Supplementary information:

Fragment optimization for GPCRs by molecular dynamics free energy calculations: Probing druggable subpockets of the A_{2A} adenosine receptor binding site

Pierre Matricon^{1,§}, Anirudh Ranganathan^{2,§}, Eugene Warnick³, Zhan-Guo Gao³, Axel Rudling², Catia Lambertucci⁴, Gabriella Marucci⁴, Aitakin Ezzati², Mariama Jaiteh¹, Diego Dal Ben⁴, Kenneth A. Jacobson³, and Jens Carlsson^{1,*}

¹Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, SE-75124 Uppsala, Sweden.

²Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden.

³Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States.

⁴Scuola di Scienze del Farmaco e dei Prodotti della Salute, Università degli Studi di Camerino, Via S. Agostino 1, 62032 Camerino (MC), Italy.

[§] These authors contributed equally to this work.

* Corresponding author

Supplementary Table S1. Binding data for compounds 1-23.

1	1

	R
2-20	

Compounds	R ₁	R ₂	$K_i(\mu M)$	
1	-	- >100 ^a		
2	Н	CH ₃	6.9 (3.7-13) ^a	
3	Br	CH ₃	0.12 (0.076-0.20) ^a	
4	Br	Н	3.2 (1.3-7.9) ^a	
5	Br	CH_3CH_2	0.052 (0.024-0.11) ^a	
6	Br	HOCH ₂ CH ₂	0.62 (0.54-0.71) ^a	
7	Br	$CH_3CH_2CH_2$	$0.30 (0.26 - 0.35)^{a}$	
8	Br	(CH ₃) ₂ CHCH ₂	$6.0(3.7-9.8)^{a}$	
9	Н	CH_3CH_2	$2.2(1.4-3.5)^{a}$	
10	Н	HOCH ₂ CH ₂	$11 (6.5-18)^{a}$	
11	Н	$(CH_3)_2CHCH_2$	$>100^{a}$	
12	Н	HOCH ₂ CH ₂ CH ₂	$3.9(3.4-4.5)^{a}$	
13	Н	$CH_3CH_2CH_2$	9.6 (5.8-16) ^a	
14	Br	cC ₅ H ₉	$1.9(1.6-2.3)^{a}$	
15	Н	cC ₅ H ₉	$1.8 (0.68-4.6)^{a}$	
16	Br	CH ₂ CHCH ₂ CH ₂	$H_2CHCH_2CH_2$ 1.6 (1.4-1.9) ^a	
17	Н	CH ₂ CHCH ₂ CH ₂	8.5 (5.0-15) ^a	
18	CH_3	CH_3CH_2	$0.218 \pm 0.061^{\circ}$	
19	furyl	CH ₃ CH ₂	$0.004 (0.003 - 0.005)^{b}$	
20	НО	CH ₃ CH ₂	$1.144 \pm 0.290^{\circ}$	
21	CH ₃ O	CH ₃ CH ₂	$0.027 \pm 0.000^{\circ}$	
22	CH ₃ CH ₂ O	CH_3CH_2	$0.046 (0.024 - 0.091)^{\circ}$	
23	(CH ₃) ₂ CHO	CH ₃ CH ₂	$>100^{\circ} / 0.095 \pm 0.049^{\circ}$	

^aK_i value from Lambertucci *et al.*¹ ^bK_i value from Volpini *et al.*² ^cDisplacement of specific [³H]NECA binding at human $A_{2A}AR$ expressed in CHO cells measured in this work. Data is expressed as geometric means with 95% confidence limits (n=3-6).

Supplementary Table S2. Experimental data for compounds 25-36. Radioligand binding

assays were performed using membranes of mammalian cells overexpressing one AR subtype.

Compounds	K_i (μ M) or % inhibition at 300 μ M (n=3) ^a			
Compounds	A _{2A}	A_1	A_3	
25	$34 \pm 1\%$	$27 \pm 4\%$	$39 \pm 2\%$	
26	78.5 ± 2.5	$44 \pm 4\%$	$50 \pm 4\%$	
27	20.0 ± 1.5	97.3 ± 3.5	119 ± 42	
28	$17 \pm 4\%$	$22 \pm 6\%$	153 ± 31	
29	$31 \pm 3\%$	$38 \pm 6\%$	$44 \pm 4\%$	
30	$49 \pm 1\%$	97.2 ± 22.5	110 ± 17	
31	223 ± 17	50.1 ± 22.6	102 ± 32	
32	79.1 ± 15.2	11.2 ± 2.4	0.81 ± 0.17	
33	10.7 ± 2.3	17 ± 1.2	2.3 ± 0.5	
34	11.6 ± 1.2	8.4 ± 0.9	1.1 ± 0.2	
35	48.6 ± 2.6	17.8 ± 1.7	2.9 ± 0.4	
36	1.8 ± 0.05	7.8 ± 0.5	1.0 ± 0.2	

^aData are expressed as mean \pm standard error resulting from three independent experiments.

Supplementary Figure S1. Functional assay measuring the inhibition of $A_{2A}AR$ mediated cAMP production by compounds **5**, **19**, **22**, and **23** (A, B, C, and D, respectively). All the compounds close to completely inhibit the agonist effect of 1 μ M NECA (a reference $A_{2A}AR$ agonist), as expected for competitive antagonism.

Supplementary Figure S2. Comparison of calculated (GLIDE-SP) and experimental relative binding free energies for 18 adenine-derived compound pairs. The solid line represents prefect agreement between calculated and experimental data whereas the dotted lines represent an absolute deviation of 1 kcal/mol.

Supplementary Figure S3. Evaluation of the relative binding free energy for two alternative binding poses for compound **3**. MD/FEP transformations from the intermediate compound (**24**) to each pose were performed. The atoms that are annihilated from compound **24** in each pose are shown in red.

Supplementary Figure S4. Potential energy curve for the indicated torsion of compound **21** calculated from using OPLS_2005 and DFT.

Supplemental references

- 1. Lambertucci, C. *et al.* 8-Bromo-9-alkyl adenine derivatives as tools for developing new adenosine A_{2A} and A_{2B} receptors ligands. *Bioorg Med Chem* **17**, 2812-2822 (2009).
- Volpini, R. *et al.* Adenosine A_{2A} Receptor Antagonists: New 8-Substituted 9-Ethyladenines as Tools for in vivo Rat Models of Parkinson's Disease. *Chemmedchem* 4, 1010-1019 (2009).