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Supplementary Discussion

In the main manuscript we report on the distribution of polarization/energy-time hyperentangled photons
via a free-space link. In order to assess the integrity of the atmospheric quantum communication chan-
nel we performed successive correlation measurements in superposition bases. We observed two-photon
polarization interference visibility of Vpol ∼ 98.5% and Ve-t ∼ 95.6% for Franson interference, respectively.

While high-visibility interference in both degrees of freedom is a clear sign for the presence of hy-
perentanglement, these measurements do not yet quantify entanglement in the two subspaces, nor do they
quantify the dimensionality of entanglement in the combined state space. Ideally, Alice and Bob would
perform a complete tomography of the hyperentangled state. However, as we will show in the following, a
complete state tomography is not required to obtain lower bounds on several quantitative measures of en-
tanglement. Moreover, these lower bounds can be derived from independent visibility measurements in the
energy-time and polarization subspaces, as shown in the final section of this theory supplement.

The supplementary discussion is structured as follows: First, we review the experimental setup used
to measure two-photon visibilities in the energy-time and polarization degrees of freedom. Then, we show
how the independently observed visibilities can be used to determine lower bounds on the concurrence and
entanglement of formation in the polarization and energy-time subspaces. We conclude with a discussion of
the lower bound these measurements impose on the dimensionality of entanglement in the combined state
space of the entire system.

Revision of Experimental Setup

In this section we provide additional information on the experimental setup and methods used to quantify
entanglement. We start by reviewing the nature of the hyperentangled target state, experimental density ma-
trices, and visibility measurements in a notation that is more in line with the standard quantum information
formalism.

Hyperentangled target state First, let us consider the ideal polarization/energy-time hyperentangled state:
A strong cw pump laser with a coherence time tp pumps a single nonlinear crystal inside a polarization
Sagnac interferometer and produces polarization-entangled photon pairs with a coherence time tc ≲ 1ps.
The coherence time of the pump laser is significantly longer than the coherence time of the signal and idler
photons tc ≪ tp, resulting in a maximally hyper-entangled state:

∣Ψ⟩total = ∣Φ⟩pol ⊗ ∣Φ⟩e-t =
1√
2
(∣H⟩A∣H⟩B + ∣V⟩A∣V⟩B) ⊗ ∫ ∣τ⟩A∣τ⟩Bdτ (1)

where H and V represent horizontally and vertically polarized photon states, τ denotes the photon
emission time, and the subscripts A and B label the respective single-mode fiber for Alice and Bob. For
the sake of brevity we have assumed a cw pump laser with infinite coherence time and perfectly correlated
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photon pair emissions1. In the following discussion it will be sufficient to group pair emissions within the
range τ = ti − δt/2→ τ = ti + δt/2 into time bins ∣ti⟩ (see Fig.1). The size of these time bins is chosen to be
larger than the coherence time of the SPDC photons, but smaller than the coherence time of the pump laser
(tc ≤ δt ≪ tp). Hence, the energy-time state can be considered as a coherent superposition of N ∼ tp/δt
orthogonal time bins, thus constituting an N -dimensionally entangled state in the energy-time domain:

∣Φ⟩e-t =
1√
N

N

∑
i=1

∣ti⟩A∣ti⟩B (2)

For largeN it is generally not experimentally feasible to exploit the entire state space and in our proof
of concept demonstration we focused on a two-dimensional subspace spanned by time-delayed states ∣t⟩ and
∣t + τ⟩:

∣Φ⟩e-t =
1√
2
(∣t⟩A∣t⟩B + ∣t + τ⟩A∣t + τ⟩B) (3)

The total state space accessed in our experiment thus comprises the 2-dimensional polarization space
and an effectively 2-dimensional energy-time subspace. More details on the definition of this state space
will be provided in the following. Omitting phase dependencies the hyperentangled state of the total system
can be expressed as a maximally-entangled Bell state in four dimensions:

∣Ψ⟩total =
1

2
(∣0⟩A∣0⟩B + ∣1⟩A∣1⟩B + ∣2⟩A∣2⟩B + ∣3⟩A∣3⟩B) (4)

where ∣0⟩ = ∣H, t⟩ , ∣1⟩ = ∣H, t + τ⟩ , ∣2⟩ = ∣V, t⟩ , ∣3⟩ = ∣V, t + τ⟩.

