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ABSTRACT Computer simulations can aid in understanding how collective materials properties emerge from interactions be-
tween simple constituents. Here, we introduce a coarse-grained model that enables simulation of networks of actin filaments,
myosin motors, and cross-linking proteins at biologically relevant time and length scales. We demonstrate that the model qual-
itatively and quantitatively captures a suite of trends observed experimentally, including the statistics of filament fluctuations, and
mechanical responses to shear, motor motilities, and network rearrangements. We use the simulation to predict the viscoelastic
scaling behavior of cross-linked actin networks, characterize the trajectories of actin in a myosin motility assay, and develop or-
der parameters to measure contractility of a simulated actin network. The model can thus serve as a platform for interpretation
and design of cytoskeletal materials experiments, as well as for further development of simulations incorporating active
elements.
INTRODUCTION
The actin cytoskeleton is a network of proteins that enables
cells to control their shapes, exert forces internally and
externally, and direct their movements. Globular actin pro-
teins polymerize into polar filaments (F-actin) that are mi-
crons long and nanometers thick. Many different proteins
bind to actin filaments; such proteins often have multiple
binding sites that enable them to cross-link actin filaments
into networks that can transmit force. Myosin proteins are
composed of head, neck, and tail domains and aggregate
via their tails to form minifilaments that can attach multiple
heads to actin filaments (1). Each myosin head can bind to
actin and harness the energy from ATP hydrolysis such
that a minifilament can walk along an actin filament in a
directed fashion—i.e., it is a motor. These dynamics have
been extensively studied. It is well understood, for example,
how they give rise to muscle contraction. In muscle cells,
myosin II minifilaments bind to regularly arrayed antipar-
allel actin filaments and walk toward the barbed ends (2).
In other types of cells lacking this level of network organi-
zation, however, the ways in which the elementary molecu-
lar dynamics (MD) act in concert to give rise to complex
cytoskeletal behaviors remain poorly understood.
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Addressing this issue requires a combination of experi-
ment, physical theory, and accurate simulation. The last of
these is our focus here—we present a nonequilibrium MD
framework that can be used to efficiently explore the struc-
tural and dynamical state space of assemblies of semiflex-
ible filaments, molecular motors, and cross-linkers. By
allowing independent manipulation of parameters normally
coupled in experiment, this computational model can guide
our understanding of the relationship between the micro-
scopic biochemical protein-protein interactions and the
macroscopic mechanical functions of assemblies. Addition-
ally, because the model simulates filaments, motors, and
cross-linkers explicitly, we can elucidate microscopic mech-
anisms by studying its stochastic trajectories at levels of
detail that are experimentally inaccessible. The fact that
complex behaviors can emerge from simple interactions
also allows simulations to be used to evaluate predictions
from theory.

In this work we detail the model and demonstrate that it
reproduces an array of known experimental results for actin
filaments, assemblies of actin and cross-linkers (passive
networks), and assemblies of actin and myosin (active
networks). We go further to provide, to our knowledge,
new experimentally testable predictions about these
systems. For single polymers, we reproduce the spatiotem-
poral fluctuation statistics of actin filaments. For passively
cross-linked networks, we reproduce known stress-strain
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Simulating Cytoskeletal Networks
relationships and predict the dependence of the shear
modulus on cross-linker stiffness. For active networks, we
reproduce velocity distributions of actin filaments in myosin
motility assays and show how one can tune their dynamical
properties by varying experimentally controllable parame-
ters. In separate studies, we use the model to clarify micro-
scopic mechanisms of actomyosin contractility and
investigate how assemblies of actin filaments and cross-
linkers can be tunably rearranged by myosin motors to
form structures with distinct biophysical and mechanical
functions (3). The collection of this benchmark suite is itself
useful, as prior models (4–14) have focused on specific cyto-
skeletal features, making the tradeoffs needed to capture the
selected behaviors unclear.

Indeed, our model builds on earlier studies, which we
briefly review to make clear similarities and differences of
the models (see also (15) for a list of cytoskeletal simula-
tions). The most finely detailed simulations focus on the mo-
tion of a myosin minifilament with respect to a single actin
filament. Erdmann and Schwarz (9) used Monte Carlo sim-
ulations to verify a master equation describing the attach-
ment of a minifilament and, in turn, the duty ratio and
force velocity curves as functions of the myosin assembly
size. Stam et al. (16) used simulations to study force buildup
on a single filament by a multiheaded motor and found
distinct timescale regimes over which different biological
motors could exert force and act as cross-linkers. These
models of actin-myosin interactions are important for un-
derstanding the mechanics at the level of a single filament,
and their results can be incorporated into larger network
simulations.

A number of publications have dealt with understanding
the rheological properties of cross-linked actin networks
(4–7). For example, to study the viscoelasticity of passive
networks, Head et al. (5) distributed filaments randomly in
2D, cross-linked filament intersections to form a force-prop-
agating network, sheared this network, and let it relax to an
energy minimum. From this model, they were able to iden-
tify three elastic regimes that were characterized by the
mean distance between cross-linkers and the temperature.
Dasanayake et al. (8) extended this model to include a
term in the potential energy that corresponded to myosin
motor activity and observed the emergence of force chains
that transmit stress throughout the network. These studies
address questions about how forces propagate and how
cross-linker densities alter mesh stiffness.

Other studies characterized network structure and
contractility as functions of model parameters. Wang and
Wolynes (10) considered a graph of cross-linkers (nodes)
and rigid filaments (edges) in which motor activity was
simulated via antisymmetric kicks along the filaments.
They calculated a phase diagram for contractility as a func-
tion of cross-linker and motor densities. Such a simulation
can provide qualitative insights into general principles of
filament networks, but the model did not account for fila-
ment bending, and structures were sampled via a Monte
Carlo scheme that was not calibrated to yield information
about dynamics. Cyron et al. (17) used Brownian dynamics
simulations to investigate structures that can form via mix-
tures of semiflexible filaments and cross-linkers and deter-
mined a phase diagram and phase transitions (18) between
differently bundled actin networks that form as one varies
cross-linker density and cross-linker-filament binding angle.
N�ed�elec and Foethke (11) performed dynamic simulations
of assemblies of semiflexible microtubules and kinesin mo-
tor proteins, which share features with assemblies of F-actin
and myosin; they used their simulation package, CytoSim,
to understand aster and network formation in microtubule
assays and showed recently that the model can be adapted
to treat actin networks (12). Gordon et al. (13), Kim (14),
and most recently Popov et al. (15) similarly simulated dy-
namics of F-actin networks and included semiflexible fila-
ments, motors, and cross-linkers. By varying motor and
cross-linker concentrations, Gordon et al. (13) and Popov
et al. (15) showed various structures that can emerge from
assemblies of this type, and Kim et al. (7,14) additionally
quantified how these changes could affect force propagation
within the network.

We have strived to include many of the best features of
these preceding models in our model. We use the potential
energy of Head et al. (5) for filament bending and stretching.
However, in contrast to Head et al. (5) and Dasanayake et al.
(8), which simply relax the network, we simulate the stochas-
tic dynamics, including thermal fluctuations, cross-linkers
and motors binding and unbinding, and the processive
activity of myosin. The force propagation rules and motor
force-velocity relation are similar to those of N�ed�elec and
Foethke (11) and Gordon et al. (13), whereas the length
and timescales simulated are on the order of those performed
in Ennomani et al. (12) and Kim (14). We expand on these
works by combining and documenting key elements in a sin-
gle model, demonstrating that the model can quantitatively
capture experimentally determined trends for cytoskeletal
materials, and illustrating how themodel can be used to study
systems of current experimental interest.
MATERIALS AND METHODS

To access the time- and length scales relevant to cytoskeletal network

reorganization, we treat actin filaments, myosin minifilaments, and cross-

linkers as coarse-grained entities (Fig. 1 A). We model actin filaments as po-

lar wormlike chains (WLCs) such that one end of the WLC represents the

barbed end of an actin filament and the other represents the pointed end. We

model cross-linkers as Hookean springs with ends that can bind and unbind

from filaments. Thus, the connectivity of a network and, in turn, its capacity

for force propagation varies during simulations. We model molecular

motors similarly to cross-linkers except that each bound motor head can

walk toward the filament barbed end with a load-dependent speed. The mo-

tors can slide filaments, translocate across filaments, and increase network

connectivity. We simulate the system using Langevin dynamics in 2D

because the in vitro experiments we wish to interpret are quasi-2D, and

approximating the system as 2D allows us to treat larger systems for longer
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FIGURE 1 Overview of the model. See Materials

and Methods for details. (A) Shown here is a sche-

matic of a configuration of the model. Filaments

are red, cross-linkers are green, and motors are

black. (B) Shown here is an expanded view of the

actin filament representation: a chain of beads con-

nected by springs with spring constant ka, rest length

la, and bending modulus kB, as detailed in Filaments.

