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Appendix Supplementary Methods 

Culture growth 
Chaetomium thermophilum var. thermophilum La Touche 1950 cultures (strain 

type DSM1495, German Collection of Microorganisms and Cell Cultures) were grown in 
400 ml standard LB medium (50°C; 10% CO2 supplemented atmosphere) with an orbital 
shaking unit (60 rpm, shaking diameter: 50 mm) for 48 h.  

Culture lysis 
PBS-washed fungal cultures were freeze-ground in liquid nitrogen. 

Approximately 12 g of freeze-grinded culture was lysed into 20 ml lysis buffer (100 mM 
HEPES pH 7.4, 95 mM NaCl, 5 mM KCl, 1 mM MgCl2, 1 mM EGTA, 1 mM DTT, 10 
ug/ml DNAse, pefabloc 2.5 mM, E-64 40 uM, Bestatin 130 uM, Aprotinin 0.5 uM, 
Leupeptin 1 uM, pepstatin A 60 uM) in a Fastprep FP120 at 4ºC (3 x 6.5 mps shaking 
speed with 2 mins rest on ice). Lysate was cleared of debris by centrifugation at 
100,000 g for 45 min. Native protein complexes were further concentrated by spin 
filtration using a 100,000 Da cut-off Amicon Ultra centrifugal filter unit (approx. 30 
min). 

Size exclusion chromatography 
For protein co-elution analysis, 100 µl of concentrated lysate (approximately 

30 mg/ml) was separated by a Biosep SEC-S4000 (7.8 x 600) size exclusion column on 
an EttanLC (HPLC) system running at 0.25 ml/min in 100 mM HEPES pH 7.4, 95 mM 
NaCl, 5 mM KCl, 1 mM MgCl2. 250 µl fractions were collected. Fractions were 
subjected to mass spectrometry (MS), electron microscopy (EM), or cross-linking 
analysis. 

Preparation of protein samples for mass spectrometry 
Protein amount was determined by BCA assay for each fraction. For protein 

co-elution analysis, proteins in each fraction were denatured in 4 M urea buffer 
containing 0.2% (w/v) Rapigest® detergent. Carbamidomethylation of cysteines was 
performed prior to protein digestion by adding 10 mM DTT at 37°C for 30 min followed 
by 15 mM IAA at room temperature in the dark for 30 min. Proteins were digested first 
using 1:100 (w/w) LysC (Wako Pure Chemical Industries) at 37°C for 4 h and second 
with 1:50 (w/w) trypsin (Promega) at 37°C for 12 hours after diluting the urea 
concentration to 1.5 M. Acidified samples (10% trifluoroacetic acid, vol/vol) were 
desalted using Macro SpinColumns (Harvard Apparatus) according to the manufacturer’s 
procedure. Purified peptide mixtures were dried in a vacuum concentrator and stored at -
20°C until further use. 30 fractions from the first biological replicate were pooled and 
dimethyl labeled (heavy) to generate a spike-in standard. These were added to all 
fractions dimethyl labeled (light) in a 1:1 ratio of peptide abundance. Labeling was done 
in solution as described (Boersema et al, 2009).  
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Simplification of cell lysate by anion exchange  
Lysate was produced as above and passed through a HiTrap DEAE FF column (GE 
Healthcare) 0.25 ml/min in 100 mM HEPES pH 7.4, 95 mM NaCl, 5 mM KCl, 1 mM 
MgCl2. Flow-through was collected and concentrated by spin filtration using 100,000 Da 
cut-off Amicon Ultra centrifugal filter unit. Sample was then separated by size exclusion 
chromatography and prepared for mass spectrometry analysis as above. 
 
Mass spectrometry analysis 
For protein co-elution, size exclusion chromatography fractions were analyzed in 
biological triplicates. Peptides mixtures were separated with a BEH300 C18 (75 µm x 
250 mm, 1.7 µm) nanoAcquity UPLC column (Waters) using a stepwise 75 min gradient 
from 3% to 85% (v/v) acetonitrile in 0.1% (v/v) formic acid at a flow rate of 300 nl/min. 
The connected LTQ-Orbitrap Velos Pro instrument (Thermo Scientific) that was operated 
in data-dependent mode performing one survey MS1 scan followed by up to 20 (TOP20) 
collision-induced dissociation (CID)-based fragmentation MS/MS scans of the highest 
abundant ions available. Only charge states >1 were allowed for fragmentation. Important 
MS settings were: m/z range: 375-1600; resolution: 30,000 FWHM; AGC: 106; 
maximum ion time: 500 ms. Important MS2 settings were:  minimum signal threshold: 
150; dynamic exclusion time: 30 s; isolation width: 2 Da; normalized collision energy: 
40; activation Q: 0.25; AGC: 30,000; maximum ion time: 50 ms, The mass spectrometry 
proteomics will be deposited to the ProteomeXchange Consortium (Vizcaino et al, 2014) 
via the PRIDE partner repository. 