Polarization interference visibility and characteristic density matrix elements

Our experimental implementation (see Fig. 2a.) allowed for measurements of the following observables:

Observable Eigenstates

computational basis Alice σz
A ∣H/V⟩

computational basis Bob σz
B ∣H/V⟩

superposition basis Alice σφA = cos(φ)σx
A + sin(φ)σy

A ∣ ± φ⟩ = 1
√

2
(∣H⟩ ± eiφ∣V⟩)

superposition basis Bob σx
B ∣ ± 45○⟩ = 1

√

2
(∣H⟩ ± ∣V⟩)

where σiA/B denote the Pauli operators for Alice and Bob, respectively2. A full tomographic recon-

1For a more rigorous discussion of the energy-time state in SPDC, see e.g. Ref. 1
2Note that the linear ±45○ basis is included as the special case σφ=0A = σx

A.
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struction of the polarization density matrix:

ρpol =
⎛
⎜⎜⎜
⎝

HAHB HAVB VAHB VAVB

HAHB ρ0000 ρ0001 ρ0010 ρ0011
HAVB ⋱ ρ0101 ρ0110 ρ0111
VAHB ⋱ ⋱ ρ1010 ρ1011
VAVB c.c. ⋱ ⋱ ρ1111

⎞
⎟⎟⎟
⎠

(5)

is not possible from these measurements. It is, however, possible to infer lower bounds on the absolute
value of various density matrix elements. In order to see this, we now consider how the measured visibilities
relate to elements of the density matrix. For the visibility of joint measurements in the computational basis
we have:

V
H/V

pol = ⟨σz
A ⊗ σz

B⟩ = ρ0000 − ρ0101 − ρ1010 + ρ1111 (6)

Similarly, for the visibility in the coherent superposition basis, which is mutually unbiased to the
computational basis, we have:

V φ
pol = maxφ[⟨σφA ⊗ σ

x
B⟩] = 2 maxφ[Re(ρ0011eiφ + ρ0110eiφ)] (7)

Energy-time interference visibility and characteristic density matrix elements Next, let us discuss the
correlation measurements that were performed in the energy-time subspace and relate the Franson interfer-
ence visibility to the magnitude of certain matrix elements of the energy-time density matrix. For the sake
of brevity let us assume that the state of the total system ρpol,e-t is a product of energy-time and polarization
states:

ρpol,e-t = ∣Φ+

pol⟩⟨Φ+

pol∣ ⊗ ρe-t (8)

This assumption will be justified a posteriori when we demonstrate that the experimental polarization
state has a high degree of overlap with the maximally entangled Bell state, as this also implies that the
polarization degree of freedom (DOF) cannot exhibit significant correlations with the energy-time space.

As discussed in the main manuscript, we employed a variant of the original Franson scheme 2, 3 with
unbalanced polarization interferometers to assess energy-time interference in a 2-dimensional subspace.
These unbalanced polarization interferometers at Alice and Bob were implemented with 3-mm-long calcite
crystals, which could be inserted before the polarization analyzers (see Fig. 2b.). The calcite crystals in-
troduce a polarization-dependent time shift τ . In the following we omit additional phase shifts due to the
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propagation through the crystal, as they can be absorbed into the phase plate in Alice’s detection module.
The operator describing the transformation in the polarization and energy-time space can thus be written as:

T = ∣H⟩⟨H∣ ⊗ τ̂ + ∣V⟩⟨V∣ ⊗ 1 (9)

where 1 is the identity operator and τ̂ transforms the energy-time basis states (Eq. 2) as:

τ̂ ∣ti⟩ = ∣ti+1⟩ (10)

Note that the particular choice of delay τ introduced in the unbalanced polarization interferometer
restricts our considerations to a two-dimensional subspace of the intrinsically continuous-variable energy-
time space, which could be fully exploited, e.g., in experimental implementations with a variable delay
line 4, 5. Since all the measurement results obtained in our experiment can be related to this 2-dimensional
subspace, we define the effective energy-time density matrix as:

ρ′e-t =

⎛
⎜⎜⎜⎜⎜⎜
⎝

∑i⟨titi∣ρe-t∣titi⟩ ∑i⟨titi∣ρe-t∣titi+1⟩ ∑i⟨titi∣ρe-t∣ti+1ti⟩ ∑i⟨titi∣ρe-t∣ti+1ti+1⟩
⋱ ∑i⟨titi+1∣ρe-t∣titi+1⟩ ∑i⟨titi+1∣ρe-t∣ti+1ti⟩ ∑i⟨titi+1∣ρe-t∣ti+1ti+1⟩
⋱ ⋱ ∑i⟨ti+1ti∣ρe-t∣ti+1ti⟩ ∑i⟨ti+1ti∣ρe-t∣ti+1ti+1⟩
c.c. ⋱ ⋱ ∑i⟨ti+1ti+1∣ρe-t∣ti+1ti+1⟩

⎞
⎟⎟⎟⎟⎟⎟
⎠

(11)

In this sense, the experimental results can be understood as averages over a larger state space in the
energy-time domain. Henceforth we refer to the effective density matrix with time-delayed basis states ∣t⟩
and ∣t + τ⟩:

ρ′e-t =
⎛
⎜⎜⎜
⎝

tAtB tA(tB + τ) (tA + τ)tB (tA + τ)(tB + τ)
tAtB ρ′0000 ρ′0001 ρ′0010 ρ′0011
tA(tB + τ) ⋱ ρ′0101 ρ′0110 ρ′0111
(tA + τ)tB ⋱ ⋱ ρ′1010 ρ′1011
(tA + τ)(tB + τ) c.c. ⋱ ⋱ ρ′1111

⎞
⎟⎟⎟
⎠

(12)

In order to simplify the following discussion, we replace the time-shift operation, which would oth-
erwise lead out of the two-dimensional energy-time subspace (i.e τ̂ ∣t+ τ⟩ → ∣t+ 2τ⟩) with a NOT operation
which transforms the new energy-time basis states ∣t⟩ and ∣t + τ⟩ as
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τ̂ ∣t⟩ = ∣t + τ⟩
τ̂ ∣t + τ⟩ = ∣t⟩

(13)

In doing so we neglect possible edge effects on timescales of the order of the pump coherence time.
However, such effects would result in a decrease of coherence, such that they are without any consequence
for our main objective of establishing lower bounds on entanglement. With this, the state of the effectively
4-dimensional system after traversing Alice’s and Bob’s calcite crystals can now be written as:

ρ̃pol,e-t = TATB {∣Φ+⟩⟨Φ+∣ ⊗ ρ′e-t}TATB (14)

Since the difference between adjacent time bins τ ∼ 2 ps was significantly shorter than the timing
jitter of the detection system, the detection does not grant direct access to the exact emission time bins.
Consequently we must perform a partial trace over the energy-time degree of freedom in order to obtain the
reduced polarization density matrix (ρ̃pol,r = Tre-t(ρ̃pol,e-t)) that can be accessed experimentally. The matrix
can be written explicitly as:

ρ̃pol,r =
⎛
⎜⎜⎜
⎝

HAHB HAVB VAHB VAVB

HAHB
1
2 0 0

Tr(τ̂Aτ̂Bρ
′

e-t)

2
HAVB 0 0 0 0
VAHB 0 0 0 0
VAVB

Tr(ρ′e-tτ̂Aτ̂B)