(C) Shown here is the process by which a cross-

linker finds a filament to bind, as detailed in

Cross-linkers. The solid red link is indexed to the

grid points marked with either red diamonds or pur-

ple triangles, and the solid green motor head (circle)

searches the grid points marked with either green

squares or purple triangles for links to bind. The

cross-linker head then stochastically binds to the

nearest spot on the filament (see Supporting Mate-

rials and Methods and Fig. S1 A) here marked

with a purple x. (D) Shown here are successive im-

ages of two antiparallel 10 mm filaments (barbed ends marked by blue circles) interacting with one motor at the center. The motor binds to both filaments

and slides them past each other. (E) This is similar to (D) but with a cross-linker that pins the top filament’s pointed end to the bottom filament’s barbed end.

The motor, bound to both, walks toward the barbed end of the bottom filament and buckles the top filament. To see this figure in color, go online.
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times. To account for the fact that a 3D system would have greater confor-

mational freedom, we do not include steric interactions for our filaments,

motors, and cross-linkers. This implementation of filaments, motors, and

cross-linkers, which we detail below, allows for motor-driven filament

sliding and filament buckling, as seen in Fig. 1, D–E. A complete list of

model parameters, their values, and references is provided in Table 1.
TABLE 1 Parameter Values

Symbol Description (Units) (References)

Actin filaments

Nf number of filaments

NB number of beads per filament [2

la link rest length (mm) [0

ka stretching force constant (pN/mm) [0.0

kB bending modulus (pN mm2) (22) [0.0

Myosin motors

rm motor density (mm�2)

lm rest length (mm) (1)

km stiffness (pN/mm)

konm maximum attachment rate (s�1)

koffm maximum detachment rate (s�1)

kendm maximum detachment rate at barbed end (s�1)

v0 unloaded speed (mm/s) (31)

Fs stall force of myosin (pN) (63)

Cross-linkers

rxl cross-link density (mm�2)

lxl rest length (Filamin) (mm) (64)

kxl stiffness (pN/mm)

konxl maximum attachment rate (s�1)

koffxl maximum detachment rate (s�1)

Environment

Dt dynamics timestep (s) [10�

Tf total simulated time (s)

X, Y length and width of assay (mm)

g grid density (mm�1)

T temperature (K)

n dynamic viscosity (Pa, s) 0

Dg strain (%) (65)

trelax time between sequential strains (s)
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Filaments

The WLC model for actin filaments is implemented as a chain of beads con-

nected by N harmonic springs (links) and N�1 angular harmonic springs, as

depicted in Fig. 1 B. TheN linear springs penalize stretching and keep the fil-

ament’s average end-to-end length approximately constant. TheN�1 angular
Simulation
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Simulating Cytoskeletal Networks
springs penalize bending and determine the persistence length for a free fila-

ment. The filament configurations are governed by the potential energy Uf:

Uf ¼ Ustretch
f þ Ubend

f ;

Ustretch
f ¼ ka

2

PN
i¼ 1

ðj~ri �~ri�1 j � laÞ2;

Ubend
f ¼ kB

2la

XN
i¼ 2

q2i ;

(1)

where~ri is the position of the ith bead on a filament, qi is the angle between

the ith and (i�1)th links, ka is the stretching force constant, kB is the bending

modulus, and la is the equilibrium length of a link. In practice, Uf enters the

simulation through its Cartesian spatial derivatives (i.e., the forces in Eq. 6).

In this regard, it is important to note that linearized forms for the bending

forces are employed in the literature for filaments whose length is con-

strained via Lagrange multipliers (11), but we found that it was necessary

to use the full nonlinear force to obtain consistent estimates for the persis-

tence length, Lp, for bead-spring-chain filaments (see Actin Filaments

Exhibit Predicted Spatial and Temporal Fluctuations, below). We thus

employ the full nonlinear Cartesian forces throughout this work, using

the expressions in Appendix C of Allen and Tildesley (19) following the im-

plementation in the LAMMPS MD Simulator (20).

The bending force constant is derived from the persistence length Lp such

that kB ¼ LpkBT, where kB is Boltzmann’s constant, and T is the temperature

(21). Experimentally, Lp ¼ 17 mm, so kB ¼ 0.068 pN mm2 for T ¼ 300 K

(22). The elasticity per unit length measured for actin filaments with lengths

on the order of a micron is 55 5 15 pN/nm (23,24). This implies that a

reasonable value for the segment stretching force constant, ka, would be

of this order of magnitude. However, simulating a network of such stiff

filaments is computationally infeasible because the maximum timestep of

a simulation is inversely proportional to the largest force constant in the

simulation (25). Therefore, we set ka to a smaller value than estimated

from experiment. We note that prevalent extensile behavior, which occurs

when filaments interact with two populations of motors with opposite polar-

ities (26), would necessitate using a more realistic ka. However, because

ka [ kB/la
3 still, upon compression, filaments prefer bending to stretching,

and, as we show, the ability of our model to capture contractile network

properties quantitatively is not compromised. Unless otherwise indicated,

we use la ¼ 1 mm, because it is the largest segment length that results in

the expected spatial and temporal fluctuations for filaments (see Actin Fil-

aments Exhibit Predicted Spatial and Temporal Fluctuations, below). We

note that very high motor densities can cause filaments to buckle at length

scales of�1 mm, and in these cases it would be necessary to use a smaller la
to capture those effects (27).
Cross-linkers

There is a variety of different actin binding proteins that serve as cross-

linkers in the cell cortex, including filamin, fascin, and a-actinin. Cross-

linkers connect filaments dynamically and propagate force within the

network. Thus, the cross-linkers in our model must be able to attach and

detach from filaments with realistic kinetic rules and be compliant when

bound. To this end, we model them as Hookean springs with stiffness

kxl and rest length lxl. Like actin filaments, the Young’s modulus of most

cross-linkers is significantly higher than would be reasonable to simulate;

therefore, for network simulations without large external forces, we set

kxl ¼ ka so that the bending mode of actin filaments is significantly softer

than the stretching mode of cross-linkers. The rest length lxl corresponds

to the size of the cross-linker and therefore differs based on the particular

actin binding protein one wishes to study.

The statistics of the bound (on) and unbound (off) states of each cross-

linker are determined by a potential energy of the form
Uxl ¼ Ustretch
xl þ Ubind

xl ðI1 þ I2Þ;

Ustretch
xl ¼ 1

2
kxlðj~r1 �~r2 j � lxlÞ2;

Ubind
xl ¼ �kBTln

�
konxl
�
koffxl

�
;

(2)

where~r1ð2Þ is the position of head 1(2), I1(2) is 1 if head 1(2) is bound and

zero otherwise, and konxl (koffxl ) is the rate of binding (unbinding).

Owing to the form of Eq. 2 and theMonte Carlo rule for binding (below), it

is inefficient for a cross-linker to attempt attachment to every filament link in

the simulation box. Rather, we assign a cutoff distance rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=kxl

p
such

that if the distance between a cross-linker and a filament is greater than rc,

the probability of attachment is zero. This implementation allows us to use

the following neighbor list scheme, illustrated in Fig. 1 C, to determine

cross-linker-filament attachment. A grid of lattice size of at least rc is drawn

on the 2D plane of the simulation, and each filament link is indexed to the

smallest rectangle of grid points that completely enclose it. In practice the lat-

tice size is generally larger than rc due to memory constraints, and is denoted

by themodel parameterg, the number of grid points permm in both the x and y

directions. Because a cross-linker head cannot bind to a filament link that is

farther away than rc, it suffices for a cross-linker head to only attempt attach-

ment to the nearby filament links indexed to its four nearest grid points.

