File Name: Supplementary Information Description: Supplementary Figures, Supplementary Tables, Supplementary Notes and Supplementary References

File name: Peer Review File Description:

Supplementary Figure 1. Selected 2-D diffraction images of FeCO₃ before- and FeCO₃ + Fe₄C₃O₁₂ after- heating. Single crystal diffraction images were collected at 109(2) GPa at (a) ambient temperature before heating and (b) after heating at 1650(100) K. (b) Intensity loss of FeCO₃ single crystal spots (orange squares) and the appearance of new peaks indicate the transformation of FeCO₃ to Fe₄C₃O₁₂ (red squares). Blue squares indicate diamond diffraction spots from the diamond anvils. Numbers designate diffraction lines of neon pressure transmitting medium (magenta) and rhenium (black).

Supplementary Figure 2 | Mössbauer spectra of the run products after heating of FeCO₃ at high *P-T*. The spectra were collected at (*a*) 103.7(2) GPa after heating at 1900(100) K, and (*b*) at 97(2) GPa after heating at 3088(250) K. The hyperfine parameters for each component are reported in Table S4. The spectra are fitted with full transmission integral and are shown by continues lines. In percentage on the left of each spectrum the relative absorption.

Supplementary Figure 3 | Nano-diamond Raman spectrum collected after heating FeCO₃ at 78(1) GPa and 1950(100) K. Raman spectrum collected after decompression to ambient conditions of the sample laser heated at 78(1) GPa and 1950(100) K. Starting material was pure FeCO₃ loaded in Ne pressure transmitting medium. After decompression sample was removed from pressure chamber and placed on glass plate. Strong broad features are typical for nano-diamond and band at ~1330 cm⁻¹ characteristic for diamond.

Supplementary Figure 4 | Rietveld refinement of an X-Ray diffraction pattern provided by Liu *et al.*¹³ of tetrairon (III) orthocarbonate at 90 GPa and room temperature. The pattern was collected after heating magnesio-siderite $(Mg_{0.35}Fe_{0.65})CO_3$ at 90 GPa and 2200 K. The high-pressure carbonate was fitted using our model of tetrairon (III) orthocarbonate (Table S1). Red dots: measured powder diffraction pattern; black solid line: refined profile; black solid line (bottom): residual between the observation and the refinement. Indices of $(Mg,Fe)_4C_3O_{12}$ in black, Ne in purple, and Au in orange. The refinement was performed by using GSAS package.

Supplementary Figure 5 | Mössbauer spectra of pure HP-Fe₃O₄ at 38(1) GPa and ambient temperature. The hyperfine parameters are reported in Table S4. The data are fitted using a subspectrum (orange) that does not add up to the total spectrum due to the properties of the full transmission integral fit. In percentage on the left of the spectrum the relative absorption.

