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Supplementary Figure 1. Computation of effective spike-triggered stimuli. Each spike-triggered 4 
stimulus under spatiotemporal white-noise stimulation is a brief sequence of black-white binary spatial 5 
patterns. To integrate out time, the cell’s temporal filter, obtained from the spike-triggered average 6 
(STA), is used as a set of weights to compute a weighted average of the frames from the spike-7 
triggered stimulus. The weighted average can be thought of as computing for each pixel the scalar 8 
product between the temporal filter and the sequence of contrast values. This yields the effective 9 
spike-triggered stimulus, a spatial pattern with greyscale pixel values.  10 
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Supplementary Figure 2. Additional examples for the application of STNMF to salamander 16 
ganglion cells and analysis of subunit weights. a,b, Subunit analysis of two more sample ganglion 17 
cells, analogous to Fig. 1b-d. Scale bars, 100 µm. c,d, Module weights according to the computed 18 
normalized output gain (magenta), according to the average NMF weights (green), and according to a 19 
fit of the spatial receptive field with the detected subunits (orange circles; the inset shows the receptive 20 
field as recovered from the fit). Data correspond to the two sample cells shown in (a) and (b). The 21 
STNMF weights have arbitrary scale and were here normalized so that, for the first subunit, the value 22 
is the same value as the normalized output gain. The subunits are ordered according to their spatial 23 
autocorrelation, from largest to smallest. On the right, the dependence of the normalized output gain 24 
on the subunit’s distance from the receptive field center is shown. This distance was determined as the 25 
distance between the center points of the Gaussian fits. e, Average of the dependence of the 26 
normalized output gain on the distance from the receptive field center. We determined the subunits 27 
and their output gain for 102 ganglion cells from a single retina (N=824 subunits) and binned them 28 
into ten bins according to the distance from the corresponding receptive field center, so that each bin 29 
contained about the same number of subunits. The data show the average normalized output gain and 30 
distance for each bin, and error bars correspond to standard deviations. 31 

  32 



 