At each timestep of duration Dt, we enumerate the accessible filament

links available to each unboundhead. For each link, we determine the nearest

point to the head’s present position and compute aMetropolis factor formov-

ing to that point: Poff/on
xl;i ¼ min½1; expð�DUstretch

xl;i =kBTÞ� (28). The head

then binds to accessible filament link i with probability ðkonxl DtÞPoff/on
xl;i and

stays unbound with probability 1�Piðkonxl DtÞPoff/on
xl;i (29).

At each timestep, we attempt to move each bound head to a position
~ru generated by reversing the displacementmade upon binding, rotated to ac-

count for filament reorientation in the intervening time. This choice of~ru al-

lows us to satisfy detailed balance for binding andunbinding by accepting the

unbinding transition with probability ðkoffxl DtÞmin½1; expð�DUstretch
xl =kBTÞ�,

as explained in Supporting Materials and Methods.

When both cross-linker heads are attached to filaments, the cross-linker

is generally stretched or compressed. We propagate the tensile force stored

in the cross-linker onto the filaments via the lever rule described in Gordon

et al. (13) and N�ed�elec (30). Specifically, if the tensile force of a cross-

linker head at position~rxl between filament beads i and iþ1 is ~Fxl, then

~Fi ¼ ~Fxl
j~riþ1�~rxl j
j~riþ1�~ri j ;

~Fiþ1 ¼ ~Fxl �~Fi;
(3)

are the forces on beads i and iþ1, respectively, due to the cross-linker.
Motors

In this work, we focus on the motor protein myosin II. As mentioned above,

tens of myosin II proteins aggregate into bipolar assemblies called ‘‘myosin

minifilaments’’ (16). For both myosin minifilaments, and monomeric

myosin, motility assay experiments have shown that, on average, bound

myosin heads walk toward the barbed end of actin filaments at speeds in

the range 0.2–4 mm/s (31–34). Because myosin also functions to increase

the local elasticity of networks where it is bound, we model a motor simi-

larly to a cross-linker, in that it behaves like a Hookean spring with two

heads, a stiffness km, and a rest length lm. The two heads of this spring

do not correspond directly to individual myosin protein heads; rather,

each of them represents tens of myosin molecules. Experimentally minifila-

ments have a very high Young’s modulus, and it is unlikely that their

lengths change noticeably in cytoskeletal networks. As with the passive

cross-linkers, we set km ¼ ka so that filament bending is still the softest

mode of deformation. The rest length was set to the average length of mini-

filaments, lm ¼ 0.5 mm (1). Attachment and detachment kinetics, as well as
Biophysical Journal 113, 448–460, July 25, 2017 451
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force propagation rules for motors, are the same as for cross-linkers, sub-

scripted with m instead of xl in Eqs. 2 and 3.

Unlike cross-linkers, motors move toward the barbed end of actin fila-

ments to which they are bound at speeds that decrease with tensile force

along the motor. Myosin motors have been observed to stop walking

when the force on them exceeds the stall force, Fs z 4 pN, and most do

not step backward (35,36). We model this behavior by giving each motor

head a positive velocity in the direction of the barbed end of the filament

to which it is attached; this velocity linearly decreases with the motor’s ten-

sion projected on the filament, i.e.,

v
�
~Fm

� ¼ v0max

�
1þ

~Fm ,br
Fs

; 0

�
; (4)

where v0 is the unloadedmotor speed,Fm ¼ �kðj~r1 �~r2 j � lmÞ is the spring
force on the motor, and br is the tangent to the filament at the point where the

motor is bound; br points toward the pointed end of the filament. In the sim-

ulations below, we use a value of v0¼ 1mm/s, which is within range of exper-

imental measurements, but we use a lower value ofFsz 0.5 pN and truncate

vð~FmÞ to amaximumvalue of 2v0, so that motors are not stretched to unphys-

ical lengths as they walk.

If the length of a motor’s step is larger than the remaining length of fila-

ment, then the myosin moves to the barbed end of the filament. At the

barbed end, it has speed v0 ¼ 0, and detachment rate kendm . We found that

kendm ¼ 10 koffm yielded reasonable results for motility assay and contractile

network simulations. In experiments, where each myosin minifilament con-

tains many myosins, a lower barbed-end affinity may arise from fewer of

the minifilament’s myosins remaining attached to the actin filament. In

the program, we treat cross-linkers and motors with equivalent objects,

but set v0 ¼ 0, and kendxl ¼ koffxl for the cross-linkers.
Dynamics

We use overdamped Langevin dynamics to solve for the motion of filament

beads, motors, and cross-linkers. The Langevin equation of motion for a

spherical bead of mass m, radius R at position ~rðtÞ at time t, forced by
~Fð~rðtÞÞ in a medium with dynamic viscosity n, is

m€~rðtÞ ¼ ~Fð~rðtÞÞ þ~BðtÞ � _~rðtÞ�m; (5)

where ~BðtÞ is a Brownian forcing term that introduces thermal energy, and

we use the Stokes relation m ¼ (6pRn)�1 in the damping term. The fastest

motions in this simulation are the filament bead fluctuations. Taking the

bead radius to be 0.5 mm, the maximum speed to be (2kBT m/Dt)1/2 ¼
200 mm/s and the dynamic viscosity to be n ¼ 0.001 Pa,s (corresponding
to water), the Reynolds number is very low: Re z 10�4. Hence, we treat

the dynamics as overdamped and set m ¼ 0 in Eq. 5. Furthermore, in the

limit of small Dt, we may write _~rðtÞzð~rðt þ DtÞ �~rðtÞÞ=Dt. These two ap-
proximations allow us to rewrite Eq. 5 as

~rðt þ DtÞ ¼ ~rðtÞ þ~Fð~rðtÞÞmDt þ~BðtÞmDt: (6)

For the Brownian term, we use the form of Leimkuhler and Matthews (37):

~BðtÞ ¼
ffiffiffiffiffiffiffiffiffiffi
2kBT

mDt

s �
~WðtÞ þ ~Wðt � DtÞ

2

	
; (7)

where ~WðtÞ is a vector of IID random numbers drawn from the standard

normal distribution. This numerical integrator minimizes deviations from

canonical averages in harmonic systems; given that all themechanical forces

in our model are harmonic, we expect this choice to yield accurate statistics

in this context aswell. Thevalue forDt in Eq. 6 ismost strongly dependent on

the largest force constant in the simulation, ka, but also depends on other
452 Biophysical Journal 113, 448–460, July 25, 2017
simulation parameters for both motors and cross-linkers, such as v0, k
on,

and koff. Table 1 can be used as a rough guide for how high one can set the

value ofDt for a given set of input parameters; e.g., for a contracting network

with ka ¼ 1 pN/mm, v0 ¼ 1 mm/s, konxl ¼ konm ¼ kendm ¼ 1 s�1, koffxl ¼ koffm ¼ 0.1

s�1, and kendm ¼ 10 s�1, a value of Dt¼ 2� 10�5 s is just low enough to iter-

atively solve Eq. 6 without accumulating large errors.
Environment

In general we use periodic boundary conditions so as to limit finite-size ef-

fects. We implemented square boundaries to model closed systems, as well

as Lees-Edwards boundaries for sheared simulations (19). The dimensions

of the simulation box (Table 1) were chosen to be five times the contour

length of filaments so as to be large enough to avoid artifacts due to the

self-interaction of constituent components.

To ignore steric interactions, the fraction f ¼ Nfp(D/2)
2 L/V of Nf actin

filaments (lengthL and diameterD) in a volumeVmust be lower than the crit-

ical volume fraction at which steric interactions yield an isotropic to nematic

transition, which for longWLCs (D�Lp andD�L) isfc ¼ 5.4D/L (38,39).

