THE LANCET Respiratory Medicine

Supplementary appendix

This appendix formed part of the original submission and has been peer reviewed. We post it as supplied by the authors.

Supplement to: Dheda K, Gumbo T, Gandhi NR, et al. Global control of tuberculosis: from extensively drug-resistant to untreatable tuberculosis. *Lancet Respir Med* 2014; published online March 24. http://dx.doi.org/10.1016/S2213-2600(14)70031-1.

ONLINE SUPPLEMENT

SUPER-BUGS THREATEN GLOBAL TB CONTROL: FROM EXTENSIVELY DRUG-RESISTANT (XDR-TB) TO UNTREATABLE TUBERCULOSIS – STATE OF THE ART

Keertan Dheda^{1, 2}, Tawanda Gumbo³, Neel R Gandhi⁴, Megan Murray⁵, Grant Theron¹, Zarir Uwadia⁶, GB Migliori⁷, Rob Warren⁸

¹Lung Infection and Immunity Unit, Division of Pulmonology & UCT Lung Institute,

Department of Medicine, University of Cape Town, Cape Town, South Africa.

²Institute of Infectious Diseases and Molecular Medicine, University of Cape Town, Cape Town, South Africa.

³Office of Global Health and the Department of Medicine, University of Texas

Southwestern Medical Center, Dallas, Texas

⁴Departments of Epidemiology, Global Health and Infectious Diseases, Rollins School of Public Health,

Emory University, Atlanta, Georgia, USA

⁵Department of Global Health and Social Medicine, Harvard Medical School

⁶Hinduja Hospital & Research Center, Mumbai, India.

⁷Director, WHO Collaborating Centre for TB and Lung Diseases, Fondazione S. Maugeri, Care and Research Institute, Tradate, Italy

⁸DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, MRC Centre for Molecular and Cellular Biology, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Tygerberg, South Africa.

Request for reprints and correspondence: Keertan Dheda, H47 Old Main Building, Groote Schuur Hospital, Observatory, 7925, South Africa or <u>keertan.dheda@uct.ac.za</u>

Molecular epidemiology of XDR and TDR tuberculosis

Intensive longitudinal studies have demonstrated that treatment in the absence of routine drug susceptibility testing was the underlying cause of the emergence of XDR-TB in different settings in South Africa ^{1, 2}. This in turn was exacerbated by the implementation of the WHO-recommended standardised MDR treatment regimen, which failed to recognise the association between ethambutol ^{3,4}, pyrazinamide ^{5,6} and ethionamide resistance ⁷ and MDR-TB. These programmatic errors have led to the selection of distinct XDR-TB strain genotypes in the different South African provinces 8-¹¹ and in Portugal ¹². Subsequent to the emergence of XDR-TB, these strains were transmitted in settings where diagnostic delay prevents the implementation of effective treatment and where infection control measures are inadequate ¹³. The theme of the emergence of XDR-TB followed by transmission was common to most of the countries where molecular epidemiological studies have been done (Table 1E). Nevertheless, a number of studies reported that XDR-TB was primarily acquired, possibly reflecting failure of the current policies and protocols to initially test and treat, and cure cases adequately (Table 1E). Despite improving our understanding of the mechanisms driving the XDR-TB epidemic in the respective countries, it is not clear whether this information has influenced TB control policy, except in KwaZulu-Natal¹⁴.

XDR-TB and resistance beyond XDR-TB in India and China

MDR-TB has been reported from every country in the world surveyed with a recent WHO study reporting that global rates of MDR-TB are currently at their highest ¹⁵. 36% of the world's total population and 50% of the world's MDR-TB population reside in China and India and hence this section will focus on these two vast countries (see Table 3 in the main paper summarizing the disease burden and outcomes).

