

Figure S1. Construction of *ERBB2*-inducible MCF10A strain for screening. (A) Plasmids used for the establishment of the MCF10A clone for screening. *ERBB2VE* gene is under regulation of a tetracycline-responsive DNA element and minimal CMV promoter. *mSLC7a1* gene encodes a mouse ecotropic retroviral receptor. (B) Detection of transforming activities in an isolated MCF10A/Tet-on/*ERBB2VE* clone. MCF10A/Tet-on/*ERBB2VE* cells were cultured on Matrigel for 14 days. In Dox (+) panels, *ERBB2VE* was induced by the addition of Dox at day 7. We selected this parental *ERBB2VE*-inducible MCF10A strain for screening genes for their ability to disrupt lumen formation. Scale bars represent 100 μ m. (C) Confirmation of ERBB2 protein induction and its activity. The parental MCF10A/Tet-on cells and their descendant MCF10A/Tet-on/TRE-*ERBB2VE* cells were cultured in the absence (-) or the presence (+) of Dox. Protein levels in the cells were analyzed by immunoblotting using the indicated antibodies. Tubulin was used as a loading control.

Figure S2. High resolution images of 3D-morphological changes observed after subgroup gene introduction. These are high-resolution pictures of phenotypic changes shown in Figure 1B. Scale bars represent 500 µm.

Figure S3. Induction of EMT by RAR α in a manner required for its transcriptional activity. (A) Enhanced transcriptional activity by overexpression of *RARA* and dominant negative activity of its mutant lacking the transcriptional activation domain. MCF10A/Tet-on/Eco cells were cotransfected with

Renilla-luciferase vector (internal control), RARE-Firefly-luciferase vector, and expression vectors harboring empty, RARA, or rara $\Delta 408$ -416 genes by calcium phosphate transfection. Their extracts were subjected to dual luciferase assay, and the relative Firefly-luciferase activity was calculated. Numbers below the graphs represent the relative DNA amounts of the expression vectors. See also materials and methods. (B) An essential role of amino acids 408-416 of RAR α in the invasive transformation. MCF10A/Tet-on/TRE-ERBB2VE/Eco cells overexpressing the indicated genes were cultured in a 1:1 mixture of Matrigel and collagen I for 5 days in the absence of Dox. Scale bars represent 200 µm. (C) essential role of amino acids 408-416 of RARa in EMT An induction. MCF10A/Tet-on/TRE-ERBB2VE/Eco cells were infected with the indicated retroviral vectors at higher MOI of rara 1408-416 than that of RARA. Protein levels were analyzed by immunoblotting using the indicated antibodies. Tubulin was used as a loading control. (D) N-cadherin increase by RARa in MDA-MB-361 breast cancer cells. Cells were infected with retrovirus packaged with pMXs-mCherry-IRES-puro or pMXs-RARA-IRES-puro vector together with pVSV-G plasmid and selected with puromycin. Protein levels in the cells were analyzed by immunoblotting with the indicated antibodies.

Figure S4. Chronological changes in E-cadherin and N-cadherin expression levels induced by *RARA* expression. MCF10A/Tet-on/TRE-*ERBB2VE*/Eco cells were infected with retroviruses for *RARA* and lysed at the indicated time points. The expression levels of the indicated proteins were analyzed by immunoblotting. Tubulin was used as a loading control.

Figure S5. Partial involvement of the TGF-\$/SMAD signaling pathway in RARa function. (A) Inhibiton of the phosphorylation of SMAD2 by SB-431542 treatment. MCF10A/Tet-on/TRE-ERBB2VE/Eco cells were treated with indicated concentrations of SB-431542, an inhibitor of TGF-B receptor type I, for 30 min, followed by stimulation with recombinant human TGF-B1 at 2 ng/mL for 24 h. Protein levels in the cells were analyzed by immunoblotting using the indicated antibodies. Tubulin was used as a loading control. White line, trimmed margin of unrelated sample lanes. (B) Partial suppression of RARα-induced EMT by SB-431542 treatment. MCF10A/Tet-on/TRE-ERBB2VE/Eco cells were infected with retroviruses for Venus or RARA, and simultaneously treated with 5 µM SB-431542. The concentration of SB-431542 was determined on the

basis of the phosphorylation level of SMAD2 under TGF-β stimulation shown in (A). Protein levels in the cells were analyzed by immunoblotting using the indicated antibodies. Tubulin was used as a loading control. (C) Partial suppression of the RAR α -induced invasive phenotype by SB-431542 treatment. Cells indicated in (B) were cultured in a 1:1 mixture of Matrigel and collagen I for 5 days in the absence or presence of SB-431542. Scale bars represent 500 µm. (D) Effects of TGF-β1 on changes in the expression of EMT markers. MCF10A/Tet-on/TRE-ERBB2VE/Eco cells were treated with TGF-B1 at the indicated concentrations for 3 days. Protein levels in the cells were analyzed by immunoblotting using the indicated antibodies. Tubulin was used as a loading control. (E) Effects of TGF-B1 on morphology in Matrigel-collagen I 3D cultures. Three days after TGF-β1 treatment, MCF10A/Tet-on/TRE-ERBB2VE/Eco cells were embedded in a 1:1 mixture of Matrigel and collagen I. Cells were cultured for 5 days in assay medium supplemented with TGF-B1 at the indicated concentrations. Scale bars represent 500 µm.

shZEB1#1	sense	5'-GATCCGGACTAGCAATGTTGATTTGAGCTTCCTGTCACTCAGATTAACATTGTTAGTCCTTTTTG-3'			
	antisense	5 - AATTCAAAAAGGACTAACAATGTTAATCTGAGTGACAGGAAGCTCAAATCAACATTGCTAGTCCG-3			
shZEB1#2	sense	5'-GATCCGCCAAATTGGGGTTAGCTTCTGCTTCCTGTCACAGAAGTTAATCCTAATTTGGCTTTTTG-3'			
	antisense	5 - AATTCAAAAAGCCAAATTAGGATTAACTTCTGTGACAGGAAGCAGAAGCTAACCCCAATTTGGCG-3 -			
shZEB2	sense	5'-GATCCGCCATTATCCGGTTAAGGAACGCTTCCTGTCACGTTTCTTAACTGGGTAATGGCTTTTTG-3'			
	antisense	5 ' - AATTCAAAAAGCCATTACCCAGTTAAGAAACGTGACAGGAAGCGTTCCTTAACCGGATAATGGCG-3 '			

Table S1. Oligonucleotide pairs for knockdown vector construction

*Anealed oligos were inserted into BamHI and HindIII restriction sites of knockdown vectors.

Table S2. Gene lists in subgroups

Subgroup	Gene Symbol							
1	ERBB2	C17orf37	GRB7	GSDMA	CSF3	CCR7		
2	PSMB3	PSMD3	RAPGEFL1	LOC100131821	KRT25			
3	HNF1B	RPL23	MED1	GSDMB	RARA	IGFBP4		
4	ORMDL3	CDC6	TNS4	SMARCE1	TMEM99			
5	C17orf78	SOCS7	PIP4K2B	LASP1	KRT28			
6	CWC25	TCAP	PGAP3	THRA	NR1D1			
7	SYNRG	DDX52	FBXL20	PNMT	MSL1			
8	MRPL45	SRCIN1	PLXDC1	RPL19	WIPF2			
9	TADA2A	DUSP14	PCGF2	IKZF3	MED24			
10	MLLT6	CACNB1	PPP1R1B	STARD3	KRT24			