For a network of 500 filaments of length L ¼ 10 mm and diameter D ¼
0.01 mm, in a 50 � 50 � 0.1 mm3 plate, this condition is fulfilled, because

f¼ 0.0015<fc ¼ 0.0054. Although it is difficult to estimate the exact thick-

ness of invitro experimental actomyosin assays due to the complexity of their

preparation, we estimate that they are not thinner than 0.1 mm (40). We have

also ignored hydrodynamic interactions between filament beads; the restric-

tion to low packing fraction obviates the need to incorporate anisotropic drag,

sowe takem to be equivalent for both transverse and longitudinalmotion (41).
Implementation

The model is implemented as an open source Cþþ package called Active

Filament Network Simulation (AFINES) that is available for download at

http://dinner-group.uchicago.edu/downloads.html. Installation instructions

are available in the README file in the top directory of the AFINES pack-

age, and all information needed to reproduce the materials in this article are

available in the subfolder ‘‘versatile_framework_paper’’. To run a simula-

tion, a user must compile the code into an executable (e.g., with the pro-

vided Makefile) and create an output directory. A user can set parameters

using command line arguments or a file. For example, if the user has

compiled the code into the executable ‘‘afines’’, created the output directory

‘‘test’’, and wants to run a simulation of 500 10-mm actin filaments (with

la ¼ 1 mm), interacting with 0.2 motors/mm2, and 1 cross-linker/mm2 (pas-

sive motors), in a cell that is 50� 50 mm, for 100 s, he or she could write the

following to the file my_config.cfg:

xrange¼50 # system size in X

yrange¼50 # system size in Y

npolymer¼500 # number of actin filaments

nmonomer¼11 # number of actin beads per filament

a_motor_density¼0.2 # motor density;

p_motor_density¼1 # cross-linker density

tf¼100 # duration of simulation

dir¼‘‘test’’ # output directory

and then run the code using the command

afines -c my_config.cfg

Alternatively, the user could bypass the configuration file and issue the

following command:

afines --xrange 50 --yrange 50 --npolymer 500 --nmonomer 11 --a_

motor_density 0.2 --p_motor_density 1 --tf 100 --dir test

In this example, all other parameters were set to their default values (see

the README file for full list of program parameters). With an executable

http://dinner-group.uchicago.edu/downloads.html
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compiled using gþþ with the �O3 optimization flag and run on a model

No. E5-2680 node (Intel, Santa Clara, CA) with 2 Gb of memory and a

2.7 GHz processor, this example required <1.5 days of wall-clock time.

In general, the wall-clock time of the simulation scales linearly with system

size (Fig. 2).
RESULTS AND DISCUSSION

In this section, we numerically integrate the model to
obtain stochastic trajectories and compare their statistics
to known analytical results for semiflexible polymers
and networks, as well as experimental observations. We
also use the model to investigate these systems, including
how the viscoelasticity of semiflexible polymer networks
depends on cross-linker stiffness, and how the extent of
directed motion in actin motility assays depends on fila-
ment and motor characteristics. Finally, we use the model
to show how one can quantify contractility in a simulated
actin network.
Actin filaments exhibit predicted spatial and
temporal fluctuations

The persistence length of a semiflexible filament with
bending modulus kB is expected to be Lp ¼ kB/kBT. How-
ever, when simulating the dynamics, approximations can
enter both the evaluation of the forces and the discretized
numerical integration of the equations of motion. Because
the persistence length is a measure of filament bending fluc-
tuations, and not an input to the simulation, its dependence
on simulation parameters must be determined numerically.
As discussed in Filaments and further below, some care is
required to obtain reliable estimates of Lp.

For a 2D filament it is possible to show analytically that
if a small bend between links i and i � l of an N link
chain results in a local change in free energy of (kB/2la)
qi
2, then 


q2ðlÞ� ¼ l
�
Lp; (8)
A B
hcosðqðlÞÞi ¼ exp
��l
�
2Lp

�
; (9)
where q(l) ¼ qj � qi, l ¼ la(j � i) (2 % i < j % N) (42). To
test our WLC model against these predictions, we let 20 fil-
aments of L ¼ 20 mm and kB ¼ 0.068 pNmm2 fluctuate at
T ¼ 300 K for Tf ¼ 2000 s and measured the resulting fila-
ment configurations. The configurations saved were chosen
to be 2 s apart, because the decorrelation time for q(l) was at
most 1.1 s (see Supporting Materials and Methods and
Fig. S2 for details). The first 100 s of each simulation was
disregarded as filaments had not yet equilibrated. For each
of the 20 filaments, we evaluated hq2(l)i and hcos(q(l))i
for each l ˛1,2,.,19 mm from its 1900 saved configura-
tions. We show the average for each of these values over
all filaments in Fig. 3 B, along with the expected behavior,
given the input kB.

As alluded to above, the numerical integration can make
the persistence length depend on simulation parameters
in nonobvious ways. Consequently, we measured the sensi-
tivity of Lp to independent variations of kB, la, and ka. The
results shown in Fig. 4 are obtained from using the defini-
tion Lp ¼ 1/(dhq2(l)i/dl) (i.e., the inverse of the slope of
the best fit line to the blue squares in Fig. 3 B). Fig. 4 A
shows that in the range of kB ˛[1,105] mm � kBT, Lp deter-
mined from the simulation agrees well with the input
bending modulus, and can be easily tuned to simulate fila-
ments of varying rigidity. Fig. 4 B shows that for a wide
range of link stiffnesses, Lp is independent of ka. We also
tested the dependence of Lp on the link rest length, la. In
thermal equilibrium, the variance of the link lengths is
kBT/ka. Thus, to keep the fluctuations in the filament’s con-
tour length L constant, one should set ka f la

�2. In practice,
this scaling is computationally difficult to achieve when
la < 0.3 mm because high ka requires a very small Dt in
Eq. 6. We therefore used a less steep variation, ka ¼
1 pN/la, and show in Fig. 4 C that consistent values of Lp
are obtained when la ˛[0.1,1] mm. We thus see that there
FIGURE 2 Wall clock time for a 10,000-step

simulation with step size Dt ¼ 0.0001 s. (A) For

a constant system size, run-time scales linearly or

sublinearly as both filament density (red squares)

and motor density (blue diamonds) are increased

independently. If both are increased together

(black circles), a quadratic scaling is approached

for large numbers of particles. (B) (Blue filled) At

constant motor, filament, and grid densities, run-

time scales linearly with system size (i.e., the

area of the simulation box, XY). (Red, open) At

constant system size, run time decreases with

increasing grid density, g2, and thereby the number

of neighbor-list grid elements, g2XY, used to calcu-

late motor-filament interactions. All benchmarks

are for an Intel E5-2680 node with 2 Gb of memory

and a 2.70 GHz processor. To see this figure in co-

lor, go online.
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FIGURE 3 Spatial and temporal fluctuations of

the bead-spring WLC. (A) Shown here is a sche-

matic of a filament and the order parameters that

characterize its fluctuations. Spatial fluctuations

are characterized by the angle between two tangent

vectors d
!

s and d
!

sþl along the filament as a

function of the contour length between them,

l. Temporal fluctuations are characterized by the

eigenvalues l1,2(t) of the covariance matrix of fila-

ment endpoint positions as a function of time.

The red arrow indicates the larger moment

(l1, measuring transverse fluctuations) whereas

the blue arrow indicates the smaller moment

(l2, measuring longitudinal fluctuations). (B)

Given here is the decorrelation of tangent vectors

(red circles) and fluctuations in angles between

links (blue squares) as a function of the arc length

between them. For the N ¼ 20 filaments analyzed,

the red circles (blue squares) show the mean of

hcos(q(l))i (hq(l)2i) and the error bars show their

standard errors, s=
ffiffiffiffi
N

p
, where s is their SD.

