Supplementary Information

Number of infection events per cell during HIV-1 cell-free infection

Yusuke Ito^{1,‡}, Azaria Remion^{2,3,4,‡}, Alexandra Tauzin^{2,3,4}, Keisuke Ejima⁵, Shinji Nakaoka^{6,7}, Yoh Iwasa¹, Shingo Iwami^{1,6,7,†,*}, & Fabrizio Mammano^{2,3,4,†,*}

¹Department of Biology, Faculty of Sciences, Kyushu University, Fukuoka 819-0395, Japan. ²INSERM, U941, 75010 Paris, France. ³Univ Paris Diderot, Sorbonne Paris Cité, IUH, 75010 Paris, France. ⁴Institut Universitaire d'Hématologie, Hôpital Saint-Louis, 75010 Paris, France. ⁵School of Public Health, University of Alabama at Birmingham, Alabama 35294-0011, USA. ⁶PRESTO, JST, Saitama 332-0012, Japan. ⁷Institute of Industrial Science, The University of Tokyo, Meguro-ku, Tokyo 153-8505, Japan. ⁸CREST, JST, Saitama 332-0012, Japan.

- ‡,† These authors contributed equally to this study.
- * Correspondence and requests for materials should be addressed to S.I. (email: siwami@kyushu-u.org) or F.M. (email: fabrizio.mammano@inserm.fr).

Supplementary Note: Calculation of theoretical odds ratio

We derived the theoretical odds ratio, OR_M , by Eqs. (1–4) as follows:

$$OR_M = \frac{F_B(\boldsymbol{\theta})F_C(\boldsymbol{\theta})}{F_A(\boldsymbol{\theta})F_D(\boldsymbol{\theta})}$$

$$=1+\frac{1}{\left(1+\frac{\beta}{q}(\bar{V}_{\mathrm{HSA}}+\bar{V}_{\mathrm{GFP}})\right)^{p}}-\frac{1}{\left(1+\frac{\beta}{q}\bar{V}_{\mathrm{HSA}}\right)^{p}\left(1+\frac{\beta}{q}\bar{V}_{\mathrm{GFP}}\right)^{p}}}{\left\{\frac{1}{\left(1+\frac{\beta}{q}\bar{V}_{\mathrm{GFP}}\right)^{p}}-\frac{1}{\left(1+\frac{\beta}{q}(\bar{V}_{\mathrm{HSA}}+\bar{V}_{\mathrm{GFP}})\right)^{p}}\right\}\left\{\frac{1}{\left(1+\frac{\beta}{q}\bar{V}_{\mathrm{HSA}}\right)^{p}}-\frac{1}{\left(1+\frac{\beta}{q}(\bar{V}_{\mathrm{HSA}}+\bar{V}_{\mathrm{GFP}})\right)^{p}}\right\}}.$$

Because $\beta>0,\ p>0,\ 1/q>0,\ \overline{V}_{\rm HSA}>0,\ \overline{V}_{\rm GFP}>0$ and

$$0 < 1 + \frac{\beta}{q} (\bar{V}_{\text{HSA}} + \bar{V}_{\text{GFP}}) < \left(1 + \frac{\beta}{q} \bar{V}_{\text{HSA}}\right) \left(1 + \frac{\beta}{q} \bar{V}_{\text{GFP}}\right),$$

we obtained the following relationship of

$$0 < \left(1 + \frac{\beta}{q} \left(\overline{V}_{\text{HSA}} + \overline{V}_{\text{GFP}} \right) \right)^p < \left(1 + \frac{\beta}{q} \, \overline{V}_{\text{HSA}} \right)^p \left(1 + \frac{\beta}{q} \, \overline{V}_{\text{GFP}} \right)^p.$$

Thus, it is shown that

$$\frac{1}{\left(1 + \frac{\beta}{q}(\bar{V}_{\text{HSA}} + \bar{V}_{\text{GFP}})\right)^p} - \frac{1}{\left(1 + \frac{\beta}{q}\bar{V}_{\text{HSA}}\right)^p\left(1 + \frac{\beta}{q}\bar{V}_{\text{GFP}}\right)^p} > 0.$$