2 0 0 1
2

⎞
⎟⎟⎟
⎠

(15)

where we have used Tr(ρ) = 1, τ̂−1 = τ̂ , and the invariance of the trace under cyclic permutation. As
shown previously, the off-diagonal terms of the polarization density matrix, which determine the two-photon
coherence, are now related to the off-diagonal terms of the energy-time density matrix:

Tr(ρ′e-tτ̂Aτ̂B) = 2 Re(ρ′0110 + ρ′1100) (16)

In other words, polarization coherence in the reduced polarization density matrix is a direct conse-
quence of coherence in the energy-time domain. Note that the fringe visibility in the post-selection free
Franson interferometers will also be limited by the fidelity of the polarization-entangled state compared to
a maximally entangled state. Using this interpretation, the visibility of the polarization correlations impose
a lower bound on the visibility in the energy-time domain.

V φ
e-t = maxφ [⟨σAφ ⊗ σ

B
x ⟩] = maxφ [eiφ + e−iφ] Re(ρ′1100 + ρ′0110) (17)
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Criteria for 2-dimensional entanglement based on experimental visibilities

In the previous section we saw how individual visibility measurements in the polarization and energy-time
subspace relate to certain elements of the respective subsystem density matrices. In the following we use
these results to determine lower bounds on the concurrence C(ρ) and entanglement of formation EoF(ρ)
in the polarization and energy-time-entangled subspaces. These values will then serve to establish a lower
bound for the Bell-state fidelity F(ρ) of the entire system. In Ref. 6 easily computable lower bounds for the
concurrence of mixed states that have an experimental implementation were derived. They are given by

C(ρ) ≥ 2
√

2√
d(d − 1)

∑
i,j>i

(∣⟨ii∣ρ∣jj⟩∣ −
√

⟨ij∣ρ∣ij⟩⟨ji∣ρ∣ji⟩) , (18)

where d is the local dimension of ρ. It is possible to relax this lower bound by linearizing the above ineq.
(18). Since for all a ∈ C and for all b, c ∈ R it is true that ∣a∣ ≥ Re(a) and

√
bc ≥ 1

2(b + c), it follows that

C(ρ) ≥ 2
√

2√
d(d − 1)

∑
i,j>i

(Re (⟨ii∣ρ∣jj⟩) − 1

2
(⟨ij∣ρ∣ij⟩ + ⟨ji∣ρ∣ji⟩)) . (19)

By defining the operator W (d) that acts on a d2-dimensional Hilbert space as

W (d) ∶=
√

2

d(d − 1) ∑i,j>i
(2∣jj⟩⟨ii∣ − ∣ij⟩⟨ij∣ − ∣ji⟩⟨ji∣) , (20)

we can rewrite ineq. (19) as
C(ρ) ≥ Re [Tr(ρW (d))] . (21)

We define Clin(ρ) as the right-hand side of the above ineq. (21), which is also a lower bound for the
concurrence that can be measured experimentally.

Another useful measure of entanglement is the entanglement of formation EoF(ρ), which represents
the minimal number of maximally entangled bits (ebits) required to produce ρ via an arbitrary local opera-
tions and classical communication (LOCC) procedure. It can be shown 7 that the entanglement of formation
is lower bounded by the concurrence according to:

EoF(ρ) ≥ − log(1 − C(ρ)
2

2
) , (22)

Polarization entanglement criterion based on experimental visibility For the sake of brevity let us as-
sume that the maximum correlation in Eq. 7 is attained for φ = 03, so that:

V φ
pol = 2 [Re(ρ0011 + ρ0110)] (23)

3Alternatively, one could incorporate the phase into the definition of the concurrence or the density matrix.

