SUPPLEMENTARY INFORMATION

SEARCH FOR NON-LACTAM INHIBITORS OF Mtb β -LACTAMASE LED TO ITS OPEN SHAPE IN APO STATE: NEW CONCEPT FOR ANTIBIOTIC DESIGN

AMIN SAGAR*, NAZIA HALEEM, YAAWAR MIR BASHIR, AND ASHISH* CSIR-INSTITUTE OF MICROBIAL TECHNOLOGY, CHANDIGARH INDIA Supplementary Table S1

A table showing the compounds C1 through C32 which were purchased after virtual ligand screening and tested using the *In-vitro* β -lactamase activity assay. The 2D structures, IUPAC names and SMILES notations of the compounds have been tabulated with the rows colored according to the chemical moiety present in the compound. The color key is given at the bottom of the table.

	Molecule Name	Representation	IUPAC Name	SMILES
1	C1		1-(3-(((1,7,8-triaza-bicyclo[4.3.0]nona-2,4,6,8 -tetraen-9-yl)-methylamino)-formyl)-phenyl) -pyrrolidine-2,5-dione	C1CC(N(C1=0)c1cccc(c1)C(NCc1nnc2ccccn12)=0)= 0
2	C2		2-(2-(5-cyclopropylamino-1,3,4-thiadiazoi-2 -ylsulfanyl)-acetylamino)-1-methylamino-ethanone	CNC(CNC(CScinnc(NC2CC2)si)=0)=0
3	C3		2-((thiophen-2-yl)-formylamino)-1-((1,7,8-triaza -bicydo[4,3.0]nona-2,4,6,8-tetraen-9-yl) -methylamino)-ethanone	C(C(NCc1nnc2ccccn12)=O)NC(c1cccs1)=O
4	C4	$ \begin{array}{c} $	2-(5-(3-fluoro-phenyl)-2H-1,2,3,4-tetraazol-2 -yl)-1-((furan-2-yl)-methylamino)-ethanone	C(c1ccco1)NC(Cn1nc(c2cccc(c2)F)nn1)=O
5	C5	N T N N T	1-(4-(pyridin-3-yl)-thiazol-2-ylamino)-2-(7,8,9 -triaza-bicyclo[4.3.0]nona-1(6),2,4,8-tetraen-7-yl) -ethanone	C(C(Ncinc(cs1)cicccnc1)=O)nic2cccc2nni
6	C6		(2-hydroxy-4-methoxy-phenyl)-((1,7,8-triaza -bicydo[4.3.0]nona-2,4,6,8-tetraen-9-yl) -methylamino)-methanone	COc1ccc(C(NCc2nnc3ccccn23)=0)c(c1)0
7	C7		1-(4-fluoro-phenylamino)-2-(2-(1-(3-fluoro -phenyl)-1H-1,2,3,4-tetraazol-5-ylsulfanyl) -acetylamino)-ethanone	C(C(Nc1ccc(cc1)F)=O)NC(CSc1nnnn1c1cccc(c1)F)=O
8	C8		1-(3-((3-(1H-1,2,3,4-tetraazol-1-yl)-phenyl) -formylamino)-phenyl)-pyrrolidin-2-one	C1CC(N(C1)c1cccc(c1)NC(c1cccc(c1)n1cnnn1)=0)=0
9	C9		2-(2-(4-cyclopropyl-5-(thiophen-2-yl)-4H-1,2,4 -triazol-3-ylsulfanyl)-acetylamino)-1-(2,3-dimethyl -phenylamino)-ethanone	Cc1cccc(c1C)NC(CNC(CSc1nnc(c2cccs2)n1C1CC1)=0)=0