China: Estimates of the extent of drug resistance in China were limited in the past by local or regional surveys not truly representative of such a vast country. In 2012 the Chinese Center for Disease Control and Prevention (CDC) conducted a national survey of DR-TB in 2012 by sampling 70 clusters nationwide (4606 patients) with all the provinces contributing at least one cluster ¹⁶. 5.7% of newly diagnosed and 25.6% of previously treated patients had MDR-TB. Among those with MDR-TB, 8.3% of new cases (95% CI, 2.9 to 13.6) and 8.0% of previously treated patients (95% CI, 2.2 to 13.9) had XDR-TB. This translates into ~120,000 MDR and ~10,000 XDR-TB cases per year in China, confirming the severity of China's MDR-TB problem. The Ministry of Health responded to these alarming figures by strengthening the reporting, referral, and follow up of patients seen in the hospital system.

India: In India, the situation is less clear because of the lack of national surveillance data and "official" figures are at variance with estimates in the private sector. In the latest WHO global resistance report, MDR-TB rates were reported at 2-3% in new cases and 12-17% in retreatment cases ¹⁷. However, these estimates are based on small sample sizes and come from sentinel centers where program performance may exceed what is routinely encountered elsewhere. For example, at a private referral hospital in Mumbai, the corresponding MDR-TB rates for new and retreatment cases run at 30% and 60% ¹⁸. The WHO report reveals that XDR-TB prevalence rates amongst retreatment cases is ~0.5%, yet in the first report of XDR-TB from Mumbai in 2006, 11% of all MDR samples sent to a private mycobacterial laboratory were XDR-TB ¹⁹. Recently, a study from a tertiary private hospital in Mumbai attracted intense global attention documenting the first four Indian patients whose isolates were resistant to all drugs tested (TDR-TB) ²⁰. Several factors including inappropriate treatment may underpin the emergence of DR-TB in this setting. In the public sector category 1 (2HREZ/4RH) treatment failures,

instead of receiving DST and an appropriate regimen, were until recently inappropriately put on category 2 (2HREZS/1HREZ/5HRE) treatment for a further 8 months, which in essence adds a single new drug (streptomycin) to a clearly failing regimen. In India's huge and unregulated private sector (70% of hospitals and 76% of doctors) Second line drugs have been used inappropriately over the last two decades by a wide range of non-specialists without any government control. A recent audit of the MDR-TB prescriptions written out by 106 private doctors practicing in Dharavi, Asia's largest slum, revealed that 97% of all prescribed regimens were so inadequate that amplification of MDR to XDR-TB was highly likely ²¹. Typical of many resource-poor settings including Africa, infrastructure, patient isolation, and infection control measures are severely lacking (Figure 2 is typical of a congregate ward setting in which patients reside).

Continent	Country	Region	Study period	Number of XDR cases	Number of TDR	Genotyping method(s) used	Genotypes present	Number of isolates	% Clustering (transmission)	Interpretatio n of results	Data used to construct	Reference
					cases						Figure 1	
Africa	South Africa	Gauteng,	June 2007 to	24		Spoligotyping,	Beijing	6	N/A	XDR-TB is	Yes	A1
		Limpopo,	January			MIRU-VNTR	LAM	3		endemic in		
		Mpumalanga	2008			typing	Т	3		the region		
		and North					EAI	6		and only low		
		West					S	2		levels of		
							Х	3		transmission		
							Н	1		were		
										observed		
Africa	South Africa	Western	August	224		Spoligotyping	Western			Endemic	Yes	A2
		Cape, Eastern	2000-2010				Cape		N/A	spread of		
		Cape,	(Western				Beijing	37		MDR-TB or		
		KwaZulu-	Cape), July				(typical)			pre-XDR		
		Natal and	2008-				Beijing	57		followed by		
		Gauteng	November				(atypical)			acquisition of		
			2009				LAM	2		resistance to		
			(Eastern				Т	5		generate		
			Cape),				U	1		XDR-TB.		
			KwaZulu-				Х	1		Additional		
			Natal (May				Orphan	2		spread		
			2005-April							through		
			2006) and				Eastern			migration		
			Gauteng				Cape					
			(March				Beijing	89				
			2004-				(atypical)					
			December				LAM	1				
			2007)				S	1				
							Orphan	3				
							KwaZulu-					
							Natal					
							LAM	18				
							T	2				
							S	2				
							Orphan	3				

Table 1E. Transmission dynamics and genotyping data from XDR-TB from different geographical regions.