6



In the following, we show that the linear concurrence is lower bounded by the visibilities via:

V φ
pol + V

H/V
pol − 1 ≤ Clin(ρpol) (24)

The experimental visibilities were V H/V
pol = 99.33 ± 0.015% in the linear H/V measurement basis and

V φ
pol = 98.5 ± 0.15% in the coherent superposition basis, respectively. We can thus infer a lower bound
Clin(ρpol) ≥ 0.9788 ± 0.0015 for the concurrence. Inserting into Eq. 22 we see that this corresponds to a
mininmum of EoF(ρpol) > 0.94 ± 0.004 ebits of entanglement of formation.

Proposition: The concurrence in polarization space is lower bounded via Eq. 24.

Proof: In the two-dimensional case the linearized concurrence (Eq. 19) reads:

Clin(ρpol) = 2 Re(ρ0011) − (ρ1010 + ρ0101) (25)

Inserting 25 on the r.h.s of 24 and using Eq. 6 and Eq. 23 for the visibilities, we must show that:

2 Re(ρ0011) + 2 Re(ρ0110) + ρ0000 − ρ0101 − ρ1010 + ρ1111 − 1 ≤ 2 Re(ρ0011) − (ρ1010 + ρ0101) (26)

Re-ordering the terms, we obtain:

2 Re(ρ0110) + ρ0000 + ρ1111 ≤ 1 (27)

Now, inserting
Tr(ρpol) = ρ0000 + ρ1111 + ρ1010 + ρ0101 = 1 (28)

on the r.h.s, the proof reduces to showing that:

Re(ρ0110) ≤
1

2
(ρ0101 + ρ1010) (29)

The l.h.s can be upper bounded using the Cauchy-Schwartz inequality:

Re(ρ0110) ≤ ∣ρ0110∣ ≤
√
ρ1010ρ0101 (30)

which results in:
√
ρ1010ρ0101 ≤

1

2
(ρ1010 + ρ0101) (31)

which is true for any two positive numbers, thus concluding the proof.
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Energy-time entanglement criterion based on experimental visibility Since the adjacent time bins were
too close to be resolved directly we did not measure the visibility in the computational basis. Hence we
cannot use Eq. 24. Note that a lower bound on the visibility in the computational basis could be obtained
via the measurement of the coincidence-to-accidental ratio (CAR) in the experiment if we assume that path-
length fluctuations due to atmospheric turbulence are constant within the electronic coincidence window of
1ns. We chose to invoke a strictly weaker assumption: The matrix element ρ′0110 is related to coherence
of photons that were emitted from the crystal with a relative delay that exceeds the coherence time (i.e.
accidental coincidences). So according to the definition of the coherence time, there is no phase relationship
between these pairs and we can safely assume ρ′0110 ≈ 0. In other words, we assume that the free-space
channel does not induce such coherence. We believe that, while this assumption precludes a certification
of entanglement that meets the requirements for quantum cryptography, it is physically meaningful and
completely justified in our proof of concept experiment. Under this assumption Eq. 17 reduces to:

V φ
e-t = 2 Re(ρ′1100) (32)

In the following, we show that the linear concurrence is lower bounded via:

2V φ
e-t − 1 ≤ Clin(ρe-t) (33)

Inserting the experimental Franson interference visibility of V φ
e-t = 95.6± 0.3%, we obtain Clin(ρe-t) ≥

0.912 ± 0.006 and EoF(ρe-t) > 0.776 ± 0.014 ebits of entanglement of formation.

Proposition: The concurrence in the energy-time subspace is lower bounded via Eq. 33.

Proof: Inserting Eq. 32 on the l.h.s and Eq. 25 on the r.h.s of Eq. 33, we must show that:

4 Re(ρ′1100) − 1 ≤ 2 Re(ρ′1100) − (ρ′1010 + ρ′0101) (34)

re-ordering we can write this as:

2 Re(ρ′1100) + (ρ′1010 + ρ′0101) ≤ 1 (35)

Inserting
Tr(ρe-t) = ρ′0000 + ρ′1111 + ρ′1010 + ρ′0101 = 1 (36)

on the r.h.s, the proof reduces to showing that:

Re(ρ′1100) ≤
ρ′1111 + ρ′0000

2
(37)
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The l.h.s can be upper bounded using the Cauchy-Schwartz inequality:

Re(ρ′1100) ≤ ∣ρ′1100∣ ≤
√
ρ′1111ρ

′

0000 (38)

which results in: √
ρ′1111ρ

′

0000 ≤
1

2
(ρ′1111 + ρ′0000) (39)

which is true for any two positive numbers, thus concluding the proof.