	Molecule Name	Representation	IUPAC Name	SMILES
10	C10	$ \begin{array}{c} $	1-(3,4-difluoro-phenylamino)-2-(2-(4-p -tolyl-5-(pyrrolidin-1-yl)-4H-1,2,4-triazol-3 -ylsulfanyl)-acetylamino)-ethanone	Cc1ccc(cc1)n1c(nnc1SCC(NCC(Nc1ccc(c(c1)F)F)=0)= O)N1CCCC1
11	C11		1-(2-(2-methoxy-phenoxy)-ethylamino)-2-(1 -phenyl-1H-1,2,3,4-tetraazol-5-ylsulfanyl) -ethanone	COclccccclOCCNC(CSclnnnnlclcccccl)=O
12	C12		1-cyclohexylamino-2-((1-(1,7,8-triaza -bicyclo[4.3.0]nona-2,4,6,8-tetraen-9-yl) -ethylamino)-formylamino)-ethanone	CC(c1nnc2ccccn12)NC(NCC(NC1CCCCC1)=0)=0
13	C13		8-butyl-3-((5-(pyridin-2-yl)-4H-1,2,4-triazol-3 -ylamino)-formyl)-8-aza-bicyclo[4.3.0]nona-1(6),2,4 -triene-7,9-dione	CCCCN1C(c2ccc(cc2C1=0)C(Nc1nnc(c2ccccn2)[nH]1)=0)=0
14	C14		1-(4-((4-(4-methyl-piperidin-1-yl)-phenylamino) -formyl)-phenylamino)-2-(4-methyl-4H-1,2,4 -triazol-3-ylsulfanyl)-ethanone	CC1CCN(CC1)c1ccc(cc1)NC(c1ccc(cc1)NC(CSc1nncn1 C)=O)=O
15	C15	O O O N T N O O O O O O O O O O O O O O	8,9-dihydroxy-3-oxo-5-((1-phenyl-1H-1,2,3,4 -tetraazol-5-ylsulfanyl)-methyl)-2-oxa -bicydo[4.4.0]deca-1(10),4,6,8-tetraene	C(C1=CC(=0)0c2cc(c(cc12)0)0)Scinnnniciccccci
16	C16	N N N N N N N N N N N N N N N N N	1-(3-((5-(5-bromo-thiophen-2-yl)-1,3,4-oxadiazol-2 -yl)-methoxy)-phenyl)-1H-1,2,3,4-tetraazole	C(c1nnc(c2ccc(s2)[Br])o1)Oc1cccc(c1)n1cnnn1
17	C17		((2,4-dimethyl-1,5,7,8-tetraaza -bicydo[4.3.0]nona-2,4,6,8-tetraen-9-yl) -methylamino)-(4-(pyrrolidin-1-ylsulfonyl)-phenyl) -methanone	Cc1cc(C)n2c(CNC(c3ccc(cc3)S(N3CCCC3)(=0)=0)=0)nnc2n1
18	C18		2-(5-(3-bromo-phenylamino)-1,3,4-thiadiazol-2 -ykulfanyl)-1-(4-methoxy-phenylamino)-propan-1 -one	CC(C(Nc1ccc(cc1)OC)=O)Sc1nnc(Nc2cccc(c2)[Br])s1

	Molecule Name	Representation	IUPAC Name	SMILES
19	C19		3-(2-(5-(acetyl-cyclopropyl-amino)-1,3,4 -thiadiazol-2-ylsulfanyl)-acetylamino)-5-ethyl-5 -methyl-imidazolidine-2,4-dione	CCC1(C)C(N(C(N1)=0)NC(CSc1nnc(N(C2CC2)C(C)=0) s1)=0)=0
20	C20		3-benzyl-8-(()5-isopropyl-1,3,4-thiadiazol-2-ylamino -formyl)-7-methyl-9-thia-2,4-diaza -bicydo[4.3.0]nona-1(6),2,7-trien-5-one	(CC(C)c1nnc(NC(c2c(C)c3C(NC(Cc4ccccc4)=Nc3s2)=0)=0)s1
21	C21		2-oxo-2-(2,2,2-trifluoro-ethylamino)-ethyl 3-(furan-2-yl)-2-(5-phenyl-1H-1,2,3,4-tetraazol-1 -yl)-prop-2-enoate	C(C(F)(F)F)NC(COC(C(=Cc1ccco1)n1c(c2ccccc2)nnn1)=0) =0
22	C22		2-(4-amino-5-((3,5-dimethyl-phenoxy) -methyl)-4H-1,2,4-triazol-3-ykulfanyl)-1-(methyl -phenyl-amino)-ethanone	Cc1cc(C)cc(c1)OCc1nnc(n1N)SCC(N(C)c1ccccc1)=O
23	C23		1-(2,3-dimethyl-phenylamino)-2-(2-(5-(4-fluoro -phenylamino)-1,3,4-thiadiazol-2-ykulfanyl) -acetylamino)-ethanone	Cc1cccc(c1C)NC(CNC(CSc1nnc(Nc2ccc(cc2)F)s1)=0)= 0
24	C24		(4-((1-(2-methoxy-phenyl)-1H-1,2,3,4-tetraazol-5 -y&ulfanyl)-methyl)-phenyl)-phenylamino -methanone	COclcccccinic(nnni)SCclccc(cci)C(Nclccccci)=O
25	C25		1-(2,3-dimethyl-phenylamino)-2-(2-(4-(2-fluoro -phenyl)-4H-1,2,4-triazol-3-ylsulfanyl)-acetylamino) -ethanone	Cc1cccc(c1C)NC(CNC(CSc1nncn1c1cccccc1F)=0)=0
26	C26		ethyl 6-((1-cyclohexyl-1H-1,2,3,4-tetraazol-5 -ykulfanyl)-methyl)-4-(5-methyl-furan-2-yl)-2 -oxo-1,2,3,4-tetrahydro-pyrimidine-5-carboxylate	CCOC(C1C(c2ccc(C)o2)NC(NC=1CSc1nnnn1C1CCCCC 1)=0)=0
27	C27	°-√N, N, N	4-(2-(5-(3-methoxy-phenylamino)-1,3,4 -thiadiazol-2-ylsulfanyl)-propionylamino) -benzenesulfonamide	CC(C(Nc1ccc(cc1)S(N)(=0)=0)=0)Sc1nnc(Nc2cccc(c2)0C)s1

