	108.2
C(27)-C(22)-C(23)	118.9(3)
C(27)-C(22)-C(21)	122.9(3)
C(23)-C(22)-C(21)	118.2(3)
C(22)-C(23)-C(24)	120.3(3)
C(22)-C(23)-H(23)	119.9
C(24)-C(23)-H(23)	119.9
C(25)-C(24)-C(23)	120.8(3)
C(25)-C(24)-H(24)	119.6
C(23)-C(24)-H(24)	119.6
C(24)-C(25)-C(26)	119.4(3)
C(24)-C(25)-H(25)	120.3
C(26)-C(25)-H(25)	120.3
C(27)-C(26)-C(25)	120.0(4)
C(27)-C(26)-H(26)	120.0
C(25)-C(26)-H(26)	120.0
C(22)-C(27)-C(26)	120.6(3)
C(22)-C(27)-H(27)	119.7

C(26)-C(27)-H(27)	119.7
C(2)-O(28)-C(29)	111.74(19)
O(28)-C(29)-C(30)	109.5(2)
O(28)-C(29)-H(29A)	109.8
C(30)-C(29)-H(29A)	109.8
O(28)-C(29)-H(29B)	109.8
C(30)-C(29)-H(29B)	109.8
H(29A)-C(29)-H(29B)	108.2
C(31)-C(30)-C(35)	119.7(3)
C(31)-C(30)-C(29)	122.8(3)
C(35)-C(30)-C(29)	117.5(3)
C(32)-C(31)-C(30)	121.8(4)
C(32)-C(31)-H(31)	119.1
C(30)-C(31)-H(31)	119.1
C(33)-C(32)-C(31)	120.6(4)
C(33)-C(32)-H(32)	119.7
C(31)-C(32)-H(32)	119.7
C(32)-C(33)-C(34)	121.3(3)
C(32)-C(33)-H(33)	119.3
C(34)-C(33)-H(33)	119.3
C(33)-C(34)-C(35)	118.6(3)
C(33)-C(34)-H(34)	120.7
C(35)-C(34)-H(34)	120.7
C(30)-C(35)-C(34)	117.9(3)
C(30)-C(35)-H(35)	121.0
C(34)-C(35)-H(35)	121.0
C(3)-O(36)-C(37)	114.84(18)
O(36)-C(37)-C(38)	107.9(2)
O(36)-C(37)-H(37A)	110.1
C(38)-C(37)-H(37A)	110.1
O(36)-C(37)-H(37B)	110.1
C(38)-C(37)-H(37B)	110.1
H(37A)-C(37)-H(37B)	108.4
C(43)-C(38)-C(39)	119.6(3)
C(43)-C(38)-C(37)	120.2(3)
C(39)-C(38)-C(37)	120.2(3)

C(40)-C(39)-C(38)	121.0(3)
C(40)-C(39)-H(39)	119.5
C(38)-C(39)-H(39)	119.5
C(39)-C(40)-C(41)	119.9(4)
C(39)-C(40)-H(40)	120.1
C(41)-C(40)-H(40)	120.1
C(42)-C(41)-C(40)	119.7(3)
C(42)-C(41)-H(41)	120.1
C(40)-C(41)-H(41)	120.1
C(41)-C(42)-C(43)	121.1(4)
C(41)-C(42)-H(42)	119.5
C(43)-C(42)-H(42)	119.5
C(38)-C(43)-C(42)	118.7(4)
C(38)-C(43)-H(43)	120.6
C(42)-C(43)-H(43)	120.6
O(45)-C(44)-C(4)	111.6(2)
O(45)-C(44)-H(44A)	109.3
C(4)-C(44)-H(44A)	109.3
O(45)-C(44)-H(44B)	109.3
C(4)-C(44)-H(44B)	109.3
H(44A)-C(44)-H(44B)	108.0
C(46)-O(45)-C(44)	113.5(3)
O(45)-C(46)-C(47)	113.0(3)
O(45)-C(46)-H(46A)	109.0
C(47)-C(46)-H(46A)	109.0
O(45)-C(46)-H(46B)	109.0
C(47)-C(46)-H(46B)	109.0
H(46A)-C(46)-H(46B)	107.8
C(52)-C(47)-C(48)	118.9(3)
C(52)-C(47)-C(46)	120.6(3)
C(48)-C(47)-C(46)	120.4(4)
C(47)-C(48)-C(49)	118.9(4)
C(47)-C(48)-H(48)	120.6
C(49)-C(48)-H(48)	120.6
C(50)-C(49)-C(48)	120.1(4)
C(50)-C(49)-H(49)	120.0