Entanglement criterion for combined state space based on entanglement in subspaces

In the previous section we used the results of individual visibility measurements in the polarization and
energy-time subspace to determine a lower bound on the entanglement of formation EoF(ρ), concurrence
C(ρ), and Bell-state fidelity F(ρ) in each subspace. In the following section we show that the results of
these individual characterizations can be used to establish a lower bound on the entanglement of the entire
hyperentangled system, and thus certify genuine high-dimensional entanglement.

The concurrence of a pure bipartite state ∣ψ⟩ acting on the finite-dimensional Hilbert spaceHA ⊗HB
is a measure of entanglement defined as 8

C(∣ψ⟩) =
√

2(1 − Tr(ρ2A)), (40)

where ρA is the reduced state over the subspace HB. Its generalization for bipartite mixed states ρ =
∑i pi∣ψi⟩⟨ψi∣ follows from the convex roof construction,

C(ρ) = inf
{pi,∣ψi⟩}

∑
i

piC(∣ψi⟩), (41)

where the infimum is obtained over all possible decompositions of ρ. Given two bipartite mixed states, ρ
and σ, it follows from the definition of the concurrence the subadditivity relation

C(ρ⊗ σ) ≤ C(ρ) + C(σ). (42)

This quantity is in general very hard to compute, however, with Eq. 21 we have an easily computable
lower bound Clin(ρ) for the concurrence.

Let ρA ∈ L(HdA⊗HdA) and ρB ∈ L(HdB⊗HdB), be two unknown states whose values for Clin(ρA) and
Clin(ρB) have been measured. Let ρAB ∈ L(HdAdB ⊗HdAdB) be also an unknown state whose reduced states
are ρA = TrB(ρAB) and ρB = TrA(ρAB), and whose concurrence C(ρAB) one is interested in calculating.
Because of the subadditivy character of the concurrence, it is not possible to simply add the known values of
Clin(ρA) and Clin(ρB) in order to estimate C(ρAB); it is necessary to calculate a lower bound for this quantity.
We now show how to derive a useful lower bound for the concurrence C(ρAB) given the experimentally
accessible values Clin(ρA) and Clin(ρB).
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First, notice that the reduced states ρA and ρB must satisfy

Clin(ρA) = Re [Tr(ρAW (dA))] (43)

and
Clin(ρB) = Re [Tr(ρBW (dB))] . (44)

Since C(ρAB) ≥ Clin(ρAB), we calculate a lower bound for C(ρAB) by minimizing Clin(ρAB) over all
possible states ρAB whose reduced states ρA and ρB satisfy conditions (43) and (44). Namely,

C(ρAB) ≥ min
ρAB

Re [Tr(ρABW (dAdB))] . (45)

This minimization problem can now be solved by semi-definite programming (SDP). Defining Clb as
the right-hand side of the above ineq. (45), we write the following SDP:

given Clin(ρA),Clin(ρB)
Clb = min

ρAB
Re [Tr(ρABW (dAdB))]

s.t. ρAB ≥ 0, Tr(ρAB) = 1,

Clin(ρA) = Re [Tr(TrB(ρAB)W (dA))] ,
Clin(ρB) = Re [Tr(TrA(ρAB)W (dB))] .

(46)

The solution Clb of this SDP is a lower bound for C(ρAB). Since the entanglement of formation EoF(ρ) is
lower bounded by the concurrence according to

EoF(ρ) ≥ − log(1 − C(ρ)
2

2
) , (47)

the lower bound Clb for the concurrence C(ρAB) allows us to also calculate a lower bound for the entangle-
ment of formation EoF(ρAB).