Finally, simple calculation of the percentage of proteins identified in U2OS and 
HeLa cells was performed. For HeLa cells, Nagaraj et al (Nagaraj et al, 2011) report 
10,255 proteins; Kristensen et al. (Kristensen et al, 2012) found 1,961 proteins in their 
SEC experiment (19.1 % of total proteome), using the same column (see above). 
Similarly, for U2OS cells, Beck et al (Beck et al, 2011) identified 10,006 proteins; 
Kirkwood et al (Kirkwood et al, 2013) report 2,926 proteins identified in the larger size 
fractions (29.2% of total proteome). 
 
Mass spectrometry data search, protein identification and analysis 

MS raw data for each fraction were searched against the Chaetomium 
thermophilum protein database including common protein contaminants using the 
MaxQuant search engine (version 1.305) (Cox & Mann, 2008). Important search 
parameters were: missed cleavages, 2; variable modifications, oxidation (M), N-
acetylation (protein N-terminus); multiplicity, 2, allowing for light and heavy dimethyl 
labeling; static, carbamidomethylation (C); matching between runs, yes. Proteins and 
peptides were filtered for 1% FDR using target-decoy-based reverse database search. 
Further filters applied were: protein score, equal or higher than 60; PEP, <0.05; number 
of unique peptide counts, equal or higher than 2. Major protein ID was used for identified 
protein groups. Label-free quantitation of protein intensities was deemed more efficient 
than labeled spike-in standard quantitation. Thus, protein intensities for the biological 
triplicates (dimethyl light channel) were exported as iBAQ scores as determined by the 
MaxQuant software.  
 
Preparation of cross-linking samples for Xi and xQuest searches 
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For cross-linking of C. thermophilum protein complexes, consecutive fractions 
were pooled into three-fraction pools. For the xQuest pipeline, native protein complexes 
in fraction pools were cross-linked using 0.5 mM isotope-labeled disuccinimidyl suberate 
(DSS, Creative Molecules) at 35°C, 600 rpm, for 30 min. The cross-linking reaction was 
quenched by the addition of 100 mM ammonium bicarbonate at 35°C, 600 rpm, for 10 
min. For the Xi pipeline native protein complexes in fraction pools were cross-linked 
using 1:1 protein mass: cross-linker (BS3 from Thermo Scientific) mass ratio at 4°C, 600 
rpm, for 2 hours min. The cross-linking reaction was quenched by the addition of 100 
mM ammonium bicarbonate at 4°C, 600 rpm, for 30 min. 

An additional cross-linking experiment was performed using a preperative SEC 
column for the xQuest pipeline: 2 ml of an approximately 12.5 mg/ml solution was 
injected onto a HiPrep 26/60 Sephacryl S-400 HR column at 0.2 ml/min and 300 µl 
fractions were collected. Consecutive fractions were pooled into seven-fraction pools and 
cross-linked using DSS. These were individually concentrated to 100 µl in order to 
achieve a concentration of approx. 0.5-1 mg/ml. 
  Cross-linked protein complexes were denatured by addition of 4 M Urea/0.1% 
0.2% (w/v) Rapigest® and subjected to carbamidomethylation and digestion as described 
above. Purified peptide mixtures of cross-linked samples were dried in a vacuum 
concentrator and stored at -20°C until further use. Cross-linked peptides derived from 
each fraction pool were enriched using peptide gel filtration as described previously 
(Leitner et al, 2014). In brief, samples were reconstituted (30% (v/v) acetonitrile / 0.1% 
(v/v) trifluoroacetic acid) and fractionated using a Superdex Peptide PC 3.2/30 column 
(GE) on an Äktamicro LC system (GE) at a flow rate of 50 µl/min. Fractions eluting 
between 0.9 and 1.4 ml based on the 215 nm UV absorbance profile were collected (3-4 
fractions total for each of the original fraction pools) and dried in a vacuum concentrator. 
Fractions were reconstituted in 20-40 µl buffer containing 5% (v/v) acetonitrile and 0.1% 
(v/v) formic acid prior to mass spectrometry analysis 
 
Mass spectrometry and data analysis with xQuest of cross-linked samples 

For cross-linking analysis, a total of 24 peptide gel filtration fractions were 
analyzed in technical duplicates with the same settings as described above, except a 
stepwise 60 min gradient was used and the minimum signal threshold was set to 100. 
 