Supplementary Figure 3 33 

 34 

 35 

Supplementary Figure 3. Comparison of STNMF and spike-triggered covariance (STC) analysis. 36 
We performed STC analysis on the effective spike-triggered stimulus ensembles for individual 37 
ganglion cells, using the same spatial region around the receptive field center as for the STNMF 38 
analysis. The analysis was performed by computing the covariance matrix of the pixel values across 39 
the effective spike-triggered stimulus ensemble and subtracting the prior covariance matrix, which is 40 
here given by the identity matrix. We then performed an eigenvalue analysis of this matrix difference. 41 
Note that, despite the binary distribution of pixel values in the original stimulus, STC analysis is 42 
possible because, owing to the central limit theorem, the temporal weighted averaging yields, to good 43 
approximation, normal distributions of pixel values in the effective spike-triggered stimulus ensemble. 44 
a, Spatial receptive field of a sample cell, obtained as the STA of the effective spike-triggered stimulus 45 
ensemble. b, Eigenvalue spectrum. Insets show a zoomed-in view of the largest 10 and smallest 10 46 
eigenvalues. Note that there is a broad, continuous distribution of eigenvalues, so that, except for the 47 
largest eigenvalue, distinct eigenvalues that signify relevant stimulus features cannot be extracted. 48 
This is caused by the high dimensionality of the analyzed stimulus space (here more than 1,000 49 
dimensions), despite the fact that a total of about 9,500 spikes were analyzed. The high dimensionality 50 
is necessary to provide sufficient resolution for detecting subunits inside the receptive field. 51 
c, Eigenvectors corresponding to the largest five eigenvalues (top row) and to the smallest five 52 
eigenvalues. Here, white and black pixels stand for positive and negative values, respectively. 53 
d, Modules extracted by the STNMF analysis for the same cell. Only the ten modules with the largest 54 
spatial autocorrelation are shown. e-h, Same as (a-d), but for a different sample cell. Here, the STC 55 
analysis showed several structured features, though, as opposed to the subunits from the STNMF 56 
analysis, not localized in space. About 20,000 spikes analyzed. 57 
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Supplementary Figure 4. Identification of subunits with STNMF for a ganglion cell model with 63 
quadratic subunit nonlinearities. a, Model structure. Spatial patterns of 16x16 pixels of Gaussian 64 
white noise were used as a stimulus. The model contained five subunits with the same layout as in 65 
Fig. 2. For the subunit nonlinearity, however, we here used a symmetric squaring operation. As for the 66 
model in Fig. 2, the summed subunit signal then went through a threshold-linear output nonlinearity, 67 
and spikes were determined according to a Bernoulli process. b-d, STNMF analysis of simulated data 68 
as in Fig. 2b-d, using around 3,000 spikes. 69 
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Supplementary Figure 5. Identification of subunits with STNMF for a ganglion cell model with 75 
different temporal filters for the subunits. a, Model structure. Binary spatiotemporal white noise 76 
with 16x16 pixels was used as a stimulus. The model contained five overlapping subunits as in Fig. 2, 77 
each with a different Off-type temporal filter as shown in the plot. As for the model in Fig. 2, each 78 
subunit signal is transformed by a threshold-quadratic subunit nonlinearity before summation and 79 
application of a threshold-linear output nonlinearity. Spikes were determined according to a Poisson 80 
process. b-d, STNMF analysis of simulated data as in Fig. 2b-d, using around 6,800 spikes. 81 
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Supplementary Figure 6. Analysis of robustness of subunit reconstruction with respect to noise 87 
and number of spikes. a, Reconstructed subunits of the model used in Fig. 2, taking all simulated 88 
spikes into account. b, Effect of noise, simulated by randomly replacing a fraction of the simulated 89 
model spikes (quantified as the “noise percentage”) with spikes at random times. Subunit 90 
reconstruction was quantified by the average correlation value between the true subunit and the best 91 
matching reconstructed subunit (red) as well as by the average spatial autocorrelation of the five most 92 
localized reconstructed subunits (black). Data points and error bars show mean values and standard 93 
deviations obtained over 20 repeats of the analysis. The set of subunits on top of the graph shows a 94 
sample reconstruction from the noise level indicated by the arrow. c, Dependence of subunit 95 
reconstruction on available spike number. Limited data sets of specified size were obtained by 96 
randomly selecting subsets of the simulated model spikes. Performance of subunit reconstruction was 97 
assessed in the same way as in (b). d-f and g-i, Analysis of the effect of noise and spike number for 98 
two sample ganglion cells. Performance was assessed, as for the model cell, by the average spatial 99 
autocorrelation, taking into account as many reconstructed modules as the number of subunits found 100 
for the true data set. Data points and error bars show mean values and standard deviations obtained 101 
over 20 repeats of the analysis. 102 
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Supplementary Figure 7. Further examples of comparison between recorded bipolar cell 107 
receptive fields and extracted ganglion cell subunits. a-d, Four additional examples of bipolar cell-108 
ganglion cell pairs with good matches between the bipolar cell receptive field and one of the 109 
reconstructed subunits, shown in the same style as in Fig. 3. e-h, Four examples of bipolar cell-110 
ganglion cell pairs for which no subunit matched the bipolar cell receptive field, shown as in (a-d), but 111 
without a selected subunit. The bipolar cells in (a) and (e) are the same as in the bottom row and last-112 
to-bottom row, respectively, of Fig. 3, but shown here in comparison to different ganglion cells. (b) 113 
and (f) show the same bipolar cell, once in comparison to a ganglion cell with a matching subunit (b) 114 
and once in comparison to a ganglion cell with no matching subunit (f). (g) and (h) show bipolar cells 115 
for which no match with any subunit of any recorded ganglion cell was found. Scale bar, 100 µm. 116 
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Supplementary Figure 8. Analysis of response predictions with fine-scale shifted natural images. 121 
a, Responses of a sample ganglion cell. Left: Example of a natural image with receptive field of a 122 
ganglion cell at nine positions (ellipses with numbers in the centers), corresponding to the nine slightly 123 
shifted presentations of the same image. Center: Raster plots of responses from the sample cell for 124 
repeated presentations of the image at the nine positions. Right: Deviations of the three model 125 
predictions from the measured mean spike count for each of the nine image positions for the sample 126 
cell. The LN model (red), the subunit model (green), and the shuffled subunit model (blue) were 127 
similar to the ones used in Fig. 4 in the main text, except that the output nonlinearity was another half-128 
wave rectification (as also used for the subunit nonlinearity), with the slope left as a free parameter, 129 
optimized for each model by minimizing the root-mean-square (RMS) error between the data and the 130 
prediction. b, Comparison of RMS error for the different models. Each data point corresponds to a 131 
different combination of analyzed ganglion cell and presented natural image, coming from a total of 132 
eleven ganglion cells and ten images from three retinas. Insets show histograms of differences in RMS 133 
error. The subunit model generally yielded smaller error values than both the LN model and the 134 
shuffled subunit model. Differences between the subunit model and the other two models are 135 
significant (p<10-8 in both cases; Wilcoxon signed-rank test). 136 
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Supplementary Figure 9. Comparison of STNMF with the Nonlinear Input Model (NIM)1. 141 
a, Spatial receptive field for a sample ganglion cell (same cell as in Fig. 1b-d). b, Subunits of the 142 
sample cell identified by STNMF. c, Subunits obtained from fitting a reduced NIM to the same sample 143 
cell. Here, black and white pixels stand for positive and negative values, respectively. d, Comparison 144 
of response predictions of subunit models with subunits derived from either STNMF or from the 145 
reduced NIM fit for the same 28 cells as in Fig. 4c. The analysis was conducted on the recordings 146 
under spatiotemporal white-noise stimulation, and performance was measured as the variance 147 
explained on the held-out frozen-noise sections. The obtained variance explained was here 148 
significantly higher for the STNMF subunit model (p=0.0023; Wilcoxon signed-rank test). 149 
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Supplementary Figure 10. Sample application of STNMF to ganglion cell recordings from 155 
mouse retina. Reconstructions of subunits from two recorded mouse retinal ganglion cells are shown 156 
as in Fig. 1b-d. Scale bars, 100 µm. The applied visual stimulus here was spatiotemporal white noise 157 
with a temporal update rate of 15 Hz and a pixel size of 15 µm x 15 µm, half as wide as applied for the 158 
recordings from salamander retina. The STNMF method was applied in the same fashion as for the 159 
analysis of salamander retinal ganglion cells without any further adjustments or tuning of parameters. 160 
Like for the salamander data, STNMF revealed a small number of localized subunits, whose filter 161 
output is systematically related to the cell’s spiking activity. The extracted subunits could correspond 162 
to individual presynaptic bipolar cells. Alternatively, they could represent groups of bipolar cells, in 163 
particular since bipolar cells in mouse retina can be coupled by gap junctions, which has been shown 164 
to lead to an enlargement of the spatial scale of nonlinear integration2. 165 
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