C(48)-C(49)-H(49)	120.0
C(51)-C(50)-C(49)	119.8(4)
C(51)-C(50)-H(50)	120.1
C(49)-C(50)-H(50)	120.1
C(50)-C(51)-C(52)	121.3(4)
C(50)-C(51)-H(51)	119.3
C(52)-C(51)-H(51)	119.3
C(47)-C(52)-C(51)	120.9(3)
C(47)-C(52)-H(52)	119.5
C(51)-C(52)-H(52)	119.5

Symmetry transformations used to generate equivalent atoms.

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	26(1)	19(1)	20(1)	-4(1)	5(1)	-2(1)
C(2)	22(1)	20(1)	25(1)	-1(1)	8(1)	-2(1)
C(3)	24(1)	22(1)	19(1)	1(1)	9(1)	0(1)
C(4)	25(1)	29(1)	20(1)	-1(1)	8(1)	2(1)
O(5)	23(1)	34(1)	21(1)	-3(1)	8(1)	-2(1)
C(6)	27(1)	24(1)	19(1)	-2(1)	9(1)	0(1)
O(7)	42(1)	28(1)	25(1)	2(1)	20(1)	7(1)
C(8)	30(1)	29(1)	20(1)	-1(1)	11(1)	3(1)
C(9)	27(1)	44(1)	28(1)	-5(1)	3(1)	0(1)
C(10)	24(1)	51(2)	37(1)	1(1)	10(1)	4(1)
0(11)	37(1)	38(1)	40(1)	2(1)	15(1)	13(1)
C(12)	39(1)	28(1)	27(1)	-2(1)	15(1)	1(1)
C(13)	26(1)	26(1)	22(1)	-1(1)	9(1)	-2(1)
O(14)	37(1)	36(1)	35(1)	-10(1)	10(1)	-12(1)
C(15)	32(1)	32(1)	34(1)	-3(1)	14(1)	-4(1)
O(16)	30(1)	27(1)	24(1)	2(1)	7(1)	-2(1)
O(17)	34(1)	45(1)	40(1)	2(1)	21(1)	1(1)
C(18)	60(2)	36(1)	30(1)	-9(1)	18(1)	-4(1)
C(19)	57(2)	38(2)	55(2)	8(1)	28(2)	-7(1)
O(20)	35(1)	20(1)	22(1)	-2(1)	0(1)	-4(1)
C(21)	56(2)	28(1)	36(1)	6(1)	-10(1)	-6(1)
C(22)	44(1)	25(1)	33(1)	3(1)	-7(1)	1(1)
C(23)	55(2)	41(2)	40(1)	8(1)	1(1)	-4(1)
C(24)	82(3)	50(2)	28(1)	7(1)	-5(1)	0(2)
C(25)	60(2)	49(2)	50(2)	-2(2)	-23(2)	2(2)
C(26)	44(2)	63(2)	75(3)	-8(2)	4(2)	-11(2)
C(27)	54(2)	53(2)	42(2)	-2(1)	8(1)	-8(2)
O(28)	20(1)	26(1)	35(1)	-1(1)	8(1)	0(1)
C(29)	31(1)	29(1)	98(3)	-9(2)	24(2)	-4(1)
C(30)	23(1)	28(1)	44(1)	-4(1)	9(1)	-4(1)
C(31)	46(2)	42(2)	49(2)	12(1)	5(1)	-3(1)

Supplementary Table 4 | Anisotropic displacement parameters (Å² x 10³). The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

