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Supplementary Discussion 

We test the influences of different schemes for mapping global g1 on the 

estimated water use efficiency (WUE). Mapping of global patterns of g1 depends on 

g1 values of different PFTs and global land cover map. In ref. 1, parameter g1 is 

predicted to changes with moisture index and temperature as well. This alternative 

method for mapping g1 is also considered. Comparing with the global g1 map 

generated using the method in section 2.1, the alternative method produces much 

smoother changes in both g1 values and spatial patterns, but there is no significant 

difference in estimated global WUE and its trend. Finally, the alternative method for 

mapping global map of g1 is not adopted in this study for three reasons (1) the 

relationship of g1 with moisture index and temperature is not very robust (see ref. 1); 

(2) no significant differences are found; and (3) is to keep a parsimonious

parameterization of the WUE model. 

Furthermore, two other different global land cover maps are collected to test the 

influences of different land cover on the estimated WUE. The two land cover maps are 

MODIS land cover map and the vegetation cover map used for the CABLE land surface 

model (see ref. 2). Results show that there is no significant difference in estimated 

global WUE patterns, magnitude and trends globally from three different land cover 

maps, but there are significant differences in some limited regions. Finally, the global 

synergetic land cover product, i.e. SYNMAP, is adopted as its overall advantages for 

carbon cycle modelling over other land cover products (see ref. 3). Analysis of the 

influences of different schemes for mapping global g1 suggests that the importance of 

future global vegetation products to take account of the functional traits of vegetation 

for modelling of carbon and water cycles. 

Estimated global mean annual gross primary productivity (GPP) has relative large 

standard deviation (146.1±21.3 Pg C year−1), which is resulted from differences in the 

input data for variable vapour pressure deficit (D) (via WUE) and seven different 

evapotranspiration (E) datasets. The WUE model is very sensitive to variable D. Small 

differences in D from three different climate forcing datasets result in significant 

difference in estimated WUE. The mean annual WUE of three different input for D 

from the CRU-NCEP, PGF and WATCH climate forcing datasets are 1.64±0.02, 
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2.50±0.02, and 2.09±0.03 g C mm−1 H2O from 1982 to 2011, and lead to significant 

differences in estimated mean annual GPP of 120.8±8.7, 168.0±10.1, and 149.5±8.7 

Pg C year−1, respectively. For different E datasets, three reanalysis datasets have a 

much larger mean annual E (650 mm year−1) than the other four diagnostic E datasets 

(570 mm year−1, see Supplementary Figure 3), which leads to significant variations in 

the estimated mean annual GPP as well but are smaller than those resulted from 

different inputs for variable D.  

Differences in the E and D do not lead to any significant differences in the trends 

in both WUE and GPP and conclusion of this study, which can be observed from the 

small standard deviation of the trends from an ensemble of 12 WUE estimates and an 

ensemble of 84 estimates of GPP (see Figure 2). 

From Figure 2c in the article, we can find that contributions of both E and WUE 

to the trend in estimated GPP have noticeable uncertainties comparing one standard 

deviations with the mean (i.e. error-bars and bars, respectively). The noticeable 

uncertainty in the contribution of E largely results from two of the seven E datasets, 

i.e. EWB-MTE
4 and EMARRAs

5. Amongst the seven E datasets, the EWB-MTE has the largest 

trend, while the EMARRAs has the smallest trend and is the only one has negative trend 

in E (see Supplementary Figure 3). Largest trend in the EWB-MTE is potentially resulted 

from some disadvantages of the methodology of this dataset (see ref. 4). If these two 

E datasets are excluded, trend in GPP and contribution from E are 0.83±0.05, and 

0.09±0.04 Pg C year−2, respectively, with which the conclusion of this study is the same 

but the uncertainty in the estimated GPP trend and contribution from E are 

significantly reduced. 

