

Figure S2. HY α *Tcra* repertoire in thymus and periphery. Related to Figure 3. (A) Difference map depicting ratio of average V_{α} -J $_{\alpha}$ rearrangement frequencies in HY α DP thymocytes to those in wild-type, using data in Figures 1B and 3B. Ratios greater than or equal to ten are binned into the same color. (B) V_{α} -J $_{\alpha}$ rearrangement frequencies in HY α CD3⁺CD4⁺CD62L⁺ splenocytes as determined by HTS of *Tcra* transcripts amplified using 5' RACE. Data are presented as the mean of two mice analyzed in one experiment.

Figure S3. Comparison of V_{α} - J_{α} rearrangements in wild-type, HY α , and INT1-2-deficient thymocytes. Related to Figure 5. (A) Comparison of V_{α} usage with relatively proximal J_{α} segments (left), or of J_{α} segments used with relatively proximal V_{α} segments (right), in wild-type, HY α , and INT1-2-deficient DP thymocytes. Data are from Figures 1C, 3C, and 5C. (B) Comparison of total V_{α} usage (left) and total J_{α} usage (right) in wild-type, HY α , and INT1-2-deficient thymocytes. Data are from Figures 1B, 3B, and 5B and are presented as mean and s.d. of 3-4 mice for each genotype, analyzed in two independent experiments.

Figure S4. Quantitative analysis of V_{α} - J_{α} rearrangements in wild-type, HY α , and INT1-2-deficient thymocytes. Related to Figure 5. (A) Frequency-weighted means of the chromosomal coordinates of the V_{α} segments used with each J_{α} segment, with V_{α} chromosomal coordinates expressed as distance (in kb) from *Traj58*, and J_{α} segments plotted according to their chromosomal coordinates. (B) Frequency-weighted standard deviations of V_{α} segment usage (in kb) were plotted as a function of J_{α} segment. Each line was generated by fitting a smoothed spline function to the data from a single mouse. Statistical tests are presented in Table S2.

Figure S5. Extended V_{α} - V_{δ} **conformation on wild-type and HY** α *Tcra* **alleles. Related to Figure 6.** (A) Schematic of hybridization of DNA-FISH probes A, B, and C to wild-type and HY α *Tcra* alleles. (B) Distance between centers of probe A and B hybridization on individual alleles in DP thymocytes generated from $Rag2^{-/-}$ heterozygous for the HY α allele. The horizontal line denotes median distance. Measurements were compiled from 216 nuclei examined from slides prepared from three mice analyzed in two independent experiments. ns, not significant (*P*=0.16) by Mann-Whitney U test.

		No. of sequences passing MiXCR QC				No. of unique clones			
Sample		Rep. 1	Rep. 2	Rep. 3	Rep.4	Rep. 1	Rep. 2	Rep. 3	Rep.4
wild-type DP		618,929	605,294	959,253	-	67,098	118,262	140,982	-
ΗΥα DP		219,828	730,265	1,623,523	969,911	62,124	92,711	182,959	118,118
INT1-2-KO DP		885,547	558,082	960,521	-	107,483	83,785	125,284	-
$HY\alpha$ spleen		1,335,088	1,686,050	-	-	139,923	111,370	-	-
ZsGreen ⁺	12hr	958,297	1,115,107	-	-	25,758	31,480	-	-
	24hr	623,464	1,068,044	-	-	86,477	11,549	-	-
	48hr	923,259	1,270,032	-	-	146,222	34,606	-	-
	72hr	1,264,011	877053	-	-	187,444	14,753	-	-
ZsGreen ⁻	12hr	499,955	-	-	-	11,992	-	-	-
	24hr	733,689	-	-	-	14,409	-	-	-
	48hr	946,922	1,042,691	-	-	134,768	134,811	-	-

Table S1. Quality of repertoire analyses. Related to Figure 1.

		Average V	<u>, position</u>		$\underline{V}_{\underline{\alpha}}$ position variance				
Genotype	Initial V_{α} (SEM) ¹	p-value vs. WT ²	Slope (SEM) ³	p-value vs. WT ²	Initial SD (SEM) ¹	p-value vs. WT ²	Slope (SEM) ³	p-value vs. WT ²	
Wild-type	331,660 (1.56x10 ⁴)	_	14.41 (0.89)	-	240,876 (6.6x10 ³)	-	3.66 (0.25)	-	
ΗΥα	259,777 (2.06x10 ⁴)	0.01	12.76 (1.18)	0.165	107,898 (8.7x10 ³)	< 0.001	3.89 (0.33)	0.478	
INT1-2KO	$\begin{array}{c} 208,042 \\ (2.20 \mathrm{x10}^4) \end{array}$	0.001	15.29 (1.26)	0.488	$ \begin{array}{r} 168,685 \\ (9.3x10^3) \end{array} $	< 0.001	4.11 (0.35)	0.2	

Table S2. V_{α} usage in different genotypes. Related to Figure 4.

¹Distance in base pairs (bp) from the most V_{α} -proximal J_{α} segment. ²As determined by two-factor ANOVA. ³Expressed as V_{α} bp/ J_{α} bp, determined between *Traj52* and *Traj37*