Experiment		•	•		
	P (GPa)*	T (K)	Observed phases	Comments Ar	alytical Technique
1. ID09a (ESRF)	5(1)	293	FeCO ₃		SXRD
	19.5(1)	293	$FeCO_3$		SXRD
	29.5(1)	293	FeCO ₃		SXRD
	39.6(1)	293	FeCO ₃		SXRD
	49.4(1)	293	FeCO,		SXRD
2. ID18 (ESRF)	25.2(1)	2050(150)	$FeCO_3, \alpha - Fe_2O_3$		MS
3. ID27 (ESRF)	28.7(1)	293	FeCO ₃		SXRD
~		1550(100)	FeCO,		SXRD
		2250(150)	$FeCO_{4}$ HP- $Fe_{4}O_{4}$		SXRD
4. ID18 (ESRF)	30.8(1)	2150(150)	FeCO ₃ HP-Fe ₃ O ₄		MS
5. ID09a (ESRF)	37(1)	2500(150)	$FeCO_3$ HP- Fe_3O_4		SXRD
6. ID18 (ESRF)	39(1)	2000(150)	$FeCO_3$ HP- Fe_3O_4		MS
7. ID18 (ESRF)	40(1)	393(40)	FeCO,		MS
		464(45)	FeCO ₃		MS
8. ID18 (ESRF)	45(1)	293	FeCO,		MS
	~	570(50)	FeCO,		MS
9. ID09a (ESRF)	50(1)	1750(100)	FeCO,		SXRD
		2350(150)	FeCO, HP-Fe, OA		SXRD
		2450(150)	FeCO, HP-Fe ₃ O ₄		SXRD
10. ID18 (ESRF)	52.5(1)	293	FeCO,		MS
		430(40)	FeCO ₃		MS
11. 13-IDD (APS)	69.3(1)	1187(100)	FeCO ₃		SXRD
	70.7(1)	1257(100)	FeCO ₃		SXRD
		1413(100)	FeCO,		SXRD
12. ID18, ID27 (ESR	UE) 74(1)	1750(100)	$Fe_4C_3O_{12}$, $Fe_4C_4O_{13}$		SXRD
13. ID18, ID27 (ESR	UE) 75(1)	2200(150)	Fe ₄ C ₃ O ₁₂ , Fe ₄ C ₄ O ₁₃ , HP-Fe ₃ O ₄ , ppv-Fe ₂ O ₃ , Fe ₅ O ₇		SXRD
14. ID27 (ESRF)	91(2)	2500(150)	$Fe_4C_4O_{13}$, HP-Fe ₃ O ₄		SXRD
15. 13-IDD (APS)	97(2)	3088(250)	$\operatorname{Fe}_4C_4O_{13}$		SXRD
16. ID18 (ESRF)	97(2)	293	$Fe_4C_4O_{13}, HP-Fe_3O_4$	Temperature quenched after heating at 97(2) GPa and 3090	MS
17. ID09a	110(2)	1150(100)	FeCO ₃	Experiment 17 - XRSD was collected in situ while heating	SXRD
		1350(100)	FeCO ₃	corresponding temperatures	SXRD
		1400(100)	$\mathrm{Fe}_4\mathrm{C}_3\mathrm{O}_{12}$		SXRD
		1500(100)	$\operatorname{Fe}_4C_3O_{12}$		SXRD
		1550(100)	$Fe_4C_3O_{12}$, $Fe_4C_4O_{13}$		SXRD
		1650(100)	$Fe_4C_3O_{12}, Fe_4C_4O_{13}$		SXRD
		1700(100)	$Fe_4C_3O_{12}$, $Fe_4C_4O_{13}$		SXRD
		1750(100)	$Fe_4C_3O_{12}, Fe_4C_4O_{13}$		SXRD
		1900(100)	${\rm Fe}_4{\rm C}_3{\rm O}_{12},{\rm Fe}_{13}{\rm O}_{19}$		SXRD
18. ID18 (ESRF)	103.7(2)	293	$\operatorname{Fe}_{*}C, O_{12}, \operatorname{Fe}_{12}O_{10}$	Temmerature quenched after heating at 110(2) GPa and 190	SM

Supplementary Table 2. Deta	ils of crystal structure refinem	ents of HP-carbonates and atomic coordinates
Crystallographic data	Fe ₄ C ₃ O ₁₂	Fe ₄ C ₄ O ₁₃

