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Supplementary Note 1: Piezomagnetism

The antiferromagnetic (AFM) transition at TN = 30.8K in UO2 is of the first order [1].

The axial thermal expansion measured along the body diagonal [111], εa(T ), is shown in

Supplementary Fig. 1a along with the magnetic susceptibility M/H(T) between T = 2K

and room temperature. The magnetization was measured in a magnetic field of 1kOe, in

both field cooled (FC) and zero field cooled (ZFC) modes, with H applied along [111]. The

AFM transition is clearly seen in both magnetic and lattice properties. The small upturn

in the M/H(T ) curve (FC, blue line) below TN is not expected for a simple AFM system.

A somewhat similar feature was observed before in UO2 under pressure, and attributed to

Supplementary Figure 1: Thermal expansion and susceptibility versus temperature in

UO2.

(a) Zero field ∆L/L along [111] vs temperature (right y-axis) and magnetic susceptibility M/H

in an external field of 1kOe in FC and ZFC modes (left y-axis), measured between 2K and room

temperature. The antiferromagnetic transition is clearly visible. (b) and (c) Zero field ∆L/L of

UO2 vs temperature close to the AFM transition TN ≈ 30K, measured along (b) and transverse

(c) to the [111] direction, respectively. The small difference in the observed transition tempera-

tures could be due to the poor thermal conductivity of optical fibers. The coefficients of thermal

expansion αTh(T) are ploted on the right hand side y-axes.

1



pressure-induced weak ferromagnetism [2]. Measurements in a field H = 5 kOe, on the

other hand, reproduce ambient pressure results [2]. Supplementary Figures 1a and c show

the axial and transverse magnetostriction εa(T ), and εt(T ), close to the AFM transition.

The drop at TN supports reduction in the volume of the unit cell in agreement with earlier

conclusions [3, 4]. Also shown are the coefficients of thermal expansion αTa (T ), and αTt (T )

which are truly first-order like at TN.

The observed linear magnetostriction (LMS) in the ordered state, precluded on the basis

of time reversal symmetry considerations in most AFM materials, is strong in UO2. The

converse of the LMS phenomena is the piezomagnetic (PZM) effect. Borovik-Romanov [5]

has considered the piezomagnetism from a phenomenological point of view, adding bilinear

terms of magnetoelastic energy to the expansion of the thermodynamic potential per unit

volume:

Φ(T, σ,H) = Φ0(T,H)−
∑
ijk

ΛijkHiσjk, (1)

where σjk are the components of the elastic strain tensor. If at least one term of this

expansion remains invariant under the magnetic symmetry of the crystal, then the corre-

sponding component axial Λijk is not zero and hence the magnetization is given by

Mi = −∂Φ/∂Hi = −∂Φ0/∂Hi +
∑
jk

Λijkσjk. (2)

Thus, when a stress σjk is applied, a magnetic moment Mi linear in the stress is produced.

It follows from Equation (1) that there exists also the LMS effect:

εjk = −∂Φ/∂σjk =
∑
i

ΛijkHi, (3)

where εjk are components of the deformation tensor.

The possibility of existence of LMS/PZM in a system is thus related with a non zero tensor

Λ invariant under the symmetry operations of the magnetic point group of the crystal. There

are a total of 122 magnetic point groups which are obtained by including the time reversal

symmetry operation R to the 32 point groups. It follows from Equation (3) that systems

where the operation R appears in the magnetic point group as an independent operation

does not present LMS/PZM. The reason is that since Hi changes sign against time reversal
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symmetry and the components of the deformation tensor ε do not, then the third-rank axial

tensor Λ must reverse sign upon a time inversion transformation R, which cannot therefore

be a symmetry element of the magnetically ordered lattice. There are 32 such groups and

24 more where LMS/PZM cannot take place for similar reasons.

The subset of 66 magnetic point groups that can indeed display PZM/LMS were listed

by Tavger [6] and Briss [7]; the space group Pa3̄ (m3̄), used to describe the AFM state in

UO2, is among them (see Supplementary Ref. [8]).

