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 37 

Abstract 38 

Background: Chinese clearhead icefish, Protosalanx hyalocranius, is a 39 

representative species of icefishes with economic importance and special appearance. 40 

Due to its great economic value in China, the fish was introduced to Lake Taihu and 41 

several other lakes half a century ago. Similar to the Sinocyclocheilus cavefishes, the 42 

clearhead icefish also has certain cavefish-like traits, such as transparent body and 43 

nearly scaleless skin. Here, we provided the whole genome sequence of this 44 

surface-dwelling fish and generated a high-quality genome assembly, aiming at 45 

exploring molecular mechanisms for these biological characteristics. 46 

Findings: A total of 252.1 gigabases (Gb) of raw reads were sequenced. Subsequently, 47 

a novel high-quality genome assembly was generated, with the scaffold N50 reaching 48 

1.163 Mb. The genome completeness was estimated to be 98.39% by using CEGMA 49 

and BUSCO evaluation. Finally, we annotated 19,884 protein-coding genes and 50 

observed that repeat sequences account for 24.43% of the genome assembly. 51 

Conclusion: We report the whole genome sequencing of the Chinese clearhead 52 

icefish. The assembled genome will provide a significant foundation for further 53 
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molecular breeding and germplasm resource protection in the clearhead icefish, as 54 

well as other icefishes. It is also a valuable genetic resource for revealing the 55 

molecular mechanisms for the cavefish-like characteristics. 56 

 57 

Keywords: Icefish; Protosalanx hyalocranius; Whole genome sequencing; 58 

Genome assembly; Gene prediction; Repetitive sequences 59 

 60 

Data description 61 

Background 62 

Icefishes (Osmeriformes, Salangidae) are widely distributed in freshwater, coastal and 63 

estuarine habitats in East Asian countries [1-3]. Chinese clearhead icefish 64 

(Protosalanx hyalocranius), a diadromous fish, mainly inhabits in coastal areas and 65 

adjacent freshwaters [4-6]. As a commercially important fish in China, the clearhead 66 

icefish was widely introduced into some lakes half a century ago and has developed a 67 

resident life history [2, 7, 8]. Because of its transparent body and nearly scaleless skin, 68 

similar to the Sinocyclocheilus cavefishes [9], we are very interested in this 69 

surface-dwelling fish and are performing comparative genomics studies to explore the 70 

mechanisms for these biological phenotypes. However, with the rapid development of 71 

the Chinese economy in recent decades, population size of the clearhead icefish has 72 

been seriously declining because of overfishing, construction of water conservancy 73 

facilities and water pollution in the ecological systems [10]. To maintain its 74 

sustainable development in China, here we performed the genome sequencing of 75 

Chinese clearhead icefish for its biological and economic importance.  76 

 77 

Sample and Sequencing 78 

In this study, we applied Illumina whole genome sequencing strategy to generate the 79 

genome of Chinese clearhead icefish (NCBI Taxonomy ID: 418454; Fishbase ID: 80 

12236). Genomic DNAs were isolated from the muscle tissue of an individual 81 
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collected from the Lake Taihu of Jiangsu Province in China. We constructed seven 82 

paired-end libraries with three short-insert libraries (250, 500 and 800 bp) and four 83 

long-insert libraries (2, 5, 10 and 20 kb) using the standard protocol provided by 84 

Illumina (San Diego, USA). Subsequent paired-end sequencing was performed by the 85 

Illumina HiSeq 2000 platform for each library. Finally, we obtained 252.1 Gb of raw 86 

125-bp reads for further analysis. 87 

 88 

Genome size estimation and genome assembly 89 

The SOAPfilter v2.2 software [11] with optimized parameters (-y -p -g 1 -o clean -M 90 

2 -f 0) was performed to remove low-quality row reads (including reads with 10 or 91 

more Ns and low-quality bases) and PCR-replicates as well as adaptor sequences. In 92 

total, we obtained 169.0 Gb of clean reads. Subsequently, we estimated the genome 93 

size based on the 17-mers depth frequency distribution method [12]. A 17-mer 94 

represents an artificial division with 17-bp length nucleotide segment of sequencing 95 

reads, therefore, a raw sequence read with a total length of L bp contains (L-17+1) 96 

17-mers. The genome size was estimated with the following formula: G = 97 

N*(L-17+1)/K-depth, in which G is the genome size, N is the total number of reads, 98 

and K-depth is the highest frequency of 17-mer analysis. In our current study, N was 99 

10,500,000,000 and the K-depth was 20. Hence, we estimated that the genome size of 100 

Chinese clearhead icefish is 525 Mb. 101 

The filtered reads were assembled using SOAPdenovo2 v2.04.4 software [13] with 102 

optimized parameters (pregraph -K 79 -d 1; contig -M 1; scaff -F -b 1.5 -p 16) to 103 

generate contigs and original scaffolds. The gaps were fulfilled using GapCloser 104 

v1.12 software [14] with default parameters and –p set to 25. Finally, we generated a 105 

high-quality genome assembly of 536 Mb, with the scaffold N50 reaching 1.163 Mb 106 