The fidelity to the d-dimensional maximally entangled state ∣Φ+

d⟩ = 1
√

d
∑i ∣ii⟩ can also be lower

bounded from the subspace concurrences by altering the target function of the above SDP. Let Flb be

Flb = min
ρAB

Tr(ρAB∣Φ+

d⟩⟨Φ
+

d ∣), (48)

where the minimum is taken over all states ρAB that satisfy conditions (43) and (44) for the subspace con-
currences. Then, we can write the following SDP:

given Clin(ρA),Clin(ρB)
Flb = min

ρAB
Tr(ρAB∣Φ+

d⟩⟨Φ
+

d ∣)

s.t. ρAB ≥ 0, Tr(ρAB) = 1,

Clin(ρA) = Re [Tr(TrB(ρAB)W (dA))] ,
Clin(ρB) = Re [Tr(TrA(ρAB)W (dB))] .

(49)
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The solution Flb is a lower bound for the fidelity to the maximally entangled state F(ρAB) ≥ Flb.

For ρpol and ρe-t being entangled states in the polarization and time-energy degrees of freedom, re-
spectively, we have showed how to calculate Clin(ρpol) and Clin(ρe-t) from the fringe visibilities Vpol and Ve-t.
For values of Clin(ρpol) = 0.977 and Clin(ρe-t) = 0.906, we obtain the lower bound C(ρ) ≥ 1.1299 for the
concurrence and EoF(ρ) ≥ 1.4671 for the entanglement of formation of the hyperentangled state ρ. This
bound is sufficient to guarantee d = 3 entanglement 9. For the same values of Clin(ρpol) and Clin(ρe-t) we
obtain a lower bound for the fidelity to the maximally entangled state in d = 4 of F(ρ) ≥ 0.9419, which is
enough to certify d = 4 entanglement 10, an even higher dimensionality.

For these inputs values of Clin(ρpol) and Clin(ρe-t), and dA = dB = 2, there exists a strictly feasible
point ρ∗ that returns Re [Tr(ρ∗W (4))] = 1.14 and Tr(ρ∗∣Φ+

4 ⟩⟨Φ+

4 ∣) = 0.95 which guarantees that SDPs (46)
and (49) satisfy the condition of strong duality 11. This is proof that the optimal values Clb = 1.1284 and
Flb = 0.9410 were indeed achieved by both primal and dual problems. Since these are finite values, it is
guaranteed that the true minimum of both optimization problems was attained.
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Supplementary Figures
tp

tti ti+1
ti+δt/2 ti+1+δt/2ti-δt/2

tc tc

Supplementary Figure 1: Illustration of relevant coherence times in energy-time space. The pump photon is
indicated by a blue envelope with coherence time tp, while two possible SPDC photon pair emission times
are indicated by red envelopes with coherence times tc ≪ tp. Note, that the coherence times are not drawn to
scale. For our analysis of the energy-time entangled state, the emission time of the photon pairs are grouped
into non-overlapping time bins of length δt.
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Supplementary Figure 2: Experimental setup for polarization and energy-time correlation measurements.
Hyperentangled photons are distributed to Alice and Bob. Alice applies an additional phase shift φ by tilting
a birefringent crystal. Alice and Bob evaluate the visibility of the two-photon correlation functions in the
computational basis V H/V

pol =⟨σz
A ⊗ σz

B⟩ and the superposition basis V φ
pol=maxφ[⟨σφA ⊗ σ

x
B⟩]. a.) Polarization

correlation measurements b.) Energy-time correlation measurement: In order to assess the energy-time
coherence an additional calcite crystal is added in Alice’s and Bob’s measurement setup. The calcite crystal
introduces a polarization-dependent delay that couples the polarization and energy-time DOF, i.e. maps
coherence in the energy-time state to coherence in the polarization DOF.
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