The noticeable uncertainty in the contributions of WUE to the estimated trend in 

global GPP largely results from the contribution from leaf area index (L) (see Figure 

2d), which is dominated by a step change before and after 2000 in the current version 

of GLASS LAI dataset, particularly in the tropical region (see ref. 6). The estimated WUE 

trend from the GLASS LAI product is significantly larger (17.5±2.9 mg C mm−1 H2O 

year−1) than that from the GIMMS LAI product (10.0±1.6 mg C mm−1 H2O year−1). The 

contribution of LAI to the total WUE trend derived from the GLASS LAI product is 

significantly larger (11.5±2.1 mg C mm−1 H2O year−1) than that from the GIMMS LAI 
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product (3.4±0.6 mg C mm−1 H2O year−1) as well. Both LAI datasets lead to same 

conclusion that increase in global L is an important contributor to changes in WUE. 

However, the inconsistency in the GLASS LAI product has led to a larger role of LAI for 

the trend in global WUE and GPP. Importantly, our results highlight the importance of 

the response of L to environmental changes for predicting future changes in water and 

carbon cycles. 

Another two options for defining the growing season are also evaluated, one is 

with a threshold monthly mean temperature of 5  C, and the other one is the global 

phenology product derived from MODIS data7, 8. Results show that conclusions of 

these two growing season options remain the same as these derived using a threshold 

temperature of 0  C. The threshold temperature of 0  C for the growing season is 

adopted in this study as this measure minimizes the influence of non-growing season 

soil evaporation and thus to keep a parsimonious parameterization of the WUE 

equation. 

According to our proposed WUE model, the influence of leaf area index (L) on 

ecosystem WUE is accounted in the second and third terms of the equation (6), i.e. 

[1 − 𝑒𝑥𝑝(−𝑘𝐿)]  and (1 − 𝑓𝐸i) , respectively. The second term suggests that

ecosystem WUE increases with L, but the third term implies that ecosystem WUE 

decreases with L as generally interception ratio is positively related to L9.  

Essentially, the second and third terms together represent the fraction of 

transpiration (𝐸t ) to total evaporation (see equation (3)), i.e. transpiration ratio 

(denoted as 𝑓𝐸t). To demonstrate the control of L on ecosystem WUE, we plot the

relationship between mean annual L and 𝑓𝐸t based on the GIMMS LAI3g dataset and

interception ratio data from EGLEAM as shown in Supplementary Figure 8.  

On average, the blue line in the Supplementary Figure 8 reflects the control of L 

on the estimated ecosystem WUE, which suggests that ecosystem WUE increases with 

L to about 3 and then decreases with L at the global scale. 

Annual GPP at the site level is estimated using the WEC method (i.e. equation (7)) 

and validated against the site observed GPP. The Supplementary Figure 9 shows the 

validation of site GPP using all the 229 station-years. The linear correlation coefficient 
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(r) between observed and estimated annual GPP is about 0.76, with Nash-Sutcliffe 

model efficiency (NSE10) of 0.47, root mean squared error (RMSE) of 487.3 g C m−2 

year−1, mean error (ME) of −152.0 g C m−2 year−1 and relative error (RE) of −11.5%. The 

slope of the regressed line between observed and estimated annual WUE passing 

through the origin is 0.86, with an adjusted R2 of 0.89. 

Estimated trends in GPP at global scale and also in 17 different eco-regions are 

compared with six LSMs (see Supplementary Table 4). For comparing our estimates 

with other studies, terrestrial vegetated area are grouped into 17 different ecoregions 

in terms of major ecoregions delineated by ref. 11 (also see 

http://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world) and 

continental boundaries. The details of the ecoregions are shown in the Supplementary 

Table 7 and maps are shown in the Supplementary Figure 6. Across 17 different 

ecoregions, Supplementary Figure 7 shows that trends in GPP estimated by the WEC 

method fall within the ranges derived from six LSMs, except the temperate forest in 

north American (TempF-NAM) and boreal forest (BF) regions, where the WEC method 

estimated a larger increase rate in GPP than that derived from LSMs.  