Mass spectrometry and data analysis with Xi of cross-linked samples 
Samples were analyzed using a UltiMate 3000 Nano LC system coupled to an Orbitrap 
Fusion Lumos Tribrid mass spectrometer equipped with an EasySpray Source (Thermo 
Fisher Scientific, San Jose, CA). Mobile phase A consisted of 0.1% formic acid in water, 
mobile phase B of 80% acetonitrile, 0.1% formic acid and 19.9% water. Peptides were 
loaded onto a 500 mm C-18 EasySpray column (75 µm ID, 2 µm particles, 100 Å pore 
size) with 2% B at 300 nl/min flow rate for 11 min and eluted at 300 nl/min flow rate 
with a linear gradient from 2% - 40% B over 139 min. 
 Raw files were preprocessed with MaxQuant (v1.5.4.1), using the partial 
processing until step 5. Resulting peak files (APL format) were subjected to Xi (Giese et 
al, 2016), using the following settings: MS accuracy, 6 ppm; MS/MS accuracy, 20 ppm; 
enzyme, trypsin; max. missed cleavages, 4; max. number of modifications, 3; fixed 
modification: carbamidomethylation on Cysteine; variable modifications: oxidation on 
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Methionine; cross-linker: BS3 (mass modification: 109.0396 Da). Variable modifications 
of the cross-linker (‘BS3-NH2’, mass modification: 155.0946 Da; ‘BS3-OH’, 156.0786 
Da) and looplinks (‘BS3-loop’, 138.0681 Da) were allowed. BS3 was assumed to react 
with Lysine, Serine, Threonine, Tyrosine or the protein N-terminus. FDR was estimated 
using at residue pair level using XiFDR (Fischer & Rappsilber, 2017). 
 
Prediction of co-eluting proteins  

Proteins detected in more than one biological replicate and with a positive 
identification in more than three consecutive fractions were retained for co-elution 
analysis. Data in each fraction were averaged across biological replicates and each 
chromatogram was correlated point by point with each other chromatogram to generate a 
Pearson Correlation Coefficient. A cross-correlation score was then derived as a 
threshold for protein co-elution discovery, and calibrated by an assembled benchmark of 
protein complexes with known molecular structures. An algorithm is available from the 
authors upon request. 
 
Ortholog mapping 

Orthologous protein groups within C. thermophilum, C. globosum, Neurospora 
crassa and 20 related fungi (pezizomycotina) were generated using the in-house eggNOG 
pipeline and these pezizomycotina orthologuous groups were mapped to fungal 
orthologous groups (fuNOG) from eggNOG (Jensen et al, 2008). If fuNOG groups had at 
least two members of the pezizomycotina orthologous groups in them and any S. 
cerevisiae protein in the same group, it was assigned as an ortholog of C. thermophilum.  
 
Protein interaction prediction using known 3D structures of homologs 

We used the Mechismo (Betts et al, 2015) pipeline (minus filtering for 
experimentally determined interactions) to predict C. thermophilum protein-protein 
interactions based on known 3D interaction structures of homologs, and scored the 
resulting interactions with InterPreTS (Aloy & Russell, 2002). 
 