Africa	South Africa	North West (gold mine)	January 2003 to November 2005	5	IS6110 DNA fingerprinting, Spoligotyping, MIRU typing	LAM X H	1 3 1	0/5 (0%)	Amplification of resistance due to diagnostic delay and inappropriate treatment	No	A3
Africa	South Africa	Natal	N/A	U U	whole genome sequencing	LAM	9	9/9 (100%)	transmission of XDR-TB	NO	A4
Africa	South Africa	KwaZulu- Natal	June 2005 to June 2006	14	Spoligotyping	N/A	N/A	N/A	Reinfection with XDR-TB strains indicating transmission of XDR-TB	No	Α5
Africa	South Africa	Gauteng, Limpopo, Mpumalanga, Nort West, Eastern Cape, Western Cape and Free State	June 2005 to December 2006	41	Spoligotyping	Beijing LAM T EAI X H S Orphan	14 5 4 1 2 1 10	15/41 (37%)	XDR-TB was endemic in all regions tested. Transmission was low implying acquisition of resistance	No	A6
Africa	South Africa	KwaZulu- Natal	January 2005 to March 2006	46	Spoligotyping	LAM (not defined)	39 7	N/A	Extensive transmission of XDR-TB	No	A7
Africa	South Africa	Western Cape	August 2002 to February 2008	52	IS6110 DNA fingerprinting, targeted DNA sequencing	Beijing LAM S X	45 1 5	19%	Transmission of MDR-TB followed by acquisition of second-line resistance leading to the emergence of XDR-TB	No	A8

Africa	South Africa	Western Cape	N/A	4		Whole genome sequencing	N/A	N/A	N/A	Transmission of MDR-TB followed by acquisition of second-line resistance leading to the emergence of XDR-TB	No	A9
Africa	South Africa	Eastern Cape	July 2008 to July 2009	108	9	IS6110 DNA fingerprinting, spoligotyping, targeted DNA sequencing	Beijing (atypical) LAM MANU S T	103 2 1 1 1	88/108 (81%)	Endemic spread of pre- XDR-TB followed by acquisition of resistance to generate XDR-TB and subsequent transmission	No	A10
Africa	Ethiopia	Addis Ababa	December 2005 to August 2006	2		spoligotyping	Т	2	N/A	XDR-TB was emerging	Yes	A11
Americas	Argentina	Salta, Rosario, Buenos Aires, Mar del Plata	January 2003 to December 2009	53		IS6110 DNA fingerprinting, spoligotyping	LAM T H Orphan	8 2 21 22	31/53 (58%)	XDR-TB was emerging and being transmitted	Yes	A12
Asia	Nepal	Country-wide	2007 to 2010	13		Spoligotyping, VNTR typing	Beijing CAS T Orphan	9 1 2 1	4/13 (31%)	XDR-TB was emerging and being transmitted	Yes	A13
Asia	China	Hong Kong	1997 to 2006	20		IS6110 DNA fingerprinting	N/A	N/A	13/20 (65%)	Community transmission of XDR-TB	No	A14
Asia	China	Xinjiang province, Shihezi		2		MIRU-VNTR typing	N/A	N/A	N/A	Not described	Yes	A15