For the trend in GPP at the global scale, the WEC method estimates a higher mean 

value and wider range of increase rate in global GPP than that derived from six LSMs 

over the same period and other reported values. Results from the WEC method with 

an ensemble of 84 estimates show that global GPP has increased about 0.83±0.26 Pg 

C year−2 over 1982-2011 with a range of 0.33 ~ 1.30 Pg C year−2. Based on the six LSMs 

from TrendyV3 modelling experiment 12, global GPP has increased about 0.44±0.08 Pg 

C year−2 with a range of 0.32 ~ 0.57 Pg C year−2 over 1982 – 2011. Other independent 

studies reported that global GPP has increased from 0.2 to 0.66 Pg C year−2 during the 

past one or two decades (see ref. 13, ref. 14 and ref. 15). Basically, the WEC method 

estimated a larger increase in global GPP in the past three decades than other 

modelling results, which could be partially resulted from uncertainty in one of the leaf 

area index products (see Supplementary Discussion on the influences of L on 

estimated results). Based on the GIMMS LAI3g leaf area index product only, estimated 

global GPP trend by the WEC method is 0.59±0.12 Pg C year−2 (0.33 ~ 0.87 Pg C year−2), 

which is very close to that derived from six LSMs and to other independent studies. 

http://www.worldwildlife.org/publications/terrestrial-ecoregions-of-the-world
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Supplementary Table 1 | g1 value of different plant function types compiled by Lin et al., 

2015. 

NO. Vegetation type PFT g1 value 

1 C4 grass C4 grass/crop 1.62 

2 Evergreen gymnosperms tree Evergreen needle leaf forest (ENF) 2.35 

3 Deciduous savanna tree Deciduous broadleaf forest (DBF) - 
savanna 

2.98 

4 Evergreen angiosperms tree Evergreen broadleaf forest (EBF) 3.37 

5 Tropical rainforest tree EBF - tropical rainforest 3.77 

6 Shrub Shrub 4.22 

7 C3 grass C3 grass 4.50 

8 Deciduous angiosperms tree DBF 4.64 

9 C3 crop C3 crop 5.79 

10 Evergreen savanna tree EBF - savanna 7.18 

Supplementary Table 2 I Summary of global evapotranspiration (E) datasets used for 

estimation of ecosystem gross primary production (GPP). 

Name research group references 

EMTE Max Planck Institute, Germany ref. 16; ref. 17 
EGLEAM VU University, The Netherlands ref. 18; ref. 19 
ECSIRO CSIRO Land and Water, Australia ref. 20 
EWB-MTE Peking University ref. 4 
EMERRAa Goddard Space Flight Centre of NASA ref. 21 
EMERRAs Goddard Space Flight Centre of NASA ref. 5 
EERA European Centre for Medium-Range Weather Forecasts ref. 22 
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Supplementary Table 3 I The basic information of the flux sites used for model validation 

NO. Code Site Name Latitude 
(degree N) 

Longitude 
(degree E) 

Elevation 
(m) 