Protein interaction prediction  

For the computation of the network and subsequent clustering, the R 
programming language was used with related packages (Liaw & Wiener, 2002; Williams, 
2011). Existing protein-protein interaction knowledge was mined from String (v.9.1) 
(Franceschini et al, 2013) by extracting all known interactions between Chaetomium 
orthologs in S. cerevisiae. String scores were re-processed to remove physical association 
evidence and retaining all other experimental evidence (e.g. genetic interactions). Cross-
correlation co-elution (CCC) scores were filtered for scores above 0. The distributions of 
these three datasets and their overlap are found in Appendix Fig. S7. Weighted 
biochemical interaction data from the co-elution study (936,056 interactions containing 
330,330 positively scored (>0) experimental interactions) were combined with interface 
predictions from Mechismo (744, Z-score) and existing knowledge derived from String 
(75,914) using a Random Forest (RF) classifier and a manually curated training set of 
reference interactions to filter out spurious connections and infer a network of high 
confidence, in a similar manner to (Havugimana et al, 2012). As a result, no interaction in 
the final data exists without a foundation of an experimentally derived score.  
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A benchmark set of known protein complexes was assembled from the 
homologous PDB complexes and AP-MS-derived core S. cerevisiae complexes 
(Benschop et al, 2010) (Dataset EV2). This benchmark contains 5,926 true positives 
(TP) and 99,837 true negatives (TN), assumed from inter-complex interactions. A 
machine learning training set was created from it by randomly subsampling from the 
positive and negative interactions to achieve a balanced, 1:1 ratio of TP:TN (~10,000 
interactions), and split into three independent sets for learning, validation, and testing 
(70/15/15% respectively). The performance of the model was validated on the out-of-bag 
(OOB) sample, such that each of the 500 trees was constructed using a different bootstrap 
sample from the original data to get an unbiased estimate of the test set error. 
Approximately 63% of the available data were used for the tree construction, leaving the 
remaining 37% for testing [the OOB data]. Our RF Model has yielded an OOB error rate 
of ~8% and a consistent ROC of ~97% across independently evaluated sets (Appendix 
Fig. S7). Quality was evaluated using the OOB error rate, ROC, as well as the mean 
decrease accuracy and mean decrease Gini as measures of predictor variable importance 
in reducing classification error and partitioning the data into defined classes respectively. 
The resulting RF model was applied to the unclassified data (322,672 positive co-elution 
experimental scores). RF-produced probability score distribution was evaluated and a 
cut-off for significance of 1 Standard Deviation (SD) was selected for predicted class one 
interactions (resulting in an RF probability threshold of >= 0.85) (Appendix Fig. S7). 
The retained network contained 679 proteins connected with 6,002 unique, un-directed, 
non-duplicated edges (Dataset EV3). The quality of the RF-derived network was 
evaluated using a randomized Erdős–Rényi model (Erdős & Rényi, 1959) (for the same 
number of nodes and edges). Calculated network centralities show that the RF network is 
a non-random, scale-free, real-world network (Appendix Fig. S7). The degree 
distribution follows the power law with a correlation of 0.8 and R-squared of 0.7, 
compared with the randomized network correlation of  -0,044, and R-squared = 0.003 and 
the global clustering coefficient of 0.5 vs. random networks’ 0.026. Network was 
visualized using Cytoscape v3.3 (Shannon et al, 2003) (Appendix Fig. S7). 
 
Community detection 

Protein complexes were inferred using the ClusterONE algorithm (Clustering 
with Overlapping Neighborhood Expansion) (Nepusz et al, 2012). ClusterONE assumes 
that protein complexes appear as densely connected regions within the inferred 
interaction network, and proteins may belong to multiple complexes, thus the regions 
may overlap. Complexes are discovered by growing multiple clusters from seed proteins, 
independently of each other, and the greedy algorithm attempts to maximize the 
cohesiveness of the complex (Nepusz et al, 2012). The input network weighted by RF 
probability was clustered with the following parameters: node penalty value=2.0; cluster 
density threshold=0.3; haircut threshold=0.3; seeding from all nodes; multi-pass; 
weights=RF probability. All parameter combinations were varied and optimized to yield 
the highest Maximum Matching Ratio (a measure of how accurately the predicted 
complexes represent the reference set). MMR alongside of the positive predictive value 
(PPV), clustering-wise sensitivity (cws), and geometric accuracy (acc) (Brohee & van 
Helden, 2006) formed a quality benchmark evaluating how well the result recovers the 
benchmark set of complexes. Clustering yielded a total of 92 significant clusters (p-value 
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<0.1). Removal of redundancy (merging clusters containing ≥50% overlapping subunits) 
reduced this to 65 clusters. Clusters with a clustering coefficient (transitivity) of 0 were 
removed, as we expect protein complexes to show higher density (connectivity) among 
members (Wasserman & Faust, 1994). Three clusters containing proteins eluting in the 
final fraction were not considered due to their incomplete elution peaks. The final 48 
high-confidence clusters are shown in Dataset EV4. 
 
Structure prediction of proteins participating in high-molecular weight assemblies  

Prediction of the structure of all 1,176 identified proteins was performed with 
iTASSER v4.2 (Yang et al, 2015). The top predicted model was selected according to its 
respective c-score,(Roy et al, 2010). Details for model quality for those with >30% of 
sequence identity and coverage are shown in Appendix Fig. S2; detailed coordinates for 
the models are available from the authors upon request.   
 
Protein complex assignment using the Protein Data Bank  

Each of the 1,176 proteins found in total in all three biological replicates were 
manually submitted to the NCBI BLAST server (http://blast.ncbi.nlm.nih.gov/Blast.cgi) 
and searched against the PDB (www.pdb.org). A threshold of 30% of sequence identity 
was assigned. Decision on the assembly was taken after back-BLASTing the rest of the 
subunits, if any, of the PDB structure to the C. thermophilum proteome. All results are 
included in Dataset EV2.  
 
Calibration of cross-linking ld score using structural models  

For proteins for which cross-links were identified, cross-linking distances on the 
structure were calculated with Xwalk (Kahraman et al, 2011). Furthermore, protein 
models with known complex states were modeled according to their template protein 
complex by superimposing the C. thermophilum atomic models on top of their structural 
homologs with PyMOL v1.2 (www.pymol.org). Data is included in Dataset EV2 
regarding homology.  
 