Asia Asia	China	Jiangxi Shanghai	January 2010 to June 2011 March 2004 to November 2007	16	 MIRU-VNTR typing, DNA sequencing VNTR typing	N/A Beijing orphan	N/A 10 1	0/16 (0%)	XDR-TB was emerging through acquisition of resistance XDR-TB was primarily transmitted	No Yes	A16
Asia	China	Country wide	January 2002 to December 2005	13	MIRU-VNTR typing, targeted DNA sequencing	Beijing T	10 3	2/13 (15%)	XDR-TB was emerging through acquisition of resistance followed by limited transmission	Yes	A18
Asia	Cambodia	Not given	May 2007 and June 2009	1	Spoligotyping, targeted DNA sequencing	EAI	1	N/A	Not described	Yes	A19
Asia	Pakistan	Country wide	2006 to 2009	57	Spoligotyping, MIRU-VNTR typing	Beijing CAS T EAI U X Orphan	5 33 4 1 2 1 11	0/57 (0%)	XDR-TB was emerging through acquisition of resistance	Yes	A20
Asia	Pakistan	Country wide	2006 to 2009	50 (previously described isolates Hasan <i>et al</i> .)	Spoligotyping, targeted DNA sequencing	N/A	N/A	N/A	N/A	No	A21
Asia	Taiwan	Country wide	May 2007 to Dec 2008	43	Spoligotyping	Beijing LAM T EAI H Orphan	22 2 1 8 2 8	N/A	Not described	Yes	A22

Asia Asia	India Japan	Mumbai Osaka	January 28 to March 2009 April 2000 to March 2007	150 36		Spoligotyping, targeted DNA sequencing MIRU-VNTR typing	Beijing CAS T EAI H Family 35 N/A	94 21 20 13 1 1 N/A	93/150 (62%) N/A	XDR-TB was emerging and being transmitted Not described	Yes	A23
Asia	Japan	Country wide (drug resistance survey)	June 2002 and November 2002	17		IS6110 DNA fingerprinting, spoligotyping, VNTR typing	Beijing LAM T Orphan	8 3 2 4	12/17 (57%)	XDR-TB was emerging and being transmitted	Yes	A25
Asia	Japan	Osaka	2001 to 2004	29		IS <i>6110</i> DNA fingerprinting, MIRU-VNTR typing	N/A	N/A	20/29 (69%)	XDR-TB was emerging and being transmitted	No	A26
Middle East	Iran	Tehran	October 2006 to October 2008	8	15	Spoligotyping and VNTR typing	Beijing CAS EAI H	5 4 5 9	0/23 (0%)	XDR-TB was emerging through acquisition of resistance	Yes	A27
Middle East	Iran	Country wide (drug resistance survey)	January 2003 to January 2005	12		IS6110 DNA fingerprinting, spoligotyping	EAI H	4 8	12/12 (100%)	XDR-TB transmission was identified in known contacts	Yes	A28
Europe	France	Marseilles	Case report	1		Targeted DNA sequencing	N/A	N/A	N/A	Previously treated in Russia prior to being diagnosed with XDR-TB in France (Immigration)	No	A29
Europe	Portugal	Lisbon	1997 and 2009	30		MIRU-VNTR typing	LAM	30	30/30 (100)	On-going transmission of XDR-TB	No	A30
Europe	Portugal	Lisbon	2001 to 2006	57		MIRU-VNTR typing	LAM	57	N/A	On-going transmission of XDR-TB	Yes	A31

Europe	Portugal	Lisbon	2005	26		MIRU-VNTR	LAM	26	73% (new cases)	On-going transmission of XDR-TB	No	A32
Europe	Poland	Drug Resistance Survey	1997 to 2004	1		Spoligotyping	N/A	N/A	N/A	Not described	No	A33
Europe	Poland	Drug Resistance Survey	2000 to 2008	18	1 pre- TDR	Spoligotyping and MIRU-VNTR typing	Beijing T U H Orphan	2 12 1 2 2	10/19 (53%)	XDR-TB was emerging and being transmitted	Yes	A34

REFERENCES FOR TABLE 2

A1 ¹⁰, A2 ⁸, A3 ¹, A4 ²², A5 ²³, A6 ⁹, A7 ²⁴, A8 ²⁵, A9 ²⁶, A10 ²⁷, A11 ²⁸, A12 ²⁹, A13 ³⁰, A14 ³¹, A15 ³², A16 ³³, A17 ³⁴, A18 ³⁵, A19 ³⁶, A20 ³⁷, A21 ³⁸, A22 ³⁹, A23 ⁴⁰, A24 ⁴¹, A25 ⁴², A26 ⁴³, A27 ⁴⁴, A28 ⁴⁵, A29 ⁴⁶, A30 ⁴⁷, A31 ⁴⁸, A32 ¹², A33 ⁴⁹, A34 ⁵⁰