,					
Compounds having 1,3,4 - Triazole moiety independently or as part of a larger ring					
Compounds having Thiadiazole moiety independently or as part of a larger ring					
Compounds having 1,2,3 - Triazole moiety independently or as part of a larger ring					

Data-collection and scattering-derived parameters

Supplementary Table 2

Data-collection parameters			
Instrument /	SAXSpace (Anton Paar)		
Beam geometry	10 mm slit		
Wavelength (Å)	1.5418		
Desmearing Software	Done using SAXSquant		
<i>q</i> range (nm⁻¹)	0.10–3.00		
Temperature (K)	283		
Molecular-mass determination ⁺			
Partial specific volume (cm ³ g ⁻¹)	0.724		
Calculated monomeric <i>M_r</i> from sequence	27.5		
Dry volume calculated from sequence (Å ³)	34190		
Software employed			
Primary data reduction	SAXSquant		
Data processing	PRIMUS QT		
Ab initio analysis	GASBOR		
Validation and averaging	DAMAVER		
Rigid-body modeling	N/A		
Computation of model intensities	CRYSOL		
Three-dimensional graphics representations	PyMOL		

Table 2A

	Apo BlaC (Conc. Series)	Apo BlaC (Conc. Series)	Apo BlaC (Conc. Series)	
Data-collection parameters				
Exposure time (min)	30	30	30	
Concentration range (mg ml ⁻¹)	20	8	4	
I(0)/C	886.1	880.0	888.3	
Structural				
parameters†				
<i>I(0)</i> (Arbitrary Units) [from <i>P(r)</i>]	17820± 201	70±132	3485±104	
<i>R_g</i> (nm) [from <i>P(r)</i>]	2.27± 0.04	2.30 ± 0.09	2.45 ± 0.16	
<i>I(0)</i> (Arbitrary Units) (from Guinier)	17722± 284	7040±147	3553±110	
<i>R_g</i> (nm) (from Guinier)	2.35 ± 0.012	2.38 ± 0.018	2.30 ± 0.025	
D _{max} (nm)	6.7	6.8	6.9	
Porod volume estimate (Å ³)	38503	38258 38365		
Molecular-mass				
determination				
Molecular mass <i>M_r</i> [from V _c]	29.1	29.3	29.4	