Dashed lines show expected behavior for kB ¼
0.068 pNmm2. (C) Given here are eigenvalues of

covariance matrices for the positions of endpoints

of filaments as a function of time. Red filled circles show l1(t), which is expected to be proportional to t3/4 (red line) whereas blue open circles show

l2(t), which is expected to be proportional to t7/8 (blue line). SE is smaller than the size of the data points. To see this figure in color, go online.
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is a range in which Lp is independent of the filament link
parameters, ka and la, although high stiffness and low link
length both require using a small timestep, and therefore
limit the duration of the simulation. In Supporting Materials
and Methods and Fig. S4, we measure the persistence
length of fibers simulated using the simulation package
CytoSim and obtain similar results.
A B

C D
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The statistics of temporal fluctuations are also known for
semiflexible filaments. Fluctuations transverse to the fila-
ment orientation increase as hdrt2if t3/4, whereas longitu-
dinal fluctuations increase as hdrjj2i f t7/8 (43). To
determine if our simulations agreed with these theoretical
scaling relations, we followed the procedure outlined in
Everaers et al. (43) and generated N ¼ 100 initial filament
FIGURE 4 Dependence of the persistence

length on the indicated parameters for numerically

integrated semiflexible filaments. Error bars are

s=
ffiffiffiffi
N

p
, where s is the SD of the values of Lp ob-

tained from fitting a line to the first five data points

of hq2(l)i for each of the N ¼ 20 filaments simu-

lated. The dashed lines show the predicted

persistence length, based on the input bending

modulus kB. For (A)–(D), the default parameters

are kB ¼ 17 mm � kBT, ka ¼ 1 pN/mm, and

la¼ 1 mm. In (A)–(C), DtR 10�6 s, and the largest

Dt that yielded stable integration was used. In (C),

ka ¼ 1 pN/la.
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configurations of a 20-mm filament. This length was chosen
because it satisfied the constraint provided in Everaers et al.
(43) for the fluctuations of the two ends of the filament to be
uncorrelated at long times (here t ¼ 1 s); i.e., 20 mm >
(tkBT/n)

1/8 (kB/kBT)
5/8 ¼ 7 mm. For each configuration we

ran M ¼ 1000 simulations of the filament diffusing freely
for 1 s. We denote each of the M positions for each
endpoint at each time by ~reðtÞ. For each of the clouds of
points shown in Fig. 3 A, we calculated the moments, as
the eigenvalues of the covariance matrix with elements
hð~reðtÞ,bi � h~reðtÞ,biiÞð~reðtÞ,bj � h~reðtÞ,bjiÞi for i, j ˛{x,y}.
The larger eigenvalue l1(t) corresponds to the transverse
fluctuations (i.e., l1(t) f t3/4) whereas the smaller
eigenvalue corresponds to the longitudinal fluctuations (l2(t)
f t7/8). We show these results in Fig. 3 C. Each data point is
the average over the 2NM eigenvalues for l1(t) and l2(t). As
evident, the computed scaling relations are in good agreement
with theoretically predicted behaviors.
Tunable elastic behavior of cross-linked filament
networks

The mechanical properties of cross-linked F-actin have
important ramifications for force generation and propaga-
tion within a cell. They are generally inferred from rheo-
logical measurements of in vitro networks (44–47). In a
typical experiment, actin and cross-linker proteins are
mixed to form a cross-linked mesh and then sheared in a
rheometer by a prestress, s0. The prestressed network
then undergoes a sinusoidal differential stress of magnitude
ds � s0. By measuring the resulting strain, one can calcu-
late the differential elastic modulus G(s0) ¼ ds/dg. Results
from such experiments indicate that, in contrast to a purely
viscous fluid, cross-linked F-actin networks resist shear,
and G increases nonlinearly with stress indicative of shear
stiffening.

In experiments using a stiff cross-linker, such as scruin,
the dependence of the differential modulus on high prestress
is G f s0

3/2 (44,47). Force-extension experiments with
semiflexible filaments, in which one directly measures the
force F required to extend a filament by a distance l, yield
a remarkably similar relationship, dF/dl f F3/2 (48,49).
As remarked in Gardel et al. (44), this suggests that the shear
stiffening is a direct result of the nonlinear force-extension
relationship of actin. Rheology studies using more
compliant cross-linkers, such as filamin, have found a softer
response, G f s0, indicating that a significant amount of
stress is mediated through the cross-linkers, and not the fil-
aments (46). These results suggest that the strain stiffening
behavior of a cross-linked network can be tuned by varying
the cross-linker stiffness.

To test this possibility and benchmark our simulations, we
subjected passive networks composed of filaments and
cross-linkers to shear. We initialized each simulation with
N ¼ 500 randomly oriented filaments of length 15 mm in
a square box of area 75 � 75 mm. A 0.150-mm cross-link
(corresponding to the length of filamin) was initially placed
at each filament intersection. We performed 24 such simula-
tions, each with a different cross-linker stiffness in the range
0.1–1000 pN/mm.

Simulating shear rheology experiments requires modi-
fying the equations of motion and the boundary conditions
to achieve a planar Couette flow. In general, planar Couette
flow can be simulated via MD using Eq. 4.1 in Evans and
Morriss (50):

m€x ¼ Fint;x þ _gy;

m€y ¼ Fint;y;
(10)

where x and y are the Cartesian coordinates of a particle be-
ing sheared, Fint,x and Fint,y are the internal forces on those
particles, and g is the strain. Simultaneously, the upper and
lower boundaries must be sheared by the total strain on the
simulation box (19). Comparing Eq. 10 with Eq. 5, we sub-
stitute Fint;x ¼ FðxðtÞÞ þ BxðtÞ � _xðtÞ=m. In the overdamped
limit, €xi ¼ 0, so implementing Eq. 10 is equivalent to updat-
ing filament bead positions via Eq. 6, and shifting the hori-
zontal position of a bead (xi) by

xi/xi þ Dg

�
yi
Y

	
; (11)

where Dg ¼ _gDt and Y is the simulation cell height.
The boundary conditions follow the Lees-Edwards conven-
tion (19).

Because moving the particles Dg is equivalent to the
addition of an external force on the system, it is necessary
to let the network relax for a specified amount of time trelax
after each shear event, before measuring the network’s inter-
nal energy. The magnitude of trelax depends on Dg, which in
turn depends on the chosen discretization of the strain and
the timestep Dt. As shown in Supporting Materials and
Methods and Fig. S3, we found that Dg ¼ 0.001, Dt ¼
10�7 s, and trelax ¼ 0.001 s yielded a stable planar Couette
flow, with high enough strains to observe strain stiffening.
This protocol was performed for Tf ¼ 0.5 s yielding a total
strain of g ¼ DgTf/trelax ¼ 0.5.

We measured the elastic behavior of the network for each
cross-linker stiffness by calculating w, the strain energy den-
sity at each timestep:

wðtÞ ¼ 1

XY

 X
f

Uf þ
X
xl

Uxl

!
; (12)

where Uf is the mechanical energy of individual filaments
(Eq. 1) and Uxl is the mechanical energy of each cross-
link (Eq. 2). By averaging over windows of size trelax, we
determine w(g). Fig. 5 shows the results of these calcula-
tions for various values of kxl. For extremely low kxl, the
strain energy scaled linearly with strain, w f g, indicating
Biophysical Journal 113, 448–460, July 25, 2017 455
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FIGURE 5 Tunable elasticity of cross-linked

networks. (A) Given here are snapshots of a

strained network (ka ¼ 1000 pN/mm, kxl ¼
20 pN/mm) at g ¼ 0.1, g ¼ 0.25, and g ¼ 0.5. Co-

lor indicates stretching energy on each link, with

green (darkest) being the lowest and yellow

(lightest) being the highest. For all snapshots,

t ¼ g � 1 s. (B) Given here is the potential energy

of the network as a function of time shown at

different strains g0 ¼ 0.1 (circles), g0 ¼ 0.25

(squares), and g0 ¼ 0.4 (triangles), where t0 ¼
g0 � 1 s. The black dashed line shows the strain

protocol. (C) Shown here is the strain energy den-

sity (w ¼ U/XY) for various values of cross-linker

stiffness kxl. The blue dashed line indicates

expected behavior for a linearly elastic solid

(wf g2) and the green dashed line indicates strain

stiffening behavior of w f g3.5 as expected for

semiflexible polymer networks (44,47). (D) Given

here is the power-law exponent of w(g) as a func-

tion of cross-linker stiffness, evaluated by least

squares fitting ln(w) as a function of ln(g). To see

this figure in color, go online.

Freedman et al.
that the network showed no resistance to shear: G ¼
d2w/dg2 ¼ 0. For high kxl, we observe a neo-Hookean strain
stiffening behavior, wf g4 (51). Thus, we can tune the ma-
terial properties of cross-linked semiflexible networks from
being liquidlike, with w f g, through the Hookean elastic
regime of w f g2 up to the strain stiffening regimes of
wf g3 and wf g3.5, as previously reported in experiments
(44,46). We show in Supporting Materials and Methods and
Fig. S5 that the monotonic increase in scaling for low
kxl corresponds to a regime where the strain energy is mostly
stored in the cross-linkers, whereas the plateau at high
kxl corresponds to a regime where the strain energy is mostly
stored in filaments.
Ensembles of motors interacting with individual
filaments simulate actin motility assays

Whereas the attachment, detachment, and speed of an indi-
vidual myosin motor is a model input (described in Cross-
linkers and Motors, above), the collective action of many
motors on a filament is an output that can be compared
with actin motility assays (36,52). In the canonical motility
assay experiments, a layer of myosin is attached to a glass
coverslip, and actin filaments are distributed on top of the
layer of myosin motors. The fixed motors translocate the
actin filaments. The speed of an actin filament has been re-
ported to depend nonlinearly on the concentration of myosin
and the concentration of ATP in the sample (32,33). Thus,
456 Biophysical Journal 113, 448–460, July 25, 2017
by allowing the filaments to interact with more motors,
one can monotonically increase the filament speed to a con-
stant value.