The magnetostriction tensor for the magnetic space group Pa3, point group m3 of UO2

in Voigt’s notation is:

Λ =

∣∣∣∣∣∣∣∣∣
0 0 0 Λ14 0 0

0 0 0 0 Λ14 0

0 0 0 0 0 Λ14

∣∣∣∣∣∣∣∣∣ (4)

The dependence of the strain tensor with the applied magnetic field in Supplementary

Equation (3) can be explicitly written as:

ε = Λ14

∣∣∣∣∣∣∣∣∣
0 Hz Hy

Hz 0 Hx

Hy Hx 0

∣∣∣∣∣∣∣∣∣ (5)

For an applied field H along the [111] direction, the strain tensor can be diagonalized to

give

ε =
HΛ14√

3

∣∣∣∣∣∣∣∣∣
−1 0 0

0 −1 0

0 0 2

∣∣∣∣∣∣∣∣∣ (6)

Where the first two directions are perpendicular and the third parallel to the [111] direction.

We thus obtain αt = −Λ14/
√

3 and αa = 2Λ14/
√

3, hence it follows that αa/αt = −2.

Supplementary Note 2: The model Hamiltonian

We consider a classical Hamiltonian where the free degrees of freedom are the orientations

of the magnetic moments of the four U atoms at the 4a positions in the Pa3̄ unit cell.

Ŝi = S0 [sin θi cosφi x̂+ sin θi sinφi ŷ + cos θi ẑ] (7)
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Interaction with the magnetic field

The Zeeman term gives the following contribution to the total energy:

HZ = −gµBS0 H̄.(Ŝ1 + Ŝ2 + Ŝ3 + Ŝ4)

= −gµBS0

4∑
i=1

sin θi cosφiHx + sin θi sinφiHy + cos θiHz (8)

If the magnetic field is applied along the (111) direction, one has:

Hx = Hy = Hz =
H0√

3
(9)

Magnetic anisotropy

The Jahn-Teller distortion stabilizes the 3-k magnetic order at T < TN producing a local

anisotropy that can be written as:

HA = −AS2
0

4∑
i=1

(Ŝi.v̂i)
2 = −AS

2
0

3

4∑
i=1

(sin θi cosφi uix + sin θi sinφi uiy + cos θi uiz)
2 (10)

here uiα = ±1 (i = 1, 4 and α = x, y, z) are the sign of the projections along the

Cartesian coordinates that specify the four directions of the magnetic moments in the 4a

Wyckoff positions of the Pa3̄ magnetic group.

This term is not enough to establish the relative orientation of the magnetic moments. A

Heisenberg like interaction compatible with the symmetry operations of the magnetic group

have to be included [10–12].

Heisenberg interaction

The Heisenberg contribution to the total energy, can be written as:

HSS = −4JS2
0

∑
1≤i<j≤4

[
Six(v̂i)Sjx(v̂j) + Siy(v̂i)Sjy(v̂j) + Siz(v̂i)Sjz(v̂j)

]
(11)

where the Siα(v̂i) are the three components of the magnetic moments with the z compo-

nent along v̂i.
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Elastic energy

The elastic energy for a cubic crystal is:

Hel =
a3

2

[
c11(ε

2
xx + ε2yy + ε2zz) + 2c12(εxxεyy + εxxεzz + εyyεzz) + c44(ε

2
xy + ε2xz + ε2yz)

]
(12)

where c11 = 389 GPa, c12 = 119 GPa, c44 = 60 GPa, B = 1/3 (c11 + 2c12) ' 207 GPa,

and a = 5.47Å. Only shear components of the strain can be kept in the expression above

because they are the only components appearing in the magnetoelastic term (see below) :

Hel =
c44
2
a3 (ε2xy + ε2xz + ε2yz) ' 30.65 eV (ε2xy + ε2xz + ε2yz) (13)

Magnetoelastic energy

To couple the elastic deformation to the magnetic order we include the magnetoelastic

contribution (Supplementary eq. (1)) to the total energy :

Hme = −V
∑
ijk

ΛijkHiσjk (14)

where V = a3, Λ is given by equation (4), and the magnetoelastic contribution now reads :

Hme = −a3 Λ14 c44
[
εyzHx + εxzHy + εxyHz

]
(15)

where Λ14 is proportional to the staggered magnetization :

Λ14 =
E

c44a3
Mst, (16)

Mst =
4∑
i=1

Ŝi.v̂i (17)

The minimization of the elastic and magnetoelastic contributions to the total energy gives :