Crystallo	graphic data		Fe ₄ C ₃ O ₁₂		Fe ₄ C ₄ O ₁₃				
P, T cond	itions		74(1) GPa		97(2) GPa				
of XRD e	xperiment		after heating	T	after heatir	ıσ			
			at 1750(100	ĴК	at 3088(25	0) K			
Crystal s	ystem		Trigonal		Monoclinio	c			
Space gro	oup		R 3 c		C 1 2/c 1				
a (Å)			12.762(2)		10.261(3)				
b (Å)			12.762(2)		3.985(3)				
c (Å)			5.332(1)		13.455(5)				
α (°)			90		90				
β (°)			90		107.85(4)				
γ (°)			120		90				
V (Å ³)			752.0(3)		523.76(28))			
Ζ			6		4				
Independ / R _{int}	lent reflections		386/0.0427		1503/0.070)5			
Refineme	ent method		Full matrix	least squares on F^2	Full matrix	least squares or	$1 F^2$		
Data / res paramete	straints / ers		386 / 1 / 33		346 / 0 / 53	3			
Goodness	s of fit on F^2		1.125		1.214				
Final <i>R</i> in <i>R</i> ₁ / w <i>R</i> ₂	ndices $[I > 2\sigma(I)]$)]	0.0468/0.11	33	0.03830.09	964			
ICSD ref	erence N		432930		432931				
Fe ₄ C ₃ O ₁₂	- 74(1) GPa afte	er heating at 17	50(100) K		Fe4C4O13	97(2) GPa after	heating at 308	88(250) K	
Site	x	У	z	Uiso	Site	x	У	z	Uiso
Fe(1)	1/3	2/3	0.0121(7)	0.0111(8)	Fe(1)	0.1242(1)	0.4730(2)	0.0936(1)	0.0119(5)
Fe(2)	0.2274(2)	0.2282(2)	0.0468(5)	0.0468(5)	Fe(2)	0.1693(1)	0.4698(2)	0.8360(1)	0.0116(5)
O(1)	0.2034(11)	0.0140(12)	0.017(3)	0.010(2)	O(1)	0.1855(5)	0.0342(8)	0.3799(4)	0.0107(8)
O(2)	0.4119(9)	0.5391(9)	0.0342(19)	0.0094(18)	O(2)	0.0873(5)	0.3820(8)	0.4552(4)	0.0111(8)
O(3)	0.3995(8)	0.3275(9)	0.029(2)	0.0084(18)	O(3)	0.0742(4)	0.2853(8)	0.2048(4)	0.0095(8)
O(4)	0.2296(9)	0.3819(8)	0.036(2)	0.0087(17)	O(4)	0	0.2020(11)	0.7500(1)	0.0096(11)
C(1)	0.1287(8)	0.0584(8)	0.100(2)	0.0095(17)	O(5)	0.0007(5)	0.1162(9)	0.5893(4)	0.0112(8)
					O(6)	0.1811(5)	0.0764(9)	0.0397(4)	0.0117(8)
					O(7)	0.1876(4)	0.1948(8)	0.7120(3)	0.0094(8)
					C(1)	0.1183(8)	0.0558(14)	0.4494(6)	0.0105(11)
					C(2)	0.0695(8)	0.0315(12)	0.6912(6)	0.0123(12)

Supplementary	Table 3. High-	pressure carbona	tes selected geo	metric param	leters (Å, °).		
$\mathrm{Fe}_4\mathrm{C}_3\mathrm{O}_{12}$				$\mathrm{Fe}_4\mathrm{C}_4\mathrm{O}_{13}$			
74(1) GPa after l	heating at 1750	(100) K		97(2) GPa	after heating :	at 3088(250) K	
Fe(1) – O(4)	1.935(11)	03 - C1 - 04	108.7(11)	Fe1 - O2	1.874(5)	02 - C1 - 01	106.7(5)
Fe(1) - O(4)	1.935(11)	02 - C1 - 03	119.2(12)	Fe1 – O3	1.879(5)	06 - C1 - 01	114.7(6)
Fe(1) - O(4)	1.935(11)	01 - C1 - 03	108.0(14)	Fe1 – O6	1.890(5)	06 - C1 - 02	113.3(5)
Fe(1) - O(4)	1.966(10)	04 - C1 - 01	114.4(14)	Fe1 – 01	1.904(5)	06 - C1 - 05	106.5(6)
Fe(1) - O(4)	1.966(10)	04 - C1 - 02	103.4(11)	Fe1 - O7	2.020(4)	02 - C1 - 05	108.0(5)
Fe(1) - O(4)	1.966(10)	01 - C1 - 02	101.8(10)	Fe1 – O5	2.060(4)	01 - C1 - 05	107.3(6)
Fe(1) - O(1)	2.303(10)			Fe1 – 02	2.097(5)		
Fe(1) - O(1)	2.303(10)			Fe2 - O6	1.901(5)	04 - C2 - 03	113.9(4)
Fe(1) - O(1)	2.303(10)			Fe2 - O7	1.989(4)	04 - C2 - 07	103.5(6)
Fe(2) - O(4)	1.906(9)			Fe2 - O3	1.991(4)	04 - C2 - 05	104.5(5)
Fe(2) - O(4)	1.912(9)			Fe2 - O7	2.052(4)	03 - C2 - 05	111.8(5)
Fe(2) - O(2)	1.930(11)			Fe2 - O1	2.055(3)	07 - C2 - 05	104.2(6)
Fe(2) - O(3)	1.948(9)			Fe2 - O1	2.065(3)	03 - C2 - 07	117.6(4)
Fe(2) - O(1)	2.016(10)			Fe2 - O4	2.086(3)		
Fe(2) - O(1)	2.066(11)			Fe2 - O2	2.111(6)	C1 - 05 - C2	112.6(6)
Fe(2) - O(3)	2.073(11)			C1 – 06	1.299(8)	C2 - O4 - C2	121.6(5)
Fe(2) - O(3)	2.263(10)			C1 – 02	1.324(11)	C1 - C2 - C2	91.4(4)
				C1 - 01	1.346(7)		
C1 – 04	1.306(17)			C1 - 05	1.357(8)		
C1 - 01	1.349(17)			C2 - O3	1.275(6)		
C1 – 02	1.350(19)			C2 - O5	1.328(8)		
C1 – O3	1.402(17)			C2 – O4	1.378(8)		
				C2 - O7	1.394(9)		

