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S1 Calculation of crosslinker head position during binding and
unbinding

In this section, we describe how we update the binding state (I1(2) in Eq. 2) and position (~r1(2)) of
a crosslinker head. The binding states and positions of the two heads of a crosslinker are coupled
only through the potential energy (Eq. 2).

We first discuss binding. An unbound crosslinker head with position ~ru can attempt to bind to
the closest point on each nearby filament link. Let ~li = ~ri− ~ri−1, where ~ri is the position of the ith

bead on the filament to which the link belongs. Then, we propose a bound state with binding point

~rb =


~ri−1 |~li| = 0 or p ≤ 0

~ri p ≥ 1

~ri−1 + p~li otherwise
(S1)

where p = (~ru − ~ri) · ~li. Eq. S1 can be interpreted easily in a reference frame in which ~li is
oriented vertically (Fig. S1A): if ~ru is below the link, ~rb = ~ri−1; if it is above the filament then
~rb = ~ri; otherwise ~rb is the intersection of ~li with the line perpendicular to ~li that passes through
~ru. If |~rb − ~ru| < rc, the changes in binding state and position are accepted with probability
(kon
xl ∆t)P

off→on
xl,i (see main text, Crosslinkers).
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Figure S1: Position of crosslinker head upon binding or unbinding. (A) Any crosslinker head in the aqua,
yellow, and gray areas (such as the filled blue, green, and black circles) can bind to the blue, green, and
black binding points (circles with crosses), respectively. (B) The process by which a crosslinker generates
an unbinding point (ru) at time t+h using its original displacement at time t when it snapped to the binding
point rb.

For unbinding, we do the following. At the time of binding (t), we record the displacement
vector, ~rbu = ~rb(t)− ~ru(t), and the vector connecting the ends of the filament link, ~li(t) = ~ri(t)−
~ri−1(t). At the time that we attempt unbinding (t + h), we determine the angle of rotation of the
filament link:

θ = arccos

(
~li(t) ·~li(t+ h)

|~li(t)||~li(t+ h)|

)
. (S2)

Then, the position to which the crosslinker head tries to jump is

~ru(t+ h) = ~rb(t+ h)−
(

cos (θ) − sin (θ)
sin (θ) cos (θ)

)
~rbu(t) (S3)
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as shown in Fig. S1B. This jump is accepted with probability (koff
xl ∆t)P on→off

xl,i . The motivation for
this scheme is that it ensures that a head that jumps onto (off) a filament link returns to its original
position if it unbinds (rebinds) immediately. Detailed balanced consistent with Eq. 2 can thus be
satisfied through the acceptance probabilities (kon

xl ∆t)P
off→on
xl,i and (koff

xl ∆t)P on→off
xl,i .

S2 Relaxation times scales
In this section, we present data on filament and network time scales that inform our choices of
sampling frequencies.

S2.1 Decorrelation of filament angles
The evaluations of persistence length in Actin filaments exhibit predicted spatial and temporal
fluctuations in the main text average over independent configurations of filaments. To determine
the amount of time between independent configurations in a trajectory of a single filament, we
evaluated the integrated autocorrelation time of the angles θi for i ∈ [2 . . . 20] between links along
a 21 bead filament. Fig. S2A shows the autocorrelation

R(θ, s) =
〈θ(t)θ(t+ s)〉 − 〈θ(t)〉2

〈θ(t)2〉 − 〈θ(t)〉2
(S4)

where s is the time between realizations and the angle brackets represent an average over all 19
angles and all 1900 saved configurations. Fig. S2B shows the integrated autocorrelation time τ as
a function of the simulation cutoff time tfinal, where

τ(θ) =

∫ tfinal

0

R(θ, s)ds. (S5)

For all choices of tfinal, τ < 2 s and therefore configurations that are separated by at least 2 s should
be independent realizations with respect to angles between subsequent filament links.
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Figure S2: Estimation of the characteristic decorrelation time for persistence length measurements. (A)
Decorrelation of angles between filament links for a 21 bead filament with ka = 1 pN/µm, la = 1 µm, and
κB = 0.068 pNµm2. (B) Measurement of the integrated autocorrelation time τ for different values of the
cutoff time tfinal.
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S2.2 Shear relaxation times
One extra parameter that must be set for shear simulations is the relaxation time (trelax)—i.e.,
the minimum time between strain steps for responses to be history independent. We probed this
question computationally by determining if the parameter of interest (total potential energy of
filaments and crosslinkers) varied significantly for different periods of relaxation between steps of
∆γ = 0.001. Fig. S3 shows that while very small trelax values do yield higher energies at equivalent
strains, as trelax is increased, the curves collapse for identical strains. In the shear simulations in
the main text (Tunable elastic behavior of crosslinked filament networks), trelax = 1 ms (yellow
curve).