Hence, the numerator in the second term of OR_M is always positive. Similarly, since

$$0 < 1 + \frac{\beta}{q} \bar{V}_{GFP} < 1 + \frac{\beta}{q} (\bar{V}_{HSA} + \bar{V}_{GFP}),$$

we obtained

$$0 < \left(1 + \frac{\beta}{q} \bar{V}_{\text{GFP}}\right)^p < \left(1 + \frac{\beta}{q} (\bar{V}_{\text{HSA}} + \bar{V}_{\text{GFP}})\right)^p,$$

this leads to

$$\frac{1}{\left(1 + \frac{\beta}{q} \, \bar{V}_{\text{GFP}}\right)^p} - \frac{1}{\left(1 + \frac{\beta}{q} \, (\bar{V}_{\text{HSA}} + \bar{V}_{\text{GFP}})\right)^p} > 0.$$

This inequality explains why the denominator in the second term of OR_M is always positive. Therefore, we were able to show that $OR_M > 1$ holds.

Figure S1 | Frequency of single infection and coinfection in other experiment: (a) The experimental and theoretical frequencies of quadrants A (i.e., HSA-positive) and C (i.e., HSA-negative) in seven independent experiments using only HSA HIV-1 are shown by red and white bars, respectively. (b) The experimental and theoretical frequencies of quadrants D (i.e., GFP-positive) and C (i.e., GFP-negative) in single GFP HIV-1 experiments are shown by green and white bars, respectively. (c) The experimental and theoretical frequencies of quadrants A, B (i.e., positive both for HSA and GFP), C (i.e., negative both for HSA and GFP), and D in double HIV-1 experiments are shown by blue and white bars, respectively, with different combinations of inoculated viral amount. Note that each error bar represents 95% credible interval obtained from Markov Chain Monte Carlo(MCMC) parameter inferences.

To examine how many HIV-1s infect T-cells in cell-free infection

Data

- F_A: frequency of cells infected by HSA+ HIV-1 only in quadrant A
- F_B: frequency of cells infected by HSA+ & GFP+ HIV-1 in quadrant B
- F_c: frequency of non-infected cells in quadrant C
- F_D: frequency of cells infected by GFP+ HIV-1 only in quadrant D

Single infection (HS/	A) Single infection (GFP)	Double infection
124 129	1 A A A A A A A A A A A A A A A A A A A	
		1.
	A me	
n 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	p 0 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	112

Result

Distribution of the parameters

Number of infection events

Prediction

Predicted value

F -	1	1	
($1 + \frac{\beta}{a} \bar{V}_{GFP}$	$ \left(1 + \frac{\beta}{q} \left(\vec{V}_{GFP} + \vec{V}_{HSA} \right) \right) $	p
	4)	(q GFP · THSA)	
$F_B = 1$	$-\frac{1}{\rho}$	$\frac{1}{\sqrt{p}} - \frac{1}{\sqrt{-\rho}} + \frac$	1
	$\left(1 + \frac{p}{q}\bar{V}_{HS}\right)$	$\left(1 + \frac{\beta}{q} \bar{V}_{GFP}\right)^p + \frac{1}{q}$	$\left(1 + \frac{\beta}{a} \left(\nabla_{HSA} + \nabla_{GFP} \right) \right)$
	1		,

$$F_D = \frac{\left(1 + \frac{\beta}{q} (V_{\text{HSA}} + V_{\text{GFP}})\right)}{\left(1 + \frac{\beta}{q} \overline{V}_{\text{HSA}}\right)^p} - \frac{1}{\left(1 + \frac{\beta}{q} (\overline{V}_{\text{HSA}} + \overline{V}_{\text{GFP}})\right)^p}$$

Parameters

p	r_{37}
$\beta V_{HSA}/q$	r_{50}
$\beta V_{GFP}/q$	r_{75}
$r_{6.25}$	r_{100}
$r_{12.5}$	r_{200}
r_{25}	

Unknown

Figure S2 | Outline of our study strategy: (Blue) The frequency of cells in each quadrant were taken by FACS analyses in 3 independent experiments. (Green) We calculated the predicted frequencies corresponding to the measurements, and the 11 parameters are unknown. (Red) To estimate the distribution of the all parameters, the Bayesian method are applied. Using the estimated distribution, the calculations on the number of infection events were carried out.