Table 2B

	Apo BlaC	BlaC+ CA	BlaC+ SB	BlaC+ TB	BlaC+ C5	BlaC+ C13	BlaC+ C16	BlaC+ C28
	(Time Series)							
Data-collection								
parameters								
Exposure time (min)	5	5	5	5	5	5	5	5
Concentration range	20	20	20	20	20	20	20	20
(mg ml ⁻¹)								
Structural parameters†								
	2968.24±135.43	2958.99±151.07	2914.08±142.78	2940.78±143.75	2932.99±145.29	2951.25±150.28	2940.90±147.00	2908.22±145.29
I(0)	2940.64±134.78	2921.74±145.66	2928.80±145.20	2915.13±146.55	2895.24±144.48	2917.09±147.83	2934.89±150.07	2950.68±151.43
(from Guinier)	2911.41±139.99	2969.78±150.96	2953.57±150.79	2996.80±147.41	2954.58±146.53	2997.49±146.42	2956.45±154.29	2962.11±146.44
	2965.41±158.33	2912.41±146.74	2926.70±146.45	2986.03±152.93	2955.09±151.13	2964.95±152.73	2939.49±152.14	3010.84±147.61
	2934.97±136.12	2955.25±145.32	2937.87±150.68	2980.35±149.17	2930.92±143.42	2926.70±147.20	2951.54±146.20	2922.80±149.83
	2996.96±150.07	2895.58±142.13	2916.62±143.17	2949.37±144.91	2939.73±144.05	2967.04±151.36	2953.19±151.78	2909.93±141.36
	2966.75±161.12	2958.35±148.42	2941.73±151.52	3024.01±156.85	2973.23±146.34	2931.05±145.34	2969.84±147.45	2975.66±143.54
	2980.64±149.24	2916.95±139.67	2914.19±144.59	2986.82±147.19	2916.58±143.18	2956.11±148.36	2973.35±148.37	2985.02±150.76
	2.35±0.048	2.01±0.041	1.97±0.035	1.98±0.029	1.98 ± 0.03	2.04 ± 0.033	1.98 ± 0.048	2.11 ± 0.054
<i>R_g</i> (nm)	2.32±0.053	1.98±0.048	2.04±0.031	2.09±0.038	2.02 ± 0.039	1.94 ± 0.047	1.95 ± 0.041	2.06 ± 0.032
(from Guinier)	2.33±0.058	1.97±0.05	2.15±0.039	2.13±0.044	2.04 ± 0.06	2.09 ± 0.029	2.06 ± 0.039	2.13 ± 0.047
	2.31±0.047	2.01±0.038	2.28±0.041	2.16±0.031	2.10 ± 0.046	2.08 ± 0.066	2.04 ± 0.052	2.09 ± 0.039
	2.34±0.060	2.04±0.042	2.34±0.042	2.34±0.027	2.05 ± 0.051	2.05 ± 0.054	2.10 ± 0.032	2.13 ± 0.042
	2.32±0.042	2.03±0.036	2.36±0.034	2.32±0.033	2.12 ± 0.041	2.09 ± 0.032	2.12 ± 0.037	2.14 ± 0.034
	2.36±0.031	2.04±0.033	2.32±0.036	2.31±0.028	2.13 ± 0.039	2.11 ± 0.040	2.07 ± 0.044	2.08 ± 0.043
	2.34±0.040	2.04±0.04	2.34±0.041	2.30±0.030	2.09 ± 0.034	2.04 ± 0.038	2.09 ± 0.030	2.09 ± 0.033
Porod volume estimate	38091	37840	38912	38119	37947	38325	38429	38925
(Å ³)	37667	39001	38448	38340	38606	38466	39052	38645
	38358	38137	38827	38912	38189	38346	39079	38320
	39073	38387	38650	38518	38973	38946	39010	39254
	38012	38346	38182	39001	38523	38093	38485	38454
	38937	37441	38156	38153	38171	38117	38951	38985
	39154	38540	38568	39085	39235	38199	38620	38092
	38460	38639	37693	38356	38225	38156	38577	38463
Molecular-mass								
determination								
Molecular mass M _r [from	28.9	29.2	29.2	29.0	29.3	29.3	29.1	29.1
V _c]	28.8	28.7	29.4	29.1	29.1	28.9	28.6	28.9
	29.5	29.1	29.4	28.9	29.0	29.3	29.3	28.8
	28.7	29.0	28.8	28.9	28.6	29.2	29.0	28.9
	28.6	28.9	29.9	29.5	28.8	28.9	28.5	29.2
	29.2	29.0	29.2	28.9	29.5	29.4	28.8	28.7

Supplementary Figure Legends

Figure S1 - The SAXS intensity profiles of BlaC in Apo state (A) and in presence of 100 fold molar excess of Clavulanic acid (B), Sulbactam (C), Tazobactam (D), C5 (E), C13 (F), C16 (G) and C28 (H) at various time points from 5 to 40 min.

Figure S2 - The Guinier Plots of BlaC in Apo state (A) and in presence of 100 fold molar excess of Clavulanic acid (B), Sulbactam (C), Tazobactam (D), C5 (E), C13 (F), C16 (G) and C28 (H) at various time points from 5 to 40 min. In the inset of each plot, the linear fits of the Guinier Plots at 5 and 40 min are presented close to each other to clearly show the difference in the slopes.

Figure S3 - The Porod-Debye Plots of BlaC in Apo state (A) and in presence of 100 fold molar excess of Clavulanic acid (B), Sulbactam (C), Tazobactam (D), C5 (E), C13 (F), C16 (G) and C28 (H) at various time points from 5 to 40 min. The gray histograms represent the value of Porod Exponent calculated from the SAXS profile.

Figure S4 - The Normalized Kratky Plots of BlaC in Apo state (A) and in presence of 100 fold molar excess of Clavulanic acid (B), Sulbactam (C), Tazobactam (D), C5 (E), C13 (F), C16 (G) and C28 (H) at various time points from 5 to 40 min.

Supplementary figure S1

Supplementary figure S2

Supplementary figure S3

Supplementary figure S4