Figure 1. Global distribution of XDR-TB genotypes overlaid onto the WHO map of the 84 countries which have reported XDR-TB cases ⁵¹. The colour specific segments in each of the pie charts reflect the proportion of isolates with a defined genotype for each country or region: South Africa ^{8, 10}, Ethiopia²⁸, Argentina ²⁹, Portugal ⁴⁷, Poland ⁵⁰, Iran ^{44, 45}, Pakistan ³⁷, India ⁴⁰, Nepal ³⁰, Cambodia ³⁶, China ³³⁻³⁵, Taiwan ³⁹, Japan ⁴² (Table 2). Beijing genotype strains from South Africa were sub-classified as typical and atypical to demonstrate regional differences in the population structure of XDR-TB.

A1 ¹⁰, A2 ⁸, A3 ²⁸, A4 ²⁹, A5 ³⁰, A6 ³², A7 ³⁴, A8 ³⁵, A9 ³⁶, A10 ³⁷, A11 ³⁹, A12 ⁴⁰, A13 ⁴², A14 ⁴⁴, A15 ⁴⁵, A16 ⁴⁸, A17 ⁵⁰

Table: Comparison of the disease burden and outcomes between the global TB super-powers

	India	China
Population	1241 million	1348 million
TB prevalence	3,100,000	1,400,000
TB incidence	2,200,000	1,000,000
TB mortality	300,000	47,000
Total MDR-TB	66,000	61,000
MDR rate in new cases	1.7%	5.66%
MDR rate in previously treated cases	14.7%	25.6%

Source: Global Tuberculosis Report 2012: WHO.¹

REFERENCES

1. Calver AD, Falmer AA, Murray M, Strauss OJ, Streicher EM, Hanekom M, et al. Emergence of increased resistance and extensively drug-resistant tuberculosis despite treatment adherence, South Africa. Emerg Infect Dis. 2010; **16**(2): 264-71.

Pillay M, Sturm A. Evolution of the extensively drug-resistant F15/LAM4/KZN strain of *Mycobacterium tuberculosis* in KwaZulu-Natal, South Africa. Clin Infect Dis. 2007; 45(11): 1409-14.

 Hoek KG, Schaaf HS, Gey van Pittius NC, van Helden PD, Warren RM. Resistance to pyrazinamide and ethambutol compromises MDR/XDR-TB treatment. S Afr Med J. 2009; 99(11): 785-7.

Johnson R, Jordaan AM, Pretorius L, Engelke E, van der Spuy G, Kewley C, et al.
Ethambutol resistance testing by mutation detection. Int J Tuberc Lung Dis. 2006; **10**(1):
68-73.

5. Louw GE, Warren RM, Donald PR, Murray MB, Bosman M, Van Helden PD, et al. Frequency and implications of pyrazinamide resistance in managing previously treated tuberculosis patients. Int J Tuberc Lung Dis. 2006; **10**(7): 802-7.

6. Mphahlele M, Syre H, Valvatne H, Stavrum R, Mannsaker T, Muthivhi T, et al. Pyrazinamide resistance among South African multidrug-resistant Mycobacterium tuberculosis isolates. J Clin Microbiol. 2008; **46**(10): 3459-64.

7. Muller B, Streicher EM, Hoek KG, Tait M, Trollip A, Bosman ME, et al. inhA promoter mutations: a gateway to extensively drug-resistant tuberculosis in South Africa? Int J Tuberc Lung Dis. 2011; **15**(3): 344-51.