IGBP g1 

1 AT-Neu Neustift 47.12 11.32 976 GRA 2.9 

2 AU-Cpr Calperum -34.00 140.59 62 SAV 4.8 

3 AU-DaP Daly River Savanna -14.06 131.32 71 GRA 4.2 

4 AU-DaS Daly River Cleared -14.16 131.39 75 SAV 4.2 

5 AU-Dry Dry River -15.26 132.37 176 SAV 4.1 

6 AU-RDF Red Dirt Melon 
Farm, Northern 
Territory 

-14.56 132.48 188 WSA 4.1 

7 AU-Tum Tumbarumba -35.66 148.15 1259 EBF 4.1 

8 AU-Whr Whroo -36.67 145.03 151 EBF 5.5 

9 BE-Bra Brasschaat 51.31 4.52 17 MF 5.5 

10 BE-Vie Vielsalm 50.31 6.00 492 MF 4.6 

11 BR-Sa3 Santarem-Km83-
Logged Forest 

-3.02 -54.97 181 EBF 4.1 

12 CA-TP1 Ontario - Turkey 
Point 2002 
Plantation White 
Pine 

42.66 -80.56 200 ENF 5.8 

13 CH-Cha Chamau 47.21 8.41 394 GRA 4.8 

14 CH-Fru Fruebuel 47.12 8.54 982 GRA 4.2 

15 CN-Cng Changling 44.59 123.51 142 GRA 3.8 

16 DE-Hai Hainich 51.08 10.45 464 DBF 5.5 

17 DE-Lkb Lackenberg 49.10 13.30 1302 ENF 3.9 

18 DE-Obe Oberbärenburg 50.78 13.72 782 ENF 5.1 

19 DE-Tha Tharandt 50.96 13.57 386 ENF 5.1 

20 DK-Sor Soroe 55.49 11.64 46 DBF 5.7 

21 ES-LJu Llano de los Juanes 36.93 -2.75 1616 OSH 4.4 

22 FI-Hyy Hyytiala 61.85 24.30 180 ENF 2.4 

23 FR-Gri Grignon 48.84 1.95 122 CRO 5.6 

24 IT-CA3 Castel d'Asso 3 42.38 12.02 199 DBF 4.7 

25 IT-Lav Lavarone 45.96 11.28 1352 ENF 4.5 

26 IT-Noe Arca di Noé - Le 
Prigionette 

40.61 8.15 27 CSH 4.6 

27 IT-Ren Renon 46.59 11.43 1737 ENF 3.3 

28 IT-Ro2 Roccarespampani 2 42.39 11.92 173 DBF 4.9 

29 MY-PSO Pasoh Forest 
Reserve (PSO) 

2.97 102.31 147 EBF 4.6 

30 NL-Hor Horstermeer 52.24 5.07 -2 GRA 5.4 

31 NL-Loo Loobos 52.17 5.74 34 ENF 4.7 

32 RU-Fyo Fyodorovskoye 56.46 32.92 275 ENF 3.5 

33 SD-Dem Demokeya 13.28 30.48 537 SAV 3.8 

34 US-AR1 ARM USDA UNL OSU 
Woodward 
Switchgrass 1 

36.43 -99.42 613 GRA 3.4 
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35 US-AR2 ARM USDA UNL OSU 
Woodward 
Switchgrass 2 

36.64 -99.60 647 GRA 3.6 

36 US-ARM ARM Southern Great 
Plains site- Lamont 

36.61 -97.49 316 CRO 3.8 

37 US-Blo Blodgett Forest 38.90 -120.63 1329 ENF 2.6 

38 US-Goo Goodwin Creek 34.25 -89.87 98 GRA 4.2 

39 US-KS2 Kennedy Space 
Center (scrub oak) 

28.61 -80.67 2 CSH 2.9 

40 US-Me2 Metolius-
intermediate aged 
ponderosa pine 

44.45 -121.56 1254 ENF 2.5 

41 US-Ne3 Mead - rainfed 
maize-soybean 
rotation site 

41.18 -96.44 361 CRO 4.0 

42 US-Oho Oak Openings 41.55 -83.84 204 DBF 4.7 

43 US-SRG Santa Rita Grassland 31.79 -110.83 1291.6 GRA 3.7 

44 US-SRM Santa Rita Mesquite 31.82 -110.87 1119.4 WSA 3.7 

45 US-Ton Tonzi Ranch 38.43 -120.97 168.7 WSA 3.3 

46 US-Tw3 Twitchell Alfalfa 38.12 -121.65 -2.6 CRO 4.7 

47 US-Var Vaira Ranch- Ione 38.41 -120.95 161.7 GRA 3.3 

48 US-Whs Walnut Gulch Lucky 
Hills Shrub 

31.74 -110.05 1373.7 OSH 3.9 

49 US-Wkg Walnut Gulch 
Kendall Grasslands 

31.74 -109.94 1527.6 GRA 3.9 

50 ZA-Kru Skukuza -25.02 31.50 361.5 SAV 3.9 

51 ZM-Mon Mongu -15.44 23.25 1087.1 DBF 4.0 

Notes: data of sites used for trend validation are highlighted with bold font. Column IGBP is 
the vegetation type identified from IGBP land cover map and the abbreviations of different 
land cover types please refer to 
http://www.fluxdata.org/DataInfo/Dataset%20Doc%20Lib/VegTypeIGBP.aspx and the 
definitions in the IGBP dataset (http://glcf.umd.edu/data/lc/). 