To explore the dynamics of such an assay, we randomly
distributed motors on a 50 � 50-mm periodic simulation
cell and tethered one head of each motor to its initial posi-
tion. These model motors represent myosin minifilaments
with dozens of heads, and therefore have a high default
duty ratio (rD¼ 0.5), and rest length lm¼ 0.5 mm (1,53). Fil-
aments were then introduced in the simulation cell and al-
lowed to interact with the free motor heads. The strength
of motor-filament interactions was manipulated in three
ways: by varying the motor concentration rm, the filament
contour length L, and the duty ratio rD ¼ konm /(konm þ kendm ).
Although L and rD are difficult to modulate experimentally
in a well-controlled fashion, as they require the addition of
other actin-binding proteins to the assay, they are predicted
to impact the dynamics of actin by varying the number of
myosin heads bound to an actin filament at any one time
(33). Because they are both simple functions of the model’s
parameters, we were able to test this hypothesis directly. We
plot our simulation results in Fig. 6 as functions of the
dimensionless control parameter M ¼ rmlmLrD (where
rmlm is the linear motor density), which represents the
average number of bound motor heads per filament.

Our findings are qualitatively similar to the previously
reported experimental results and expand on them by
collapsing the trends observed while varying rm, L, and
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FIGURE 6 Nonlinear dependence of filament motility on motor-filament interaction probability. (A) Shown here is the trajectory of a filament for rm ¼ 4

mm�2 and L ¼ 15 mm as a function of time for different values of the duty ratio, rD. Depth of color indicates time of the snapshot, as indicated by the scale.

The blue circles mark the barbed ends. (B) Given here is the filament speed decomposed into longitudinal (filled symbols) and transverse (open symbols)

components as a function of the dimensionless parameter M ¼ rmlmLrD, by independently varying rm (green squares), L (red diamonds), and rD (blue

circles). The default parameters were rm ¼ 4 mm�2, L ¼ 15 mm, and rD ¼ 0.5. (C) Shown here is the mean squared displacement for various values of M.

The blue dashed line shows diffusive behavior and the orange dashed line shows ballistic behavior. (D) Given here is the path persistence length for sim-

ulations described in (B), evaluated via Eq. 9 over five replicates. The lines are theoretical predictions for these values using Eqs. 1–6 in Duke et al. (54).

The red dashed line is for increasing L, the blue dotted line is for increasing rD, and the green solid line is for increasing rm. To see this figure in color,

go online.
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rD into a single effective parameter. At low M, i.e., low
motor density, filament length, or duty ratio, Fig. 6 B shows
that transverse motion dominates over longitudinal motion
as the filament is not propelled by motors faster than diffu-
sion, and transverse filament fluctuations are larger than
longitudinal fluctuations (consistent with Fig. 3 C). How-
ever, as M increases, longitudinal motion dominates.
Consistent with experimental results (31,33), the longitudi-
nal speed of the filament plateaus at vjj z 1 mm/s, which is
the input unloaded speed of a single motor. In Fig. 6 C, we
plot the mean squared displacement of the filament,
hDr2i ¼ hj~rðt þ dtÞ �~rðtÞ j 2i with angle brackets indi-
cating an average over time t. We show that low M yields
diffusive behavior with hDr2i f dt, and high M yields bal-
listic motion with hDr2i f dt2. We obtain similar results
for motility assay behavior with a corresponding CytoSim
simulation, as shown in Supporting Materials and Methods
and Fig. S6.

An interesting outcome of these simulations is how the di-
rection of a filament changes over time for varyingM. Spe-
cifically, we calculate the directional autocorrelation of a
filament and, in turn, the persistence length of the path of
the filament by applying Eq. 9 to the center of mass of the
filament at frames separated by Dt ¼ 1 s (Fig. 6 D). Scaling
arguments suggest that the path’s persistence length depends
strongly on motor density, duty ratio, and filament length
(54). In the limit of high M, the distance between motors
that are bound to a filament is sufficiently short that the fila-
ment does not diffuse transversely; however, fluctuations in
the filament configuration still allow directional decorrela-
tion, and consequently the path’s persistence length is Lp.
At low M, the distance between bound motors is suffi-
ciently large that rotational diffusion causes the filament’s
path to be completely decorrelated, such that the path’s
persistence length approaches zero. In Fig. 6 D, we show
that the simulation agrees with theoretically predicted
scaling laws at low and high M (54). Our results delineate
the values of M at which there are crossovers between the
predicted limiting regimes.
Molecular motors cause flexible, cross-linked
networks to contract

When motors, cross-linkers, and filaments are combined
into a single assembly, simulated networks contract. The
structure and dynamics of these networks exhibits a rich
dependence on motor and cross-linker densities, binding/un-
binding kinetics, and stiffness parameters. Here, we show
one illustrative example to demonstrate that our model re-
produces actomyosin contractility for a reasonable choice
of parameters (Fig. 7 A). The network is initialized by
randomly orienting 500 filaments, each 10 mm long, within
a 50 � 50-mm simulation cell. We distribute 0.15-mm-long
cross-linkers throughout the simulation cell at a density of
Biophysical Journal 113, 448–460, July 25, 2017 457
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FIGURE 7 Contractility of a cross-linked filament network driven by motors. Filaments are red, motors are black, and cross-linkers are green. (A) Shown

here are network configurations at t ¼ 0, 50, 150, and 398 s. Although all filaments are shown, only 10% of cross-linkers and 50% of motors are shown for

clarity. (B) Given here is the radial distribution function at frames corresponding to (A). (C) Shown here is the quantification of the motion at t ¼ 500 s.

Arrows (directions and sizes) indicate the filament-bead velocity field generated by the procedure in Supporting Materials and Methods. Colors map the

corresponding divergence. (D) Shown here is the density weighted divergence (blue filled circles; dA ¼ (1 mm)2) and the average filament strain (red

open circles) of actin filaments for contractile networks. Dark lines for both curves shows the mean m(t) of these results at each time t over N ¼ 20 simu-

lations. Shaded areas show the SE of the mean mðtÞ5sðtÞ= ffiffiffiffi
N

p
, where s(t) is the SD. To see this figure in color, go online.
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1 mm�2, and 0.5-mm-long motor oligomers at a density of
0.2 mm�2. As the simulation evolves, the actin density be-
comes more heterogenous as motors condense actin fila-
ments into dense disordered aggregates. This density
heterogeneity can be quantified by the radial distribution
function of actin filaments, g(r) ¼ P(r)/(2prdrf), where
P(r) is the probability that two filaments are separated by
a distance r, dr ¼ 0.1 mm is the spatial bin size, and rf is
the filament density. As shown by Fig. 7 B, g(r) z 1 at
t ¼ 0 for all r as the actin filaments are homogeneously
distributed. However, over time it becomes more peaked
at lower separation distances between filaments, indicating
filament aggregation.