Supplementary	Table 4. Hvnerfine na	rameters der	ived from room temnerature	SMS snectr	a of FeCO, a	nd run pro	ducts	
Pressure (GPa)	Temperature (K)	Phase	Component/ Color in Figs. 3, S2 and S3	CS ^[a] mm/s	QS ^b mm/s	Area %	FWHM ^[c] mm/s	BHF ^{id} T
25.2(1)	before heating	FeCO ₃	Fe ²⁺ (HS) (blue)	1.09(2)	1.72(4)	100	0.55(9)	.
25.2(1)	quenched from	$FeCO_3$	Fe ²⁺ (HS) (blue)	1.09(2)	1.77(4)	80(4)	0.53(5)	ı
	2050(150)	α -Fe ₂ O ₃	sextet (green)	0.34(5)	ı	20(4)	0.24(17)	49.2(4)
30.8(1)	before heating	FeCO ₃	Fe^{2+} (HS) (blue)	1.02(2)	1.77(4)	100	0.42(5)	ı
30.8(1)	quenched from	FeCO ₃	Fe^{2+} (HS) (blue)	1.01(1)	1.78(2)	68(4)	0.50(8)	ı
	2100(150)	$HP-Fe_3O_4$	sextet (orange)	0.61(9(ı	32(4)	0.97(40)	33.8(7)
39(1)	before heating	FeCO ₃	Fe^{2+} (HS) (blue)	0.99(2)	1.70(4)	100	0.51(11)	ı
39(1)	quenched from	FeCO ₃	Fe^{2+} (HS) (blue)	0.94(4)	1.70(7)	11(4)	0.21(17)	ı
	2000(150)	$HP-Fe_3O_4$	sextet orange)	0.56(7)	I	89(4)	1.57(17)	37.5(5)
45(1)	before heating	FeCO ₃	$\mathrm{Fe}^{2^{+}}$ (HS) (blue)	0.94(4)	1.10(8)	43(16)	0.25(16)	·
			Fe^{2+} (LS) (red)	0.69(5)	ı	57(16)	0.57(23)	ı
45(1)	570(50), in situ	FeCO ₃	Fe^{2+} (HS) (blue)	0.74(4)	1.25(7)	83(6)	0.40(9)	I
	heating		Fe^{2+} (LS) (red)	0.57(8)	ı	17(6)	0.30	ı
38(1)	before heating	$HP-Fe_3O_4$	sextet (orange)	0.50(3)	ı	100.00	1.22(7)	35.6(2)
103.7(2)	quenched from		singlet (red)	0.41(1)	·	16(1)	0.63(6)	
	1900(100)		doublet (blue)	0.48(1)	1.60(2)	36(2)	0.76(4)	
			sextet (green) sextet (orange)	0.53(1) 0.26(1)	0 0	41(1) 6(1)	0.93(4) 0.25(4)	31.8(1) 15.8(1)
			-					
67)/6	(UC2)88U5		singlet	0.40(1)	- 17771)	(7)00	0.04(2)	I
			doublet	(1)22.0 (1)(0.69(1))	2.24(2)	16(1)	0.37(3)	
			doublet	0.77(1)	1.35(2)	7(1)	0.19(4)	I
[a] CS: center shi	ft relative to a-Fe							

[a] Co. center sum treative to wards
[b] QS: quadrupole splitting
[c] FWHM: full width at half maximum including the source linewidth
[d]: BHF: magnetic hyperfine field