(Table 1).  107 

The completeness of our assembly was evaluated by using CEGMA [15] and BUSCO 108 

[16]. The CEGMA program (Core Eukaryotic Genes Mapping Approach; version 2.4) 109 
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assessment with 248 conserved Core Eukaryotic Genes (CEGs) was performed for 110 

evaluation of the gene space completeness. The results revealed that the assembled 111 

genome had a CEGMA completeness score about 90.32% and 98.39%, which was 112 

calculated from the complete gene set and the partial gene set respectively. 113 

Meanwhile, we used the representative metazoa gene set [17], which contains 843 114 

single-copy genes that are widely present in metazoa. The assessment demonstrated 115 

that the BUSCO values is 89%, containing [D: 10%], F: 7.7%, M: 2.9%, n: 843 (C: 116 

complete [D: duplicated], F: fragmented, M: missed, n: genes). These data from 117 

CEGMA and BUSCO indicate that the assembled genome covered majority of the 118 

gene space. 119 

 120 

Repeat annotation 121 

Firstly, a de novo repeat library was constructed by the RepeatModeller v1.05 [18] 122 

and LTR_FINDER.x86_64-1.0.6 [10] with default parameters. Then, our assembly 123 

genome sequences were aligned against the ReBase v21.01 [19] and the de novo 124 

repeat libraries to recognize the known and novel TEs (transposable elements) using 125 

the RepeatMasker v4.06 [20]. Meantime, the Tandem Repeat Finder v4.07 [21] with 126 

parameters “Match=2, Mismatch=7, Delta=7, PM=80, PI=10, Minscore=50, and 127 

MaxPerid=2000” was utilized to annotate tandem repeats. Furthermore, the 128 

RepeatProteinMask software v4.0.6 [20] was used to predict TE relevant proteins in 129 

our genome assembly. Finally, we observed that the repeat sequences account for 130 

24.43% of the assembled genome (Table 1).  131 

 132 

Genome Annotation 133 

In brief, we utilized two different methods to predict total gene set of the clearhead 134 

icefish.  135 

1) de novo annotation. The AUGUSTUS v2.5 [22] and GENSCAN v1.0 [23] were 136 

executed to ab initio predict genes within the assembled genome, with the repetitive 137 
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sequences masked as “N” in order to discard pseudo gene prediction. Those 138 

low-quality genes with short length (<150 bp), premature termination or 139 

frame-shifting were removed.  140 

2) Homology annotation. We aligned the protein sequences from six published 141 

genomes, including Danio rerio [24], Oryzias latipes [25], Takifugu rubripes [26], 142 

Tetraodon nigroviridis [27], Esox lucius [28] and Gasterosteus aculeatus [29], against 143 

our assembly to predict homology-based genes. The potential homology-based genes 144 

were searched by TblastN [30] with an e-value of 10-5. The TblastN results were then 145 

processed by SOLAR (Sorting Out Local Alignment Result [31]) to obtain the best hit 146 

of each alignment. Subsequently, GeneWise v2.2.0 [32] was performed to detect the 147 

possible gene structure for the best hit of each alignment. The low-quality genes were 148 

also removed as described in the above-mentioned do novo annotation.  149 

3) Integration of annotation results. To merge all results produced from the above 150 

methods, we employed the GLEAN [33] to generate a non-redundant and 151 

comprehensive gene set. Finally, the best hit of each protein was obtained through all 152 

protein sequences from the GLEAN results aligned to the databases of the SwissProt 153 

and TrEMBL [34] (Uniprot release 2011.06) by BlastP with an e-value of 10-5. 154 

Overall, we generated a final gene set with 19,884 genes for the Chinese clearhead 155 

icefish.  156 

CEGMA was performed again to evaluate the coverage rate between KOG 157 

(EuKaryotic Orthologous Groups) genes predicted by CEGMA and the predicted total 158 

gene set. It demonstrates that the predicted gene set mapped 96.4% of the KOGs. 159 

Simultaneously, the BUSCO was implemented again to assess the completeness of 160 

the predicted gene set. The BUSCO values were calculated as follows: C: 79% [D: 161 

16%], F: 9.8%, M: 10%, n: 843 (C: complete [D: duplicated], F: fragmented, M: 162 

missed, n: genes). The assessment values from both CEGMA and BUSCO proved 163 

high accuracy of the annotation. 164 
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4) Function annotation. The predicted protein sequences of clearhead icefish were 165 

aligned against several public databases (Pfam [35], PRINTS [36], ProDom [37] and 166 

SMART [38]) for detection of functional motifs and domains . Finally, we found that 167 

96.2% of the predicted total gene set had been annotated with at least one functional 168 

assignment from other public databases (Swiss-Prot [39], Interpro [40], TrEMBL [41] 169 

and KEGG [42]). 170 

 171 

Conclusion  172 

We generated a high-quality genome assembly of Chinese clearhead icefish. The 173 

novel genome data were deposited in publicly accessible repositories to promote 174 

further biological research, molecular breeding and resource protection of this 175 

representative icefish. 176 
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Tables 341 

Table 1. The statistics of genome assembly and annotation for P. hyalocranius. 342 

Genome assembly 

Contig N50 size (kb) 17.2 

Scaffold N50 size (Mb) 1.163 

Estimated genome size (Mb) 525 

Assembled genome size (Mb) 536 

Genome coverage (X) 315 

The longest scaffold (bp) 5,398,389 

Genome annotation 

Protein-coding gene number 19,884 

Annotated functional gene number 19,125 (96.2%) 

Unannotated functional gene number 759 (3.8%) 

Repeat content 24.43% 
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