8. Chihota VN, Muller B, Mlambo CK, Pillay M, Tait M, Streicher EM, et al. Population structure of multi- and extensively drug-resistant Mycobacterium tuberculosis strains in South Africa. J Clin Microbiol. 2012; **50**(3): 995-1002.

9. Mlambo CK, Warren RM, Poswa X, Victor TC, Duse AG, Marais E. Genotypic diversity of extensively drug-resistant tuberculosis (XDR-TB) in South Africa. Int J Tuberc Lung Dis. 2008; **12**(1): 99-104.

10. Said HM, Kock MM, Ismail NA, Mphahlele M, Baba K, Omar SV, et al. Molecular characterization and second-line antituberculosis drug resistance patterns of multidrug-resistant Mycobacterium tuberculosis isolates from the northern region of South Africa. J Clin Microbiol. 2012; **50**(9): 2857-62.

11. Streicher EM, Muller B, Chihota V, Mlambo C, Tait M, Pillay M, et al. Emergence and treatment of multidrug resistant (MDR) and extensively drug-resistant (XDR) tuberculosis in South Africa. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2012; **12**(4): 686-94.

12. Perdigao J, Macedo R, Malaquias A, Ferreira A, Brum L, Portugal I. Genetic analysis of extensively drug-resistant Mycobacterium tuberculosis strains in Lisbon, Portugal. J Antimicrob Chemother. 2010; **65**(2): 224-7.

13. Van Rie A, Enarson D. XDR tuberculosis: an indicator of public-health negligence.Lancet. 2006; 368(9547): 1554-6.

14. Lim JR MT, Mlisana K, Moodley J, Ramdin N, Margot B, Brust JCM, Ismail N, Rustomjee R, Gandhi N, Shah NS. Incidence and geographic distribution of extensively drug-resistant tuberculosis in KwaZulu-Natal Province, South Africa. Poster presentation at ID Week 2012, San Diego 2012. p. Available at https://idsa.confex.com/idsa/2012/webprogram/Paper34734.html

Zignol M, van Gemert W, Falzon D, Sismanidis C, Glaziou P, Floyd K, et al.
 Surveillance of anti-tuberculosis drug resistance in the world: an updated analysis,
 2007-2010. Bull World Health Organ. 2012; 90(2): 111-9D.

.

16. Zhao Y, Xu S, Wang L, Chin DP, Wang S, Jiang G, et al. National survey of drugresistant tuberculosis in China. N Engl J Med. 2012; **366**(23): 2161-70.

17. WHO. Global Tuberculosis Report 2012. Availbale at.

http://appswhoint/iris/bitstream/10665/75938/1/9789241564502_engpdf Accessed 12-10-2012 2012.

Rodrigues C, Shenai S, Sadani M, Thakkar P, Sodha A, Udwadia ZF, et al.
 Multidrug-resistant tuberculosis in Mumbai: it's only getting worse. Int J Tuberc Lung
 Dis. 2006; **10**(12): 1421-2.

19. Jain S, Rodrigues C, Mehta A, Uwadia ZF. High Prevelence of XDR-TB from a tertiary care hospital in India. Proceedings of the American Thoracic Society International Conference; 2007; San Francisco, USA; 2007. p. A510.

20. Udwadia ZF, Amale RA, Ajbani KK, Rodrigues C. Totally drug-resistant tuberculosis in India. Clin Infect Dis. 2012; **54**(4): 579-81.

21. Udwadia ZF, Pinto LM, Uplekar MW. Tuberculosis management by private
practitioners in Mumbai, India: has anything changed in two decades? PLoS One. 2010;
5(8): e12023.

22. Ioerger TR, Koo S, No EG, Chen X, Larsen MH, Jacobs WR, Jr., et al. Genome analysis of multi- and extensively-drug-resistant tuberculosis from KwaZulu-Natal, South Africa. PLoS ONE. 2009; **4**(11): e7778.

23. Andrews JR, Gandhi NR, Moodley P, Shah NS, Bohlken L, Moll AP, et al.
Exogenous reinfection as a cause of multidrug-resistant and extensively drug-resistant
tuberculosis in rural South Africa. J Infect Dis. 2008; 198(11): 1582-9.