Figure S3: Total potential energy as a function of strain for various relaxation times. Simulation parameters,
are otherwise identical to the shear simulations in the main text.

S3 Comparison with Cytosim
Cyotsim is a freely available C++ software package developed to simulate active polymer networks
and described in (1). While AFINES shares many of the same features, for clarity we enumerate
the technical differences.

• The filament model. AFINES uses a bead spring chain and Cytosim uses a chain con-
strained via Lagrange multipliers.

• Attachment of motors and crosslinkers. Cytosim uses a continuous-time Monte Carlo pro-
cedure (the Gillespie algorithm (2)) to calculate when a motor should attempt attachment to
a filament, while AFINES attempts with the probability computed for each discrete timestep
of fixed duration. In Cytosim, the attachment of a motor to a filament is not dependent on the
distance from the filament, other than that it must be below a threshold, whereas in AFINES,
a closer motor has a higher probability of attachment, due to detailed balance considerations.

• Detachment of motors and crosslinkers. Cytosim has a force dependent detachment of
crosslinkers. This was not a necessary detail to reproduce the benchmarks shown in the re-
sults section, and detailed balance would require altering the motor and crosslinker dynam-
ics, so we have not included it in the present version. We plan in the future to understand
how this detail effects cytoskeletal networks in general and add it as an option to AFINES.
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• Capabilities present in one and not the other. AFINES implements network shearing.
Cytosim implements filament polymerization and depolymerization, microtubule asters, and
spherical geometries.

To compare the two packages, we have used Cytosim to run the benchmarks associated with
filament fluctuations (Fig. S4) and motility assays (Fig. S6, below). For the filament fluctuation
benchmarks, shown in Fig. S4, we find that while Cytosim is able to yield nearly the correct
persistence length of filaments, at long segment lengths it performs worse than AFINES, perhaps
because it uses linearized versions of the angle forces (1).

A B C

Figure S4: Measurements of persistence length for Cytosim filaments (red) compared with the same mea-
surements for AFINES (blue). (A) Cosine correlation function and ∆θ2 correlation function for 20 Cytosim
fibers with Lp = 17 µm fluctuating for 2000 seconds. See Section 4.1 of the main text for details. (B)
Measurement of Lp as function of segment length, la, using the fit to the first 5 data points of 〈∆θ2〉 in (A).
(C) Measurement of Lp as a function of input bending modulus for Cytosim and AFINES. Colors are the
same as panel B.

S4 Parsing the energy in sheared networks
To further examine the source of the energy scalings shown in Fig. 5D, we measure the fraction
of the total energy density w from each of its sources in the network, the stretching energy of
filaments, the stretching energy of crosslinkers, and the bending energy of filaments, as shown
in Fig. S5. In general, we find that shearing the network stretches and bends actin filaments,
and also stretches crosslinkers, as in Fig. S5A-C. Fig. S5B-C show that, as crosslinkers become
more stiff, more of the energy from the strain is concentrated on the filaments. Fig. S5A shows
that for crosslinkers, the trend is not monotonic. When kxl < 100 pN/µm, increasing crosslinker
stiffness results in more energy in the crosslinkers, and in this regime, the scaling of w(γ) increases
monotonically. However, for kxl ≥ 100 pN/µm, the trend reverses, and the strain energy density
concentrates on the filaments more than the crosslinkers, as seen in Fig. S5D-E. In this regime,
the scaling of w(γ) plateaus near the value 3.5, reflecting the prediction for the differential shear
modulus in a strain controlled rheology experiment, G = d2w/dγ2 ∝ γ3/2 (3).
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Figure S5: Absolute (A-C) and relative (D-F) energy contributions from crosslinkers stretching (A, D),
filaments stretching (B, E), and filaments bending (C, F) for the sheared network discussed in Tunable
elastic behavior of crosslinked filament networks.

