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Abstract 33 

Background: Chinese clearhead icefish, Protosalanx hyalocranius, is a 34 

representative icefish species with economic importance and special appearance. Due 35 

to its great economic values in China, the fish was introduced into Lake Dianchi and 36 

several other lakes from the Lake Taihu half a century ago. Similar to the 37 

Sinocyclocheilus cavefish, the clearhead icefish has certain cavefish-like traits, such 38 

as transparent body and nearly scaleless skin. Here, we provide the whole genome 39 

sequence of this surface-dwelling fish and generated a draft genome assembly, aiming 40 

at exploring molecular mechanisms for the biological interests. 41 

Findings: A total of 252.1 gigabases (Gb) of raw reads were sequenced. Subsequently, 42 

a novel draft genome assembly was generated, with the scaffold N50 reaching 1.163 43 

Mb. The genome completeness was estimated to be 98.39% by using the CEGMA 44 

evaluation. Finally, we annotated 19,884 protein-coding genes and observed that 45 

repeat sequences account for 24.43% of the genome assembly. 46 

Conclusion: We report the first draft genome of the Chinese clearhead icefish. The 47 

genome assembly will provide a solid foundation for further molecular breeding and 48 

germplasm resource protection in Chinese clearhead icefish, as well as other icefishes. 49 

It is also a valuