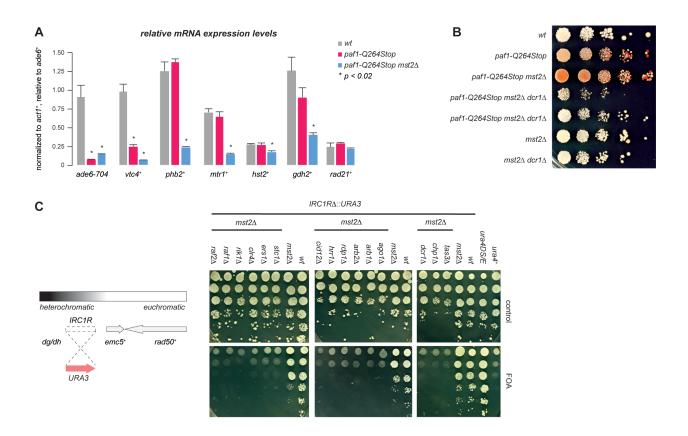
Molecular Cell, Volume 67


Supplemental Information

The Histone Acetyltransferase Mst2 Protects

Active Chromatin from Epigenetic Silencing

by Acetylating the Ubiquitin Ligase Brl1

Valentin Flury, Paula Raluca Georgescu, Vytautas Iesmantavicius, Yukiko Shimada, Tahsin Kuzdere, Sigurd Braun, and Marc Bühler

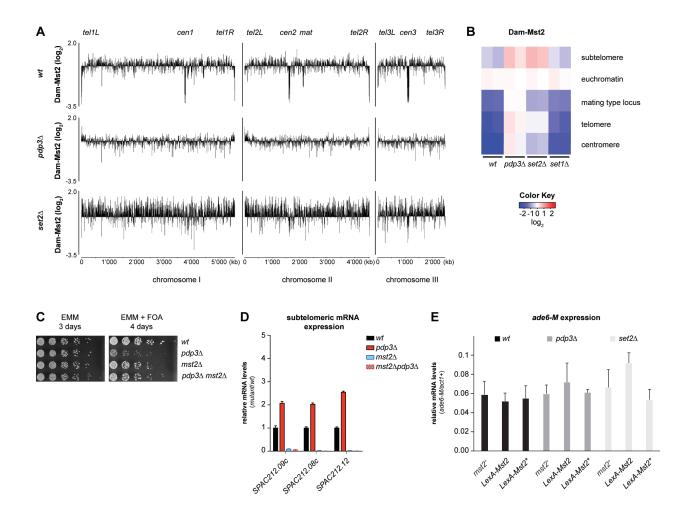


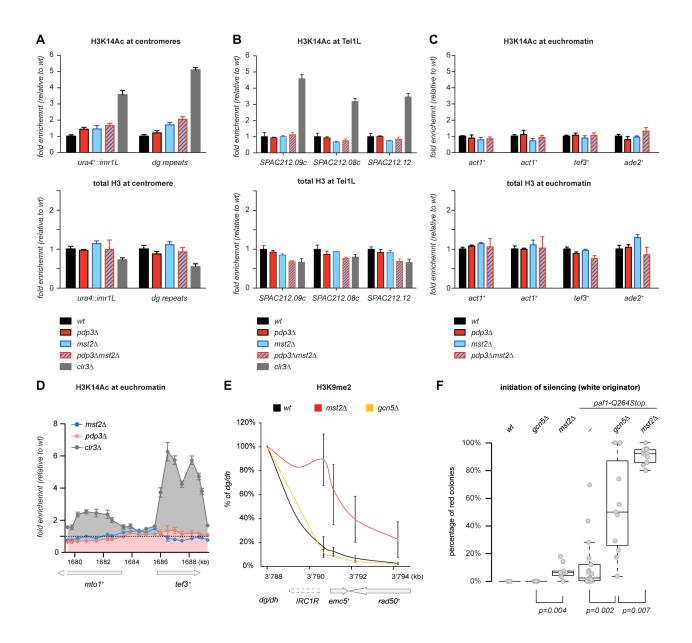
Figure S1 (related to Figure 2)

(A) Relative mRNA expression levels determined by RT-qPCR analysis in indicated mutants. Shown are transcript levels relative to *ade6-704* in *wt* (grey) after normalization to *act1*⁺. *paf1-Q264Stop* and *paf1-Q264Stop mst2* Δ are shown in red and blue. Error bars indicate SD. n=3 independent biological replicates.

(B) Silencing assay with *ade6*⁺ reporter in indicated strains to monitor siRNA-directed de novo heterochromatin assembly (see text for details). Cells were plated in a 10-fold dilution series onto YE-Nat (100 ug/mL nourseothricin).

(C) Silencing assay with $IRC1R\Delta$::URA3 in indicated strains to monitor siRNAdependent heterochromatin spreading (see text for details). Cells were plated in a 10fold dilution series on PMGc plates (control) or PMGc plates with 2g/L FOA.

Figure S2 (related to Figure 5)

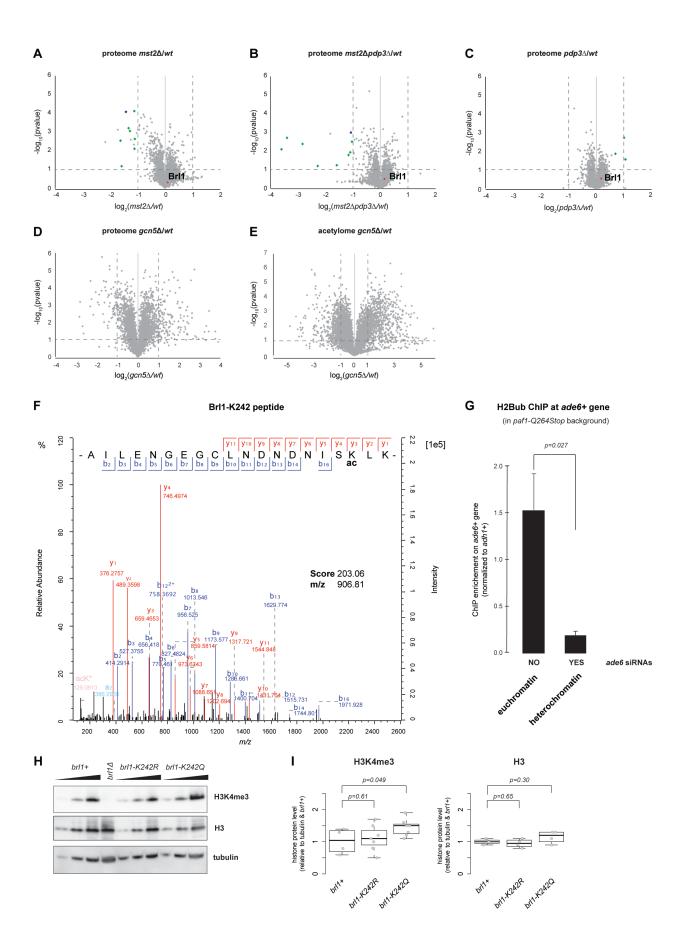

(A) Mst2 DamID maps of all three chromosomes in *wt*, $pdp3\Delta$, and $set2\Delta$ cells. The signal of DamMst2 (normalized to Dam-only) was averaged over 500 probes and is shown in log₂ scale. X-axis shows position on chromosomes.

(B) Enrichment of Dam-Mst2 at different genomic regions in *wt*, $pdp3\Delta$, $set1\Delta$, and $set2\Delta$ cells. Two independent replicates are shown (scale in log₂).

(C) Silencing assay with *imr1L::ura4*⁺ reporter in indicated strains to monitor heterochromatin maintenance (see text for details). Cells were plated in five-fold serial dilutions on EMM plates (control) or EMM plates containing 1g/L FOA and incubated for the indicated time.

(D) Relative RNA expression levels of subtelomeric genes at telomere 1 in $mst2\Delta$, $mst2\Delta pdp3\Delta$, and $pdp3\Delta$ relative to WT. Transcript levels relative to wild type after normalization to $act1^+$ are shown. Data are represented as mean \pm SEM from 4 independent biological experiments.

(E) Relative RNA expression levels at the endogenous *ade6-M210* locus in wild type (black), $pdp3\Delta$ (dark grey), and *set* Δ (light grey) cells with Mst2-tethering variants. Error bars indicate SD. n≥3 independent biological replicates.


Figure S3 (related to Figure 6)

(A-C) ChIP enrichment of H3K14ac and H3 at centromere 1 (A), telomere 1L (B), and euchromatic loci (C) in indicated strains. Cells lacking the H3K14ac HDAC Clr3 served as a positive control. ChIP data at the indicated loci have been normalized to mitochondrial DNA and to input, and are shown relative to wild type. n=3 \pm SEM from independent biological experiments.

(D) ChIP enrichment of H3K14ac at the $mto1^+/tef3^+$ locus. ChIP data have been normalized to mitochondrial DNA and to input, and are shown relative to wild type for each target, respectively. n=3 ± SEM from independent biological experiments.

(E) ChIP enrichment of H3K9me2 at the boundary of IRC1R in *wt*, *mst* 2Δ , and *gcn* 5Δ cells. Error bars indicate SD. n≥2 independent biological replicates.

(F) Initiation frequencies of siRNA-directed de novo heterochromatin assembly in different strains. Frequency was calculated as in Figure 1D. P-value was calculated using the two-sided, two sample Student t-test. n≥3 different white colonies. Exact numbers are listed in the STAR methods.

Figure S4 (related to Figure 6)

(A-E) Volcano plots showing the relative changes in different strains. X-axis is in log_2 scale, y-axis depicts the inverted p-value. All experiments were performed in three independent biological replicates. A-C, relative proteome changes in *mst2* Δ (A), *mst2* Δ *pdp3* Δ (B), and *pdp3* Δ cells (C) compared to wild type. Proteins encoded by subtelomeric genes are highlighted in green, whereas Per1 (encoded by a locus adjacent to the cen1L boundary) is shown in blue. Brl1 is highlighted in red. (D) proteome changes in *gcn5* Δ cells compared to wild type. E, changes in the acetylome in *gcn5* Δ compared to *wt* cells.

(F) Annotated high resolution MS/MS spectrum of acetylated peptide fragmented with higher-energy collisional dissociation (HCD). The triply charged precursor ion located at m/z of 906.801 was isolated using quadrupole filter, fragmented with HCD and analyzed in the orbitrap detector. The acetylated peptide AILENGEGcamCLNDNDNISacKLK was identified and annotated by the Andromeda search engine assigning b- and y-ions with an Andromeda score of 203.

(G) ChIP enrichment of H2BK119ub at the *ade6*+ locus relative to *adh1*+. $n=3 \pm SD$ from independent biological experiments. P-value was calculated using the two-sided, two sample Student t-test.

(H) Immunodetection of H3K4me3 and total H3 in different strains. Dilution series of 1/9, 1/3 and 1/1 of the respective protein extracts. Tubulin served as a loading control. A representative experiment is shown.

(I) Quantification of H3K4me3 (top) and H3 (bottom panel) levels normalized to tubulin and relative to *brl1*+. Multiple independent biological replicates for H3K4me3 (WT: n=4; brl1-KR/KQ: n=7) and H3 (WT: n=3; brl1-KR/KQ: n=4). P-value was calculated using the two-sided, two-sample Student *t*-test with equal/unequal variance according to prior evaluation with the F-test.