Modeling of protein interfaces using cross-linking data  

The HADDOCK webserver (guru access) was used (de Vries et al, 2010; van 
Zundert et al, 2015). Missing side-chains were properly built and the interface of the 
complex was optimized using the OPLS force field (Jorgensen & Tirado-Rives, 1988) 
and non-bonded interactions were calculated using a cut-off of 8.5 Å. Electrostatic energy 
(Eelec) was calculated by a shift function, while a switching function (between 6.5 and 8.5 
Å) was used for the van der Waals energy (Evdw). Desolvation energy was calculated by 
implementing empirical atomic solvation parameters (Fernandez-Recio et al, 2004). All 
calculations were performed with HADDOCK version 2.1/CNS version 1.2 (Brunger, 
2007; Dominguez et al, 2003). Cross-linking data were implemented as interaction 
restraints, set to have an effective (and maximum) Cα-Cα distance of 35.2 Å, whereas the 
minimum distance was only defined by energetics. This distance was selected due to the 
maximum Cα distance that the DSS cross-linker may have, when cross-linking Lys side-
chains. For docking calculations, the standard HADDOCK protocol was used 
(Dominguez et al, 2003). Standard HADDOCK scoring for it0 was applied to select the 
200 top-ranking structures that awere subsequently passed onto the next docking steps 
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(semi-flexible simulated annealing and final refinement in explicit water). Finally, 
clustering at 7.5 Å was performed. Parameter files for each run performed in this study 
are available from the authors upon request.  
 
Negative-stain electron microscopy and 2D class averaging  

Samples were directly deposited on glow-discharged (60 sec) Quantifoil®, type 
300 mesh grids and negative-staining with uranyl acetate 2%(w/w) water was performed. 
In short, after sample was applied, it was rinsed twice with distilled water after 30 sec and 
uranyl acetate was then applied for 60 sec. After blotting, grids were left to air-dry and 
subsequent imaging at the FEI Morgagni 268(D) was performed for each fraction. 
Recording of data was performed with a side-mounted 1K CCD Camera (SIS). After data 
acquisition (pixel size=7.1 Å), E2BOXER was used for particle picking with a box size 
of 80X80 pixels. In total, 37,424 particles were picked out of 30 fractions, resulting in 
1,170±827 particles per fraction. Class averaging was performed using RELION 1.2 
(Scheres, 2012a; Scheres, 2012b). Briefly, 20 classes per fraction were set for 2D 
classification. Cross-correlation of final class averages was performed using an in-house 
MATLAB script. The algorithm is available from the authors upon request.  
 
ctFAS enzyme preparation and vitrification  

Three fractions derived from SEC enriched in ctFAS (according to quantitative 
MS data) were pooled and subsequently visualized for structural integrity. ctFAS was 
~50% enriched (see Appendix Fig. S14) and overall protein concentration was 
determined to be ~40 ng/µL. Samples were then deposited on glow-discharged (60 sec) 
carbon-coated holey grids from Quantifoil®, type R2/1. A FEI Vitrobot® was used for 
plunge-freezing. In short, humidity was set to 70%, temperature to 293o K, blotting and 
drain time to 3 and 0.5 sec, respectively. Sample volume applied was 3 µL and blot offset 
was set to -3 mm.  
 
Image acquisition  

The vitrified samples were recorded on a FEI Titan Krios microscope at 300 kV 
and automatic image acquisition was performed with FEI EPU software. Pixel size was 
set to 2.16 Å and an FEI Falcon 2 camera was used in movie mode. The total number of 
frame groups was seven and dose applied per frame group (e–/Å2/sec) was set to 
4/4/4/4/4/4/24, respectively. Total dose applied was summed to 48 e–/Å2, but the last 
frame was used only for particle picking. Magnification was set to 75000X, whereas 
defocus ranged between 0.6 and 3.0 µm. A total number of 13,419 micrographs were 
acquired in 21 hours (1 frame/ 6 sec; 1 movie/42 sec).  
 
Data processing and 3D reconstruction  

Motion correction was applied to acquired micrographs (Li et al, 2013) leading to 
1,917 summed micrographs. E2BOXER was used for particle picking with a box size of 
256X256 pixels. 7370 particles were selected from 1597 micrographs (4-5 
particles/image). For CTF correction, CTFFIND from the Grigorieff lab was used (Rohou 
& Grigorieff, 2015). The RELION 1.2 package (Scheres, 2012a; Scheres, 2012b) was 
then used for 2D class averaging, 3D classification and 3D reconstruction of the density 
map. Briefly, 20 classes were set for 2D classification and, after visual inspection, eight 
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were selected for further processing that included 4,898 particles. 3D classification was 
set to five classes, performed without imposing symmetry, using the cerulenin-inhibited 
yeast FAS as an initial model (Gipson et al, 2010), low-pass filtered to 60 Å. 3,933 
particles were successfully classified in a single class (Appendix Fig. S14) and this was 
subsequently used for reconstruction. 3D reconstruction was performed using the same 
initial model but applying D3 symmetry and underwent 25 interactions, showing 
convergence. Significant dependency of the resolution according to masking was 
observed (Appendix Fig. S14), but default Gaussian mask from RELION 1.2 leads to a 
calculated resolution (Gold-standard FSC=0.143) of 4.7 Å.  
 