Supplementary Table 5. Exan P,T conditions. Phase identifi	nples of iron oxides phase ications was based on the	es found in products of de results of single crystal d	composition of FeCO ₃ tr iffraction data.	reated at different
Crystallographic data	$\mathrm{Fe}_{13}\mathrm{O}_{19}$	HP-Fe ₃ O ₄	$Fe_{s}O_{7}$	ppv-Fe ₂ O ₃
<i>P</i> , <i>T</i> conditions of XRD experiment	103.7(2) GPa	51(1) GPa	74(1) GPa	74(1) GPa
	after annealing at 1900(100) K	after annealing at 2350(150) K	after annealing at 2200(150) K	after annealing at 2200(150) K
Crystal system	Monoclinic	Orthorhombic	monoclinic	orthorhombic
Space group	C 1 2/m 1	Cmcm	C 2/m	Cmcm
<i>a</i> (Å)	19.233(2)	2.673(1)	8.638(4)	2.631(1)
b (Å)	2.582(1)	9.150(9)	2.635(1)	8.585(2)
c (Å)	9.550(11)	9.202(4)	7.977(3)	6.326(9)
a (°)	90	90	06	06
β (°)	118.39(3)	90	106.02(4)	06
γ (°)	90	90	06	06
$V(Å^3)$	417.2(5)	225.0(2)	174.56(15)	142.9(2)
Z	8	4	7	4
Independent reflections / R _{int}	415/0.0588	169/0.0474	231/0.0203	157/0.0096
Refinement method		Full matrix least squ	uares on F^2	
Data / restraints / parameters	246 / 0 / 48	86 / 0 / 17	158 / 0 / 18	86 / 0 / 14
Final R indiced $ I > 2\sigma(I)$ R_1 / wR_2	0.1273/0.0780	0.0796/0.1914	0.0672/0.1635	0.0938/0.2189
ICSD reference N	238769	430561	430563	430559

Supplementary Note 1. Mössbauer spectra of high pressure carbonates

We collected SMS spectra for the run products after heating of FeCO₃ at 103.7(2) GPa and 1900(100) K and at 97(2) GPa and 3088(250) K (Supplementary Figure. 2). From XRSD analyses performed on the same samples, we identified the products to be mixtures of $Fe_4C_3O_{12} + Fe_{13}O_{19} +$ unreacted FeCO₃ at 103.7(2) (Supplementary Figure 2a, Supplementary Table 5) GPa and $Fe_4C_4O_{13} +$ unreacted FeCO₃ at 97(2) GPa (Supplementary Figure 2b, Supplementary Table 5). Unfortunately, for such multicomponent mixtures it is impossible to propose unique Mössbauer fitting models. However, we can state that all components except one have hyperfine parameters (particularly CS) compatible with iron's in HS rather than LS states (Supplementary Table 4), which is in perfect agreement wit the structural data (Fe-O bonding lengths in both *HP*-carbonates structures, Supplementary Table 2). Only the red singlets (Supplementary Figure 2a and 2b) can be almost surely addressed to LS-Fe²⁺ in FeCO₃ due to their CS values 0.41(1) (Supplementary Figure 2a) and 0.40(1) (Supplementary Figure 2b), which are in perfect agreement to those expected for LS-Fe²⁺ in siderite at those conditions¹⁷.

Supplementary Note 2. Bond Angle Variance

Cation coordination polyhedral in most ionic structures only approximate to regular geometrical forms. Deviation from regularity can be partly characterized by using distortion parameters. In order to better describe the geometry of the tetrahedral coordination complex, we measured the bond-angle distortion (or angle variance) for the CO₄ groups in the orthocarbonate. The bond angle distortion $\sigma(tet)^2$ is dimensionless and it is a convenient and realistic measure of distortion for those polyhedral that show variations in both bond angle and bond length. It gives a quantitative measure of the polyhedral distortion, which is independent of the effective size of the polyhedron¹. When the angle variance is equal to 0 the described polyhedron is undistorted

For tetrahedral complexes and coordination polyhedra one can measure the variance parameter (σ^2) using the following equation¹:

$$\sigma_{(tet)}^{2} = \sum_{i=1}^{6} (\theta_{i} - \theta_{0})^{2} / 5$$
(1)

where, θ_0 is the ideal bond angle for a regular polyhedron (e.g. 109.47° for a tetrahedron) and θ_i is the *i*th bond angle.

Supplementary References

[1] Robinson, K. Gibbs, G.V. & Ribbe, P.H. Quadratic elongation: A quantitative measure of distortion in coordination polyhedral. *Science* **172**, 567-570 (1971).