http://www.fluxdata.org/DataInfo/Dataset%20Doc%20Lib/VegTypeIGBP.aspx
http://glcf.umd.edu/data/lc/
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Supplementary Table 4 I Summary of land surface models used in this study. 

No. Model full name and Website references 

1 CABLE Community Atmosphere‐Biosphere‐Land 
Exchange model 
https://trac.nci.org.au/trac/cable  

ref. 23; ref. 2 

2 CLM Community Land Model 
http://www.cgd.ucar.edu/tss/clm/  

ref. 24 

3 ISAM Integrated Science Assessment Model 
http://climate.atmos.uiuc.edu/isam2/  

ref. 25 

4 JULES Joint UK Land Environment Simulator 
https://jules.jchmr.org/  

ref. 26; ref. 27 

5 ORCHIDEE Organising Carbon and Hydrology In Dynamic 
Ecosystems 
http://labex.ipsl.fr/orchidee/  

ref. 28 

6 VISIT Vegetation Integrative SImulation Tool ref. 29 

Supplementary Table 5 I Modelling experiments for isolating the contribution of 

evapotranspiration (E) and water use efficiency (WUE) total trend in global ecosystem gross 

primary production (GPP) 

No. E WUE Descriptions 

Expt1 N N Experiment 1 (Expt1) is considered as a "real" estimation. Results 
are used to estimate total trends in global ecosystem GPP and as 
references for other two experiments to isolate the contributions 
of E and WUE to the total trend.  

Expt2 Y N The same as Experiment 1 (Expt1), except that E is kept as initial 
condition. Experiment 2 (Expt2) is designed to isolate the 
contribution of changes in E to global trends in GPP in terms of the 
differences between Expt1 and Expt2. 

Expt3 N Y The same as Experiment 1 (Expt1), except that WUE is kept as 
initial condition. Experiment 3 (Expt3) is designed to isolate the 
contribution of changes in WUE to global trends in GPP in terms of 
the differences between Expt1 and Expt3. 

Note: “Y” and “N” indicate whether input data for the modelling experiments is fixed at initial 
conditions or not, i.e. values of the beginning year. 

https://trac.nci.org.au/trac/cable
http://www.cgd.ucar.edu/tss/clm/
http://climate.atmos.uiuc.edu/isam2/
https://jules.jchmr.org/
http://labex.ipsl.fr/orchidee/
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Supplementary Table 6 I Modelling experiments for isolating the contribution of different 

factors to total trend in global ecosystem water use efficiency (WUE) 

No. 
Input data 

Descriptions 
Ca D L fEi 

Expt1 N N N N Experiment 1 (Expt1) is considered as a "real" estimation. 
Results are used to estimate total trends in global 
ecosystem WUE and as references for other modelling 
experiments to isolate the contributions of different 
factors to the total trend.  

Expt2 Y N N N The same as Experiment 1 (Expt1), except that Ca is kept at 
initial condition. Experiment 2 (Expt2) is designed to 
isolate the contribution of changes in Ca to global trends in 
ecosystem WUE in terms of the differences between Expt1 
and Expt2. 

Expt3 N Y N N The same as Experiment 1 (Expt1), except the D is kept at 
the initial condition. Experiment 3 (Expt3) is designed to 
isolate the contribution of changes in D to global trends in 
ecosystem WUE in terms of the differences between Expt1 
and Expt3. 

Expt4 N N Y N The same as Experiment 1 (Expt1), except the L is kept at 
initial condition. Experiment 4 (Expt4) is designed to 
isolate the contribution of changes in L to global trends in 
ecosystem WUE in terms of differences between Expt1 
and Expt4. 