Modeling of the ACP-enoyl reductase domain interaction and the FAS-carboxylase 
metabolon  
Models of C. thermophilum acyl carrier protein (ACP) and enoyl reductase (ER) domains 
were generated using Modeller 9v2 and chosen structural homologs were selected from 
the yeast homolog with resolved densities for both (Leibundgut et al, 2007). Additional 
density of ACP was observed close to the ER domain of fatty acid synthase (FAS); thus, 
coarse placement of the ACP was performed using CHIMERA (Pettersen et al, 2004) and 
subsequently fitted to the density. Manual inspection of the fit agreed with the ACP 
orientation with the lipid-binding domain facing the ER domain. Energy calculations 
using the refinement webserver were performed, the domain interaction serving as input. 
Energy calculations were performed as previously described (Kastritis & Bonvin, 2010; 
Kastritis et al, 2014). Correlation of van der Waals energy with experimentally measured 
equilibrium dissociation constants for known complexes was derived from (Kastritis et al, 
2014).  
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Appendix Fig. S1.

 

Reproducibility of quantitative LC-MS/MS analysis within biochemical fractions. (A) 
Proteins identified and their overlap between three biological replicates. (B) Total 
intensity of proteins detected (iBAQ) spans five orders of magnitude. (C) Reproducibility 
plots showing the comparison of total intensity of each protein detected (iBAQ) in the 
three biological replicates; A, B and C. (D) Reproducibility plots showing the comparison 
of intensity of proteins detected (iBAQ) comparing individual SEC fractions in each 
biological replicate. 
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Appendix Fig. S2. 

 
 

Distributions of quality measures for calculated 3D protein models. (A) Number of 
proteins sharing structural homologs that were modelled (671 in total; modeling to derive 
their complexes was performed by structural alignment of each model on top of its 
complex homolog, see Dataset EV2). Modeller was used when proteins failed to be 
modeled using I-TASSER; (B-D) Distribution of (B) expected TM-score, (C) RMSD and 
(D) C-score for all molecular models generated with I-TASSER, having >30% sequence 
identity, >60% sequence coverage with a homolog in the Protein Data Bank (PDB). (E) 
Statistics of identified proteins and their assignment of multimeric states in the PDB. 
More than half of the identified proteins acquire different stoichiometric states in the 
crude extract whereas those that form homomultimers mainly consist of metabolic 
enzymes. 
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Appendix Fig. S3.  

 
 
Elution profiles of all proteins categorized according to structural annotation. Elution 
profiles are shown as heat maps of normalized abundances (of all 1,176 proteins 
identified in >1 biological replicates; ranked according to the experimentally observed 
molecular weight). Protein IDs matching the ranks shown here are listed in Dataset EV2. 
Proteins are further categorized from A-E according to the identified PDB homologs’ 
stoichiometry (A, homomultimeric complexes; B, heteromultimeric complexes; C, other 
proteins and fused proteins; D, monomeric; E, structurally uncharacterized).  
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Appendix Fig. S4.  

 
 
Elution profiles of protein complex subunits shown averaged in Fig. 2A. A clear co-
elution of subunits is evident. 
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Appendix Fig. S5.  

 

Correlation of elution profiles for protein complexes according to their GO terms. Protein 
elution profiles were averaged for all complexes of the protein complex benchmark 
(Dataset EV2). For each complex, GO terms were mapped and the averaged elution 
profiles were generated by considering the elution of all their proteins. Then, cross-
correlation of their profiles were performed by grouping complexes according to their 
common GO terms (for the algorithm training and validation, see Appendix Fig. S6). 
Randomized elutions correspond to scrambled elution profiles for the same complexes. 
The higher the correlation, the more similar the elution profiles of the complexes with 
common GO terms. Center lines show the medians; box limits indicate the 25th and 75th 
percentiles as determined by R software; whiskers extend 1.5 times the interquartile 
range from the 25th and 75th percentiles, outliers are shown as dots; crosses represent 
sample means. From top boxplot to bottom, n = 1265, 987, 1601, 1879, 2866, 2866 
sample points. 
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Appendix Fig. S6.  