εyz =
E

c44a3
Mst Hx

εxz =
E

c44a3
Mst Hy

εxy =
E

c44a3
Mst Hz (18)
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The strain tensor for pure shear is

ε =

∣∣∣∣∣∣∣∣∣
0 εxy/2 εxz/2

εxy/2 0 εyz/2

εxz/2 εxy/2 0

∣∣∣∣∣∣∣∣∣ (19)

In the case of a magnetic field along (111). εxy = εxz = εyz, and the diagonalization of the

strain tensor gives:

ε111 = εxy, and ε100 = −εxy
2
. (20)

Thus :

ε111 =
E√

3c44a3
Mst H (21)

To have the experimental ε111 = ∆L/L = 210 10−6 at 20 Tesla, E ' 280 10−6 eV/Tesla.

Supplementary Note 3: Memory effect

On close inspection of Fig. 2a containing pulsed magnetic field data, and Fig. 2c (both in

the main text of the paper) containing data taken in a slower superconducting magnet, we

note a marked dependence of the coercive fields on field sweep rate. We further tested this

behavior with measurements in two different pulsed magnets with sweep rates of 40 T/s and

up to 10,000 T/s. The results are plotted in Supplementary Fig. 2, where we can see that

the fastest sweep of 10000 T/s shown by curve 3 (red) results in a higher coercive field.
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Supplementary Figure 2: Memory effect in UO2.

εa(H) for H along the [111] direction after zero field cooling the sample (green) compared with

data obtained at an intermediate sweep rate of 40 T/s (blue) and at fast sweep rate of 10,000

T/s (red). This shows that the switching can be partial, allowing for tuning of dε/dH. These

characteristics make the gradual reorientation of magnetic moments a peculiar memory effect in

UO2.

SUPPLEMENTARY REFERENCES

[1] Jones, W.M., Gordon, J., & Long, E.A. The heat capacities of Uranium, Uranium trioxide,

and Uranium dioxide from 15K to 300K. J. Chem. Phys. 20 695 (1952).

[2] Sakai, H., Kato, H., Tokunaga, Y., Kambe S., Walstedt, R.E., Nakamura, A., Tateiwa, N.,

& Kobayashi, T.C., Pressure-induced weak ferromagnetism in uranium dioxide, UO2 J.Phys.:

Condens. Matter 15 S2035 (2003).

[3] Brandt, O.G., & Walker C. T. Temperature depencence of elastic constants and thermal

expansion for UO2. Phys. Rev. Lett. 18, 11 (1967).

[4] White, G. K., & Sheard, F. W. The thermal expansion at low temperatures of UO2 and

7



UO2/ThO2. J. Low Temp. Phys. 14, 445 (1974).

[5] Borovik-Romanov, A.S. Piezomagnetism, Linear Magnetostriction and Magnetooptic Effect

Ferroelectrics 162, 153 (1993).

[6] Tavger, B.A. Symmetry of Piezomagnetic Crystals Sov. Phys. Cryst. 3, 341 (1958).

[7] Briss, R.R., & Anderson, J.C., Linear Magnetostriction in Antiferromagnetics Proc. Phys.

Soc. 81, 1139 (1963).

[8] Litvin, D. B., Magnetic Group Tables (International Union of Crystallography, 2013)

[9] Zvezdin A.K., et al., Linear Magnetostriction and antiferromagnetic domain structure in dys-

prosium orthoferrite Sov. Phys. JETP 61. 645 (1985).

[10] Santini, P., Carretta, S., Amoretti, G., Caciuffo, R., Magnani, N., and Lander, G. H., Multi-

polar interactions in f-electron systems: The paradigm of actinide dioxides, Rev. Mod. Phys.

81, 807-863 (2009).

[11] Carretta, S., Santini, P., Caciuffo, R., and Amoretti, G., Quadrupolar waves in uranium

dioxide, Phys. Rev. Lett. 105, 167201 (2010).

[12] Caciuffo, R., Santini, P., Carretta, S., Amoretti, G., Hiess, A., Magnani, N., Regnault, L.

P., and Lander, G. H., Multipolar, magnetic, and vibrational lattice dynamics in the low-

temperature phase of uranium dioxide. Phys. Rev. B 84, 104409 (2011).

8