24. Gandhi NR, Moll A, Sturm AW, Pawinski R, Govender T, Lalloo U, et al. Extensively drug-resistant tuberculosis as a cause of death in patients co-infected with tuberculosis and HIV in a rural area of South Africa. Lancet. 2006; **368**(9547): 1575-80.

25. Dheda K, Shean K, Zumla A, Badri M, Streicher EM, Page-Shipp L, et al. Early treatment outcomes and HIV status of patients with extensively drug-resistant tuberculosis in South Africa: a retrospective cohort study. Lancet. 2010; **375**(9728): 1798-807.

26. Ioerger TR, Feng Y, Chen X, Dobos KM, Victor TC, Streicher EM, et al. The nonclonality of drug resistance in Beijing-genotype isolates of Mycobacterium tuberculosis from the Western Cape of South Africa. BMC genomics. 2010; **11**: 670.

27. Klopper M, Warren RM, Hayes C, Gey van Pittius NC, Streicher EM, Muller B, et al. Emergence and spread of extensively and totally drug-resistant tuberculosis, South Africa. Emerg Infect Dis. 2013; **19**(3): 449-55.

28. Agonafir M, Lemma E, Wolde-Meskel D, Goshu S, Santhanam A, Girmachew F, et al. Phenotypic and genotypic analysis of multidrug-resistant tuberculosis in Ethiopia. Int J Tuberc Lung Dis. 2010; **14**(10): 1259-65.

29. Ritacco V, Lopez B, Ambroggi M, Palmero D, Salvadores B, Gravina E, et al. HIV infection and geographically bound transmission of drug-resistant tuberculosis, Argentina. Emerg Infect Dis. 2012; **18**(11): 1802-10.

30. Poudel A, Maharjan B, Nakajima C, Fukushima Y, Pandey BD, Beneke A, et al. Characterization of extensively drug-resistant Mycobacterium tuberculosis in Nepal. Tuberculosis (Edinb). 2013; **93**(1): 84-8.

 Leung EC, Leung CC, Kam KM, Yew WW, Chang KC, Leung WM, et al.
 Transmission of multidrug-resistant and extensively drug-resistant tuberculosis in a metropolitan city. Eur Respir J. 2013; 41(4): 901-8.

32. Zhang J, L. Mi, Y. Wang, P. Liu, H. Liang, Y. Huang, B. Lv, and L. Yuan. Genotypes and drug susceptibility of Mycobacterium tuberculosis Isolates in Shihezi, Xinjiang Province, China. BMCResNotes. 2012; **5**: 309.

33. Yuan X, T. Zhang, K. Kawakami, J. Zhu, H. Li, J. Lei, and S. Tu. . Molecular characterization of multidrug- and extensively drug-resistant Mycobacterium tuberculosis strains in Jiangxi, China. . JClinMicrobiol. 2012; **50**: 2404-13.

34. Zhao M, Li X, Xu P, Shen X, Gui X, Wang L, et al. Transmission of MDR and XDR tuberculosis in Shanghai, China. PLoS ONE. 2009; **4**(2): e4370.

35. Sun Z, Chao Y, Zhang X, Zhang J, Li Y, Qiu Y, et al. Characterization of extensively drug-resistant Mycobacterium tuberculosis clinical isolates in China. J Clin Microbiol.
2008; 46(12): 4075-7.

36. Surcouf C, Heng S, Pierre-Audigier C, Cadet-Daniel V, Namouchi A, Murray A, et al. Molecular detection of fluoroquinolone-resistance in multi-drug resistant tuberculosis in Cambodia suggests low association with XDR phenotypes. BMC Infect Dis. 2011; **11**: 255.

37. Hasan R, Jabeen K, Ali A, Rafiq Y, Laiq R, Malik B, et al. Extensively drug-resistant tuberculosis, Pakistan. Emerg Infect Dis. 2010; **16**(9): 1473-5.