 
  
Correlation of elution profiles. (A) Cross-correlation function for elution profiles. A 
spearman correlation coefficient is calculated for each co-eluting protein pair. (B) FDRs 
at different thresholds of cross-correlation co-elution (CCC) score for the training set. (C) 
Statistics of complexes used for calibrating the CCC score for discovering protein-protein 
interactions and expected number of total interactions. 
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Appendix Fig. S7.  

 
 
Quality measures for the reconstructed network and the communities derived using 
clustering (A) Distribution of scores (i) co-elution cross-correlation coefficient, (ii) 
STRING combined score, (iii) Mechismo Z-score from interface prediction, all of which 
were used to create the interaction network. (B) (i) Choice of machine learning approach 
to reconstruct the network shown in Appendix Fig. S6B. Precision/Recall curve showing 
the superior performance of Random Forests (RF) against five other tested machine-
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learning models (Adaptive Boosting (ADA), Recursive Partitioning and Regression Trees 
(RPART), Kernel-based Support Vector Machines (KSVM), Generalized Linear Model 
(GLM), Neural Networks (NNET)). (ii) ROC curve for the RF model plotted for 
evaluation of the model on the independent (never seen) test dataset. The ROC curve 
clearly indicates prediction capacity for protein-protein interactions by the RF approach 
(iii) Evaluation of the variable importance on the model using Mean Decrease in Gini 
(not shown), and Mean Decrease in Accuracy (shown), which depicts how much 
inclusion of a predictor variable (STRING, co-elution cross-correlation coefficient 
(CCC), or Mechismo score) in the model reduces the prediction error. Although the most 
significant contributor is the external data, if CCC values from co-elution are removed, a 
deterioration in prediction capacity of the RF network model is observed. The smallest 
contribution comes from Mechismo interface score due to their low number (see Dataset 
EV3) (C) (i) Distribution of the CCC (rescaled 0-1) and the STRING combined scores 
covered by the RF probability threshold of 0.85-1.00. (ii) Distribution of RF-derived 
probabilities of predicted interactions, class 0 (<0.5 probability), class 1 (interaction 
>=0.5) with 1SD threshold of 0.85 probability for network reconstruction. The final 
accuracy of the dataset is within 15% of FDR; those are shown in the network in 
Appendix Figs 8-10. (iii) The quality of the RF-derived networks was evaluated using a 
randomized Erdős–Rényi model (same number of nodes and edges). Calculated network 
centralities showed that the network has non-random, scale-free, real-world network 
properties with degree distribution following the power law with correlation of 0.8 and R-
squared of 0.7, compared to the randomized network correlation of  -0,044, and R-
squared = 0.003, and the global clustering coefficient of 0.5 vs. random network 0.026. 
 



 
 

22 
 

Appendix Fig. S8. 
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Network derived from lysate fractionation predicts protein communities. (A) Integration 

of experimental elution data, indirect interactions from STRING and predicted interaction 

interfaces from homologous proteins allow the creation of a high-quality network with 

interconnected protein complexes; mapping is shown in Appendix Fig. S9. Protein 

complex members identified ambiguously by sequence analysis but confidently taken 

together with the co-elution analysis are shown in red (see Dataset EV3 for details) (B) 

Co-elution between (i) RNA polymerase and spiceosomal complexes is shown and also 

(ii) very transient interactions between nucleoporins are recapitulated. 
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Appendix Fig. S9.   

 

 
Full network figure with all proteins annotated (including not clustered into protein 
communities). Communities overlap with numbering from main Fig. 3 and are as 
follows: 1 - Community of the NineTeen Complex; 2 - Eukaryotic initiation factor 3; 3 - 
54S mitochondrial ribosome; 4 - Elongator Complex; 5 - 37S mitochondrial ribosome; 6 - 
19S proteasome; 7 - PRS3-PRS5 complex; 8 - 20S Proteasome; 9 - Mitochondrial 
complexes community; 10 - Heat shock proteins and chaperones; 11 - 80S ribosome; 12 - 
RNA polymerase II and spliceosome; 13 - Chromatin remodelling proteins; 14 - 
Unknown community; 15 - Endoplasmic reticulum proteins; 16 - Coatomer complexes; 
17 - Nucleoporins; 18 - Chromatin associated proteins; 19 - 40S ribosome binding 
factors; 20 - Peptidases; 21 - Cop9 signalosome; 22 - Transcriptional complexes; 23 - 
Lipid biosynthesis proteins; 24 - Coatomer-related proteins; 25 - Exosome; 26 - 
Nucleosome; 27 - Kinases; 28 - DNA associated proteins; 29 - Nuclear membrane and 
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import proteins; 30 - Coenzyme Q biosynthesis proteins; 31 - Nuclear importins; 32 - 
ARP2/3; 33 - 40S ribosome subunits; 34 - Unknown community; 35 - GID complex; 36 - 
Septin and Tubulin; 37 - CCT chaperonin; 38 - Cytoskeleton proteins; 39 - TRAPP 
complex; 40 - ATP synthase; 41 - Intracellular transport proteins; 42 - Pyruvate 
dehydrogenase and Oxoglutarate dehydrogenase; 43 - Spliceosomal proteins; 44 - 
Cleavage factor 1; 45 - SGT2-YDJ1; 46 - Protein kinase CK2 complex; 47 - 
Transcriptional related proteins; 48 - ATP citrate-lyase community. 
 