C(32)	43(2)	53(2)	91(3)	-3(2)	-7(2)	13(2)
C(33)	29(1)	71(3)	95(3)	-41(3)	7(2)	6(2)
C(34)	69(2)	98(3)	59(2)	-44(2)	44(2)	-59(3)
C(35)	50(2)	41(2)	39(1)	3(1)	2(1)	-18(1)
O(36)	36(1)	25(1)	23(1)	4(1)	16(1)	6(1)
C(37)	59(2)	45(2)	31(1)	12(1)	29(1)	25(1)
C(38)	34(1)	30(1)	25(1)	-1(1)	15(1)	5(1)
C(39)	37(1)	36(1)	38(1)	2(1)	14(1)	1(1)
C(40)	63(2)	63(2)	60(2)	33(2)	38(2)	23(2)
C(41)	74(3)	119(4)	32(2)	27(2)	25(2)	55(3)
C(42)	55(2)	119(4)	37(2)	-30(2)	-5(2)	21(3)
C(43)	43(2)	56(2)	52(2)	-22(2)	16(1)	-9(1)
C(44)	28(1)	45(2)	25(1)	-9(1)	3(1)	1(1)
O(45)	26(1)	80(2)	33(1)	-8(1)	4(1)	12(1)
C(46)	48(2)	49(2)	57(2)	-8(2)	-13(2)	6(2)
C(47)	31(1)	40(1)	39(1)	9(1)	5(1)	6(1)
C(48)	53(2)	66(3)	97(3)	32(2)	28(2)	-3(2)
C(49)	99(4)	106(4)	66(3)	45(3)	57(3)	44(3)
C(50)	70(2)	102(4)	34(2)	-2(2)	6(2)	43(3)
C(51)	43(2)	74(3)	54(2)	-18(2)	0(1)	10(2)
C(52)	35(1)	49(2)	39(1)	1(1)	8(1)	0(1)

	Х	V	Z	U(eq)
				· · ·
H(1)	4616	3093	5742	26
H(2)	5040	5853	4880	26
H(3)	4190	3009	4080	25
H(4)	3098	5922	4116	29
H(6)	3536	6052	5620	28
H(8)	2475	6443	6346	30
H(9)	1013	4714	6071	40
H(10)	168	5859	7004	44
H(12)	2795	8109	7547	36
H(13)	3770	5959	7663	29
H(18A)	2307	8530	8829	61
H(18B)	3445	7757	8955	61
H(18C)	2457	6717	9036	61
H(19A)	2021	2728	9063	71
H(19B)	2368	1606	8392	71
H(19C)	1150	1905	8354	71
H(21A)	5851	2837	6891	52
H(21B)	4957	3599	7295	52
H(23)	5647	4016	8688	56
H(24)	6924	4976	9800	68
H(25)	8461	6025	9568	70
H(26)	8713	6195	8196	74
H(27)	7445	5218	7081	60
H(29A)	6875	5784	5480	61
H(29B)	6535	6007	4483	61
H(31)	7975	3025	5808	56
H(32)	9522	1959	5649	79
H(33)	10293	2772	4619	80
H(34)	9523	4715	3676	85
H(35)	7893	5841	3825	54

Supplementary Table 5 | Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10³).

H(37A)	4868	2773	2994	50
H(37B)	5824	3968	3279	50
H(39)	6028	6146	2335	44
H(40)	5817	7029	969	70
H(41)	4641	5788	-112	88
H(42)	3642	3743	187	87
H(43)	3824	2853	1577	59
H(44A)	2534	4070	2924	40
H(44B)	2074	3061	3583	40
H(46A)	2004	6679	2732	66
H(46B)	785	6965	2692	66
H(48)	2134	6617	1309	84
H(49)	1645	5509	-56	101
H(50)	281	3738	-359	84
H(51)	-592	3055	650	70
H(52)	-109	4049	1992	49

Supplementary References

- 1. Valente, L., Olesker, A., Rabanal, R., Barata, L. E. S. & Lukacs, G. Synthesis of nogalose, a component of the antitumor antibiotic nogalamycin. *Tetrahedron Lett.* **13**, 1153-1156 (1979).
- 2. Schmidt, R. R. & Michel, J. Facile synthesis of α- and β-O-glycosyl imidates; preparation of glycosides and disaccharides. *Angew. Chem. Int. Ed. Engl.* **19**, 731-732 (1980).
- 3. Hsu, C. H. et al. Highly α -selective sially phosphate donors for efficient preparation of natural sialosides. *Chem. Eur. J.* **16**, 1754-1760, (2010).
- 4. Mo, K.-F., Li, H., Mague, J. T. & Ensley, H. E. Synthesis of the β-1,3-glucan, laminarahexaose: NMR and conformational studies. *Carbohydr. Res.* **344**, 439-447 (2009).
- 5. Meldgaard, M., Hansen, F. G. & Wengel, J. 3 '-C-branched LNA-type nucleosides locked in an N-type furanose ring conformation: Synthesis, incorporation into oligodeoxynucleotides, and hybridization studies. *J. Org. Chem.* **69**, 6310-6322 (2004).
- 6. Grob, V. D., Squires, T. G. & Vercellotti, J. R. Glycosyl chlorides through reaction with zinc chloride-thionyl chloride. *Carbohydr. Res.* **10**, 595-597 (1969).