To measure the contractile activity of the network, we
evaluate the divergence of its velocity field. This is done
by calculating the velocity of each of the actin beads, fol-
lowed by a grid-based interpolation of a velocity vector field
from those values (black arrows in Fig. 7 C; interpolation
scheme described in Supporting Materials and Methods).
One can then evaluate the divergence V,~v of the interpo-
lated field at every spatial location (color in Fig. 7 C).
Because there is no flux of actin into the simulation box,
the total divergence of the flow field is zero at all times
(i.e.,

R ðV,~vÞdA ¼ 0). Therefore, we weight the divergence
of each patch of the network by its local density and mea-
sure

R
rahV,~vidA, where ra ¼ na/dA is the number density

of actin beads and hV,~vi is the average actin divergence in
the patch of size dA. As shown in Supporting Materials and
Methods, this order parameter shows consistent behavior for
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small patches (dA % (10 mm)2) and a range of step sizes
(h % 20 s) for the velocity calculation (see Eq. S6 in the
Supporting Material). We also measure the average filament
strain Ds, in the network,

Ds ¼
 
1� j~rN �~r0 jPN

i¼ 1j~ri �~ri�1 j

!
; (13)

where~ri is the position of the ith bead on an (Nþ1)-bead

filament, and the bar denotes an average over all filaments.
Fig. 7 D shows the results of measuring network divergence
and filament strain from 20 simulations with the same
parameter choices as in Fig. 7 A, but with different random
number seeds. The divergence measurement (blue) shows
that the network is contractile, because the density weighted
divergence is negative, and its shape echoes the experi-
mental results in Murrell and Gardel (55), where the magni-
tude of contractility decreases to a minimum before
plateauing. The filament strain measurement (red) shows
that as the network is contracting, individual filaments are
buckling. This supports the notion that the mechanism
behind contractility in disordered actomyosin networks is
actin filament buckling (56,57). We note that, whereas the
parameterization of motors that we used for the motility as-
says yields contractile networks (Fig. S7), using a lower
value of koffm resulted in kinetics closer to those observed
in experiment (55). This improvement with higher motor af-
finity may reflect differences in the number of participating
motor heads in contractility and motility assays.
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CONCLUSIONS

In this article, we have introduced an agent-based modeling
framework that can accurately and efficiently simulate active
networks of filaments, motors, and cross-linkers to aid in the
interpretation and design of experiments on cytoskeletal ma-
terials and synthetic analogs. Although our focus here has
been on selecting parameters that are representative of the
actin cytoskeleton, we expect that this framework can be
adapted to treating other active polymer assemblies as well,
such as microtubule-kinesin-dynein networks. We demon-
strated that the model gives rise to both qualitative and quan-
titative trends for structure and dynamics observed in
experiments andprovides experimentally testable predictions.
Specifically, we reproduced the experimentally observed and
theoretically described fluctuation statistics of actin filaments.
We also captured strain stiffening scalings and predicted how
network elasticity can potentially be tuned via cross-linker
stiffness.We modeled sliding filament assays and determined
specific system parameters that lead to the crossover from
transversely diffusive to longitudinally processivemotion first
predicted in Duke et al. (54). In separate studies, we use our
model to explore the phase spaceofvarious network structures
and the dynamics that lead to them (3).

Although our model captures many experimental observa-
tions, we simplified certain features to limit both computa-
tional cost and model complexity. First, the structure of
myosin minifilaments is significantly more complex than a
two-headed spring.Asmentioned,minifilaments havedozens
of heads, which allows them to attach to more than two fila-
ments simultaneously, significantly increasing local network
elasticity (58) and enabling more complex motor dynamics
(59). Second, filaments do not polymerize, depolymerize,
or sever in the simulations; it is clear, however, that recycling
of actin monomers, actin treadmilling and, to a lesser degree,
filament severing, play important roles in contraction and
shape formation (57,60). Third, our simulations are restricted
to 2D, without steric or hydrodynamic interactions. This can
play a role inmotility assays, for example,where at high actin
densities, actin filaments organize into polar patterns with
characteristic autocorrelation times (61). It would bevaluable
to make the model a progressively more faithful representa-
tion of reality in the future to better understand how each of
these choices impacts the behavior of the model and in turn
the implications for the associated physics.
SUPPORTING MATERIAL

Supporting Materials and Methods and seven figures are available at http://

www.biophysj.org/biophysj/supplemental/S0006-3495(17)30622-7.
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S1 Calculation of crosslinker head position during binding and
unbinding

In this section, we describe how we update the binding state (I1(2) in Eq. 2) and position (~r1(2)) of
a crosslinker head. The binding states and positions of the two heads of a crosslinker are coupled
only through the potential energy (Eq. 2).

We first discuss binding. An unbound crosslinker head with position ~ru can attempt to bind to
the closest point on each nearby filament link. Let ~li = ~ri− ~ri−1, where ~ri is the position of the ith

bead on the filament to which the link belongs. Then, we propose a bound state with binding point

~rb =


~ri−1 |~li| = 0 or p ≤ 0

~ri p ≥ 1

~ri−1 + p~li otherwise
(S1)

where p = (~ru − ~ri) · ~li. Eq. S1 can be interpreted easily in a reference frame in which ~li is
oriented vertically (Fig. S1A): if ~ru is below the link, ~rb = ~ri−1; if it is above the filament then
~rb = ~ri; otherwise ~rb is the intersection of ~li with the line perpendicular to ~li that passes through
~ru. If |~rb − ~ru| < rc, the changes in binding state and position are accepted with probability
(kon
xl ∆t)P

off→on
xl,i (see main text, Crosslinkers).

A B

Figure S1: Position of crosslinker head upon binding or unbinding. (A) Any crosslinker head in the aqua,
yellow, and gray areas (such as the filled blue, green, and black circles) can bind to the blue, green, and
black binding points (circles with crosses), respectively. (B) The process by which a crosslinker generates
an unbinding point (ru) at time t+h using its original displacement at time t when it snapped to the binding
point rb.

For unbinding, we do the following. At the time of binding (t), we record the displacement
vector, ~rbu = ~rb(t)− ~ru(t), and the vector connecting the ends of the filament link, ~li(t) = ~ri(t)−
~ri−1(t). At the time that we attempt unbinding (t + h), we determine the angle of rotation of the
filament link:

θ = arccos

(
~li(t) ·~li(t+ h)

|~li(t)||~li(t+ h)|

)
. (S2)

Then, the position to which the crosslinker head tries to jump is

~ru(t+ h) = ~rb(t+ h)−
(

cos (θ) − sin (θ)
sin (θ) cos (θ)

)
~rbu(t) (S3)
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as shown in Fig. S1B. This jump is accepted with probability (koff
xl ∆t)P on→off

xl,i . The motivation for
this scheme is that it ensures that a head that jumps onto (off) a filament link returns to its original
position if it unbinds (rebinds) immediately. Detailed balanced consistent with Eq. 2 can thus be
satisfied through the acceptance probabilities (kon

xl ∆t)P
off→on
xl,i and (koff

xl ∆t)P on→off
xl,i .

S2 Relaxation times scales
In this section, we present data on filament and network time scales that inform our choices of
sampling frequencies.

S2.1 Decorrelation of filament angles
The evaluations of persistence length in Actin filaments exhibit predicted spatial and temporal
fluctuations in the main text average over independent configurations of filaments. To determine
the amount of time between independent configurations in a trajectory of a single filament, we
evaluated the integrated autocorrelation time of the angles θi for i ∈ [2 . . . 20] between links along
a 21 bead filament. Fig. S2A shows the autocorrelation

R(θ, s) =
〈θ(t)θ(t+ s)〉 − 〈θ(t)〉2

〈θ(t)2〉 − 〈θ(t)〉2
(S4)

where s is the time between realizations and the angle brackets represent an average over all 19
angles and all 1900 saved configurations. Fig. S2B shows the integrated autocorrelation time τ as
a function of the simulation cutoff time tfinal, where

τ(θ) =

∫ tfinal

0

R(θ, s)ds. (S5)

For all choices of tfinal, τ < 2 s and therefore configurations that are separated by at least 2 s should
be independent realizations with respect to angles between subsequent filament links.

A B

Figure S2: Estimation of the characteristic decorrelation time for persistence length measurements. (A)
Decorrelation of angles between filament links for a 21 bead filament with ka = 1 pN/µm, la = 1 µm, and
κB = 0.068 pNµm2. (B) Measurement of the integrated autocorrelation time τ for different values of the
cutoff time tfinal.
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S2.2 Shear relaxation times
One extra parameter that must be set for shear simulations is the relaxation time (trelax)—i.e.,
the minimum time between strain steps for responses to be history independent. We probed this
question computationally by determining if the parameter of interest (total potential energy of
filaments and crosslinkers) varied significantly for different periods of relaxation between steps of
∆γ = 0.001. Fig. S3 shows that while very small trelax values do yield higher energies at equivalent
strains, as trelax is increased, the curves collapse for identical strains. In the shear simulations in
the main text (Tunable elastic behavior of crosslinked filament networks), trelax = 1 ms (yellow
curve).