 
 

26 
 

Appendix Fig. S10.   

 

 
Full network with structurally uncharacterized proteins highlighted in yellow. 
Communities overlap with numbering described in Figs. 3, Appendix Figs S8 and S9. 
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Appendix Fig. S11.  
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Quality calibration of intra- and inter- protein cross-links based on structural models of C. 
thermophilum proteins and complexes. (A) Upper panel, intra-link FDR calibration for 
(a) data from the two experiments using the Orbitrap Velos Pro, and (b) from the Orbitrap 
Lumos Fusion data. (B) Distance calculations of intra-protein cross-links (violated > 30 
Å of distance); the log-normal experimentally determined distributions for the cross-
linkers is recapitulated (C) Similar to (A), but corresponding to inter-protein cross-links. 
(D) Calculated distances of cross-links on protein-protein interactions; a log-normal 
distribution is recapitulated and few distances are violated (E) Docking calculations and 
highlighted structural models for unknown homomultimers (for details in identified novel 
homomultimers see Dataset EV5 and text).  
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Appendix Fig. S12.  

 
Example of docking based on inter-protein cross-links. Interface prediction based on 
data-driven protein docking using the cross-linking as a restraint; Below: Fitting of spp42 
to the spliceosome (EMDB: 6413; PDB ID: 3JB9) after superposition of the best cluster 
solutions for the CPSF A-spp42 interaction. 
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Appendix Fig. S13.  

 
 
Example fatty acid synthase communities (higher-order metabolons) from cryo-EM 
images.  
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Appendix Fig. S14.  

 
 Details of ctFAS reconstruction. (A) Typical negative staining electron micrograph of 
pooled fractions 7-9 (FEI Morgagni 268(D); 100 kV, pixel size=7.1 Å; 89000 X). Fatty 
acid synthase (FAS) single particles are apparent. (B) Cryo electron micrograph of the 
same fraction as in (A); taken from a data set that was used to obtain the structure of 
ctFAS (FEI TITAN Krios; 300 kV, pixel size=2.16 Å; total dose=48 e-*Å2; 75000; 
defocus as determined by CTFFIND=3.4 µm). (C) Abundance contributions of several 
complexes to the same biochemical fraction as in (A, B) determined by quantitative MS; 
About 50% of the single particles and the total protein corresponds to FAS. (D) 2D class-
averages of 7,370 particles of FAS and (E) 3D classification of 4,898 FAS particles (F) 
Fourier Shell Correlation curves with different masks; the structure obtained with a 
Gaussian mask created with RELION exhibits the best resolution of 4.7 Å at FSC=0.143. 
FSC does not reach 0 since Nyquist frequency was reached because data acquired were 
hard-binned 2.  
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Appendix Fig. S15.  

 
 
Details of ctFAS. (A) As expected at the given resolution of ~4,7 A, some but yet 
incomplete beta-strand separation is observed. (B) Additional density, possibly 
corresponding to the acyl chain within the active site between the interfaces of the acyl 
carrier protein (ACP) and the enoyl reductase (ER) domains is observed. (C) Comparison 
of cryo-EM maps of fatty acid synthase (FAS) obtained from M. segmantis, yeast and C. 
thermophilum (this study) that are shown as slices. ctFAS clearly exhibits additional 
density features in the cap region – that is the dome structure of the enzyme (region is 
shown with yellow arrows). The ACP domain is seen in a different position compared to 
the X-ray structure and additional density that cannot be explained by FAS itself is 
observed at the outside surface. (D) Prediction of the Kd for the ACP/ER interaction 
based on docking calculations; on the x axis, van der Waals energy calculated with 
HADDOCK refinement protocol is shown; on the y axis, experimentally measured 
binding affinities for 72 near-rigid body binders. Regression line shows predictive 
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capacity of the van der Waals interactions. Calculated van der Waals for the ACP/ER 
interaction implies the interaction to be in the µm range. (E) Complementation of 
electrostatic surface potentials for the two protein domains is apparent and comprises the 
major energetic determinant. Co-factors are also modeled. 
 