Expt5 N N N Y The same as Experiment 1 (Expt1), except the fraction of 
interception (fEi) is kept at the initial condition. Experiment 
5 (Expt5) is designed to isolate the contribution of changes 
in fEi to global trends in ecosystem WUE in terms of 
differences between Expt1 and Expt5. 

Note: “Y” and “N” indicate whether input data for the modelling experiments is fixed at initial 
conditions or not, i.e. values of the beginning year. 
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Supplementary Table 7 | List of global ecoregions 

NO. Major ecoregions Continental regions Abbreviations 

1 Tropical forest American TropF-AM 

2 African TropF-AF 

3 Asian TropF-AS 

4 Temperate forest North American TempF-NAM 

5 European TempF-EU 

6 Asian TempF-AS 

7 Southern Hemisphere TempF-SH 

8 Boreal forest North American BF-NAM 

9 Eurasian BF-EA 

10 Tropical grass, savanna and shrub American TropGSS-AM 

11 African TropGSS-AF 

12 Australia TropGSS-AU 

13 Temperate grass, savanna and shrub North American TempGSS-NAM 

14 Eurasian TempGSS-EA 

15 Southern Hemisphere TempGSS-SH 

16 Tundra Tundra Tundra 

17 Arid Arid Arid 
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Supplementary Figure 1 | Global pattern of mean growing season length in months. 

Supplementary Figure 2 | Spatial details of estimated global parameter g1. 
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Supplementary Figure 3 I Global annual evapotranspiration (E) and its anomalies of the 
seven datasets. The upper panel is the global annual E of the seven datasets. The straight lines 
are the linear trends of each datasets. The lower panel is the ensemble mean annual 
anomalies of the seven datasets. The error bar shows the standard error of the seven datasets. 
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Supplementary Figure 4 | Comparison of the spatial details of global mean annual water use 
efficiency (WUE) over 1982–2011. Estimated WUE (in g C mm−1 H2O) from the analytical 
method is compared with the model tree ensemble (MTE) estimate and that from six land 
surface models. 
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Supplementary Figure 5 | Comparison of the spatial details of global mean annual gross 
primary production (GPP) over 1982–2011. Estimated GPP (in g C m−2 year−1) from the 
analytical method is compared with the model tree ensemble (MTE) estimate and that from 
six land surface models. 
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Supplementary Figure 6 | Global ecoregions. The name of ecoregions are provided in 
Supplementary Table 7. 

Supplementary Figure 7 | Comparison of estimated trends in ecosystem gross primary 
production (GPP) with 6 land surface models (LSMs) in 17 different eco-regions over the 
period of 1982-2011. The ecoregions are defined in the Supplementary Table 7 and shown in 
the Supplementary Figure 6. The bars represent of the mean trends of all the grid cells within 
different ecoregions. The error-bars show the inter-quantile range of different LSMs and one 
standard deviation of 84 ensembles within different ecoregions, respectively. 
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Supplementary Figure 8 | The relationship between ecosystem transpiration ratio (𝒇𝑬𝐭
) and

leaf area index (L). Hexagon binning plot showing relationship between mean annual L and 

𝑓𝐸t (= [1 − 𝑒𝑥𝑝(−𝑘𝐿)](1 − 𝑓𝐸i)) over all the vegetated land cells. The colour of the hexagon 

indicates the number of land cells. The broken black line is the median of 𝑓𝐸t  by binning mean 

annual L with a step of 0.1, and the blue line is smoothed median 𝑓𝐸t  (i.e. broken line) using 

non-parametric local regression method (i.e. LOESS). The solid black line shows the 
relationship between 𝑓𝐸t  and L by neglecting the interception ratio, i.e. 𝑓𝐸t = [1 − 𝑒𝑥𝑝(−𝑘𝐿)]. 

Supplementary Figure 9 | Validation of estimated site gross primary production (GPP) using 
the proposed method in this study. The red line is the 1:1 line and blue line is fitted using 
least square regression method.  
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