Figure S3: Total potential energy as a function of strain for various relaxation times. Simulation parameters,
are otherwise identical to the shear simulations in the main text.

S3 Comparison with Cytosim
Cyotsim is a freely available C++ software package developed to simulate active polymer networks
and described in (1). While AFINES shares many of the same features, for clarity we enumerate
the technical differences.

• The filament model. AFINES uses a bead spring chain and Cytosim uses a chain con-
strained via Lagrange multipliers.

• Attachment of motors and crosslinkers. Cytosim uses a continuous-time Monte Carlo pro-
cedure (the Gillespie algorithm (2)) to calculate when a motor should attempt attachment to
a filament, while AFINES attempts with the probability computed for each discrete timestep
of fixed duration. In Cytosim, the attachment of a motor to a filament is not dependent on the
distance from the filament, other than that it must be below a threshold, whereas in AFINES,
a closer motor has a higher probability of attachment, due to detailed balance considerations.

• Detachment of motors and crosslinkers. Cytosim has a force dependent detachment of
crosslinkers. This was not a necessary detail to reproduce the benchmarks shown in the re-
sults section, and detailed balance would require altering the motor and crosslinker dynam-
ics, so we have not included it in the present version. We plan in the future to understand
how this detail effects cytoskeletal networks in general and add it as an option to AFINES.

4



• Capabilities present in one and not the other. AFINES implements network shearing.
Cytosim implements filament polymerization and depolymerization, microtubule asters, and
spherical geometries.

To compare the two packages, we have used Cytosim to run the benchmarks associated with
filament fluctuations (Fig. S4) and motility assays (Fig. S6, below). For the filament fluctuation
benchmarks, shown in Fig. S4, we find that while Cytosim is able to yield nearly the correct
persistence length of filaments, at long segment lengths it performs worse than AFINES, perhaps
because it uses linearized versions of the angle forces (1).

A B C

Figure S4: Measurements of persistence length for Cytosim filaments (red) compared with the same mea-
surements for AFINES (blue). (A) Cosine correlation function and ∆θ2 correlation function for 20 Cytosim
fibers with Lp = 17 µm fluctuating for 2000 seconds. See Section 4.1 of the main text for details. (B)
Measurement of Lp as function of segment length, la, using the fit to the first 5 data points of 〈∆θ2〉 in (A).
(C) Measurement of Lp as a function of input bending modulus for Cytosim and AFINES. Colors are the
same as panel B.

S4 Parsing the energy in sheared networks
To further examine the source of the energy scalings shown in Fig. 5D, we measure the fraction
of the total energy density w from each of its sources in the network, the stretching energy of
filaments, the stretching energy of crosslinkers, and the bending energy of filaments, as shown
in Fig. S5. In general, we find that shearing the network stretches and bends actin filaments,
and also stretches crosslinkers, as in Fig. S5A-C. Fig. S5B-C show that, as crosslinkers become
more stiff, more of the energy from the strain is concentrated on the filaments. Fig. S5A shows
that for crosslinkers, the trend is not monotonic. When kxl < 100 pN/µm, increasing crosslinker
stiffness results in more energy in the crosslinkers, and in this regime, the scaling of w(γ) increases
monotonically. However, for kxl ≥ 100 pN/µm, the trend reverses, and the strain energy density
concentrates on the filaments more than the crosslinkers, as seen in Fig. S5D-E. In this regime,
the scaling of w(γ) plateaus near the value 3.5, reflecting the prediction for the differential shear
modulus in a strain controlled rheology experiment, G = d2w/dγ2 ∝ γ3/2 (3).
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A B C

FED

Figure S5: Absolute (A-C) and relative (D-F) energy contributions from crosslinkers stretching (A, D),
filaments stretching (B, E), and filaments bending (C, F) for the sheared network discussed in Tunable
elastic behavior of crosslinked filament networks.

S5 Comparison with Cytosim for motility assays
We also used Cytosim to simulate the motility assays described in the main text (Ensembles of
motors interacting with individual filaments simulate actin motility assays). The results, shown in
Fig. S6, are generally congruent with the results from AFINES in Fig. 6. We find that increasing
motor density, filament length, and duty ratio increase longitudinal motion and decrease transverse
motion of the filament (Fig. S6B), and makes the filament move more ballistically (Fig. S6C).
Furthermore, the path persistence length plots (Fig. S6D) are nearly identical to the measurements
obtained using AFINES. Thus, it is reassuring that the two models agree to this extent despite the
differences in filament and binding implementations.
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Figure S6: Motility measurements at varying motor density, filament length, and duty ratio generated using
Cytosim. For a detailed description of this calculation see main text, Ensembles of motors interacting with
individual filaments simulate actin motility assays.

S6 Procedure for quantifying contractility
An actin assay can be considered contractile if it has regions to which most of the actin aggregates.
In an experiment with a limited field of view, the net flux of actin into the field of view is positive
when the system is contractile. This flux corresponds mathematically to a negative value for the
integral of the divergence of the velocity field over the area (4, 5). However, in our simulations,
all particles’ positions are known and there is no flux of material into or out of the simulation
region owing to the periodic boundary condition. Thus the total divergence obtained by integrating
over the simulation box must be zero. Nevertheless, we can still compute the density-weighted
divergence to quantify contractility, as we now describe.

To ensure that the divergence is well-defined at all points, we first interpolate a continuous ve-
locity field. When the data are experimental images, the velocity field is determined using Particle
Image Velocimetry (PIV). Here, we take a similar approach, with the advantage that positions of
actin beads are a direct output of the simulation, analogous to tracer particles in experiments. To
this end, for each filament bead i with position ~ri(t) at time t, we calculate the velocity by forward
finite difference:

~vi(~ri, t) =
~ri(t+ h)− ~ri(t)

h
, (S6)

where h is a suitable amount of time to characterize motion. We calculate the average velocity of
each (5 µm)2 bin. Similarly to PIV, we lower the noise further by setting a threshold, and only
consider bins with at least n actin beads. We then interpolate the bin values with Gaussian radial
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basis functions (RBFs):

~v(~r) =
M∑
k=1

~wke
−(|~r−~rk|/ε)2

(S7)

where M is the number of bins with at least n actin beads, ε is a constant related to the width of the
Gaussian RBFs, and ~wk are their weights. The optimal value for ε is generally close to the value
of the average distance between RBFs (6); we found ε = 5 µm and a threshold of n = 10 yielded
a robust interpolation across many different actin structures. We use the scipy.interpolate.Rbf
Python package to determine the weights (6). We calculate the divergence of the resulting field
dvx(~r)/dx + dvy(~r)/dy by using finite difference approximations for the derivatives of Eq. S7.
Examples of this velocity field and the local divergence are shown in Fig. 7C and Fig. S7C.

As noted above, given ∇ · ~v, we quantify the contractility by the density weighted divergence,∫
ρa〈∇ · ~v〉dA. In Fig. S7E we show an example where the density weighting has the effect of

significantly increasing the magnitude of the areas with negative divergence. To understand how
the contractility varies with length scale, we replace the integral with the sum over square regions∑

k

ρa(~rk)〈∇ · ~v〉kdA (S8)

and vary the size of the regions, dA = dxdy (Fig. S7F). For the maximum size dA = (50 µm)2

(yellow curve), the density weighted divergence fluctuates around 0 as expected from the zero actin
flux. However for region sizes dA ≤ (10 µm)2, the values are consistently negative, indicating
contractility; the curves decrease to a minimum before plateauing closer to 0, as seen in experiment
(5). We also show, in Fig. S7G, that the trend of this order parameter is independent of the time
scale h used to calculate the velocity in Eq. S6.
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Figure S7: Calculation of density weighted divergence for a simulated contractile actomyosin network. (A-
D) Identical to Fig. 7, but with koff

m = 10 s−1, kend
m = 1 s−1, and ρm = 1 µm−2. In (A), all filaments and

10% of motors and crosslinkers are shown. (E) Same as (C), but the color is weighted by the actin density
ρa. (F) Dependence of the density weighted divergence on the patch size used for integration, dA = dxdy,
with h = 10 s. (G) Dependence of the density weighted divergence on the time scale h used in calculating
the velocity of actin v in Eq. S6 with dx = dy = 1 µm.
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