S5 Comparison with Cytosim for motility assays
We also used Cytosim to simulate the motility assays described in the main text (Ensembles of
motors interacting with individual filaments simulate actin motility assays). The results, shown in
Fig. S6, are generally congruent with the results from AFINES in Fig. 6. We find that increasing
motor density, filament length, and duty ratio increase longitudinal motion and decrease transverse
motion of the filament (Fig. S6B), and makes the filament move more ballistically (Fig. S6C).
Furthermore, the path persistence length plots (Fig. S6D) are nearly identical to the measurements
obtained using AFINES. Thus, it is reassuring that the two models agree to this extent despite the
differences in filament and binding implementations.
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Figure S6: Motility measurements at varying motor density, filament length, and duty ratio generated using
Cytosim. For a detailed description of this calculation see main text, Ensembles of motors interacting with
individual filaments simulate actin motility assays.

S6 Procedure for quantifying contractility
An actin assay can be considered contractile if it has regions to which most of the actin aggregates.
In an experiment with a limited field of view, the net flux of actin into the field of view is positive
when the system is contractile. This flux corresponds mathematically to a negative value for the
integral of the divergence of the velocity field over the area (4, 5). However, in our simulations,
all particles’ positions are known and there is no flux of material into or out of the simulation
region owing to the periodic boundary condition. Thus the total divergence obtained by integrating
over the simulation box must be zero. Nevertheless, we can still compute the density-weighted
divergence to quantify contractility, as we now describe.

To ensure that the divergence is well-defined at all points, we first interpolate a continuous ve-
locity field. When the data are experimental images, the velocity field is determined using Particle
Image Velocimetry (PIV). Here, we take a similar approach, with the advantage that positions of
actin beads are a direct output of the simulation, analogous to tracer particles in experiments. To
this end, for each filament bead i with position ~ri(t) at time t, we calculate the velocity by forward
finite difference:

~vi(~ri, t) =
~ri(t+ h)− ~ri(t)

h
, (S6)

where h is a suitable amount of time to characterize motion. We calculate the average velocity of
each (5 µm)2 bin. Similarly to PIV, we lower the noise further by setting a threshold, and only
consider bins with at least n actin beads. We then interpolate the bin values with Gaussian radial
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basis functions (RBFs):

~v(~r) =
M∑
k=1

~wke
−(|~r−~rk|/ε)2

(S7)

where M is the number of bins with at least n actin beads, ε is a constant related to the width of the
Gaussian RBFs, and ~wk are their weights. The optimal value for ε is generally close to the value
of the average distance between RBFs (6); we found ε = 5 µm and a threshold of n = 10 yielded
a robust interpolation across many different actin structures. We use the scipy.interpolate.Rbf
Python package to determine the weights (6). We calculate the divergence of the resulting field
dvx(~r)/dx + dvy(~r)/dy by using finite difference approximations for the derivatives of Eq. S7.
Examples of this velocity field and the local divergence are shown in Fig. 7C and Fig. S7C.

As noted above, given ∇ · ~v, we quantify the contractility by the density weighted divergence,∫
ρa〈∇ · ~v〉dA. In Fig. S7E we show an example where the density weighting has the effect of

significantly increasing the magnitude of the areas with negative divergence. To understand how
the contractility varies with length scale, we replace the integral with the sum over square regions∑

k

ρa(~rk)〈∇ · ~v〉kdA (S8)

and vary the size of the regions, dA = dxdy (Fig. S7F). For the maximum size dA = (50 µm)2

(yellow curve), the density weighted divergence fluctuates around 0 as expected from the zero actin
flux. However for region sizes dA ≤ (10 µm)2, the values are consistently negative, indicating
contractility; the curves decrease to a minimum before plateauing closer to 0, as seen in experiment
(5). We also show, in Fig. S7G, that the trend of this order parameter is independent of the time
scale h used to calculate the velocity in Eq. S6.
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Figure S7: Calculation of density weighted divergence for a simulated contractile actomyosin network. (A-
D) Identical to Fig. 7, but with koff

m = 10 s−1, kend
m = 1 s−1, and ρm = 1 µm−2. In (A), all filaments and

10% of motors and crosslinkers are shown. (E) Same as (C), but the color is weighted by the actin density
ρa. (F) Dependence of the density weighted divergence on the patch size used for integration, dA = dxdy,
with h = 10 s. (G) Dependence of the density weighted divergence on the time scale h used in calculating
the velocity of actin v in Eq. S6 with dx = dy = 1 µm.
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