38. Ali A, R. Hasan, K. Jabeen, N. Jabeen, E. Qadeer, and Z. Hasan. Characterization of mutations conferring extensive drug resistance to Mycobacterium tuberculosis isolates in Pakistan. AntimicrobAgents Chemother. 2011; **55**: 5654-9.

39. Chang CW, Wu MH, Chuang PC, Jou R. Characteristics of multidrug-resistant Mycobacterium tuberculosis in Taiwan: a population-based study. Infection, genetics and evolution : journal of molecular epidemiology and evolutionary genetics in infectious diseases. 2011; **11**(3): 633-9.

40. Ajbani K, Rodrigues C, Shenai S, Mehta A. Mutation detection and accurate diagnosis of extensively drug-resistant tuberculosis: report from a tertiary care center in India. J Clin Microbiol. 2011; **49**(4): 1588-90.

41. Tamaru A, Nakajima C, Wada T, Wang Y, Inoue M, Kawahara R, et al. Dominant incidence of multidrug and extensively drug-resistant specific Mycobacterium tuberculosis clones in Osaka Prefecture, Japan. PLoS One. 2012; **7**(8): e42505.

42. Murase Y, Maeda S, Yamada H, Ohkado A, Chikamatsu K, Mizuno K, et al. Clonal expansion of multidrug-resistant and extensively drug-resistant tuberculosis, Japan. Emerg Infect Dis. 2010; **16**(6): 948-54.

43. Ano H, T. Matsumoto, T. Suetake, T. Nagai, Y. Tamura, I. Takamatsu, T. Iwasaki, H. Matsuoka, S. Sasada, S. Tetsumoto, I. Tsuyuguchi, Y. Kusunoki, and T. Takashima. .

Relationship between the isoniazid-resistant mutation katGS315T and the prevalence of MDR-/XDR-TB in Osaka, Japan. IntJTubercLung Dis12. 2008: 1300-5.

44. Velayati A, Masjedi M, Farnia P, Tabarsi P, Ghanavei J, Ziazarifi A, et al.
Emergence of New Forms of Totally Drug-Resistant Tuberculosis Bacilli: Super
Extensively Drug-Resistant Tuberculosis or Totally Drug-Resistant Strains in Iran. Chest.
2009; 136(2): 420-5.

45. Masjedi MR, Farnia P, Sorooch S, Pooramiri MV, Mansoori SD, Zarifi AZ, et al.
Extensively drug-resistant tuberculosis: 2 years of surveillance in Iran. Clin Infect Dis.
2006; 43(7): 841-7.

46. Cohen-Bacrie S, Ben Kahla I, Botelho-Nevers E, Million M, Parola P, Brouqui P, et al. Imported extensively drug-resistant Mycobacterium tuberculosis Beijing genotype, Marseilles, France, 2011. Euro Surveill. 2011; **16**(16).

47. Perdigao J, Macedo R, Silva C, Machado D, Couto I, Viveiros M, et al. From multidrug-resistant to extensively drug-resistant tuberculosis in Lisbon, Portugal: the stepwise mode of resistance acquisition. J Antimicrob Chemother. 2013; **68**(1): 27-33.

48. Perdigao J, Macedo R, Silva C, Pinto C, Furtado C, Brum L, et al. Tuberculosis drug-resistance in Lisbon, Portugal: a 6-year overview. Clin Microbiol Infect. 2011;
17(9): 1397-402.

49. Augustynowicz-Kopec E, Zwolska Z. [Tuberculosis caused by XDR resistant
Mycobacterium tuberculosis in Poland. Microbiological and molecular analysis].
Pneumonol Alergol Pol. 2007; 75(1): 32-9.

50. Kozinska M, Brzostek A, Krawiecka D, Rybczynska M, Zwolska Z, Augustynowicz-Kopec E. [MDR, pre-XDR and XDR drug-resistant tuberculosis in Poland in 2000-2009]. Pneumonol Alergol Pol. 2011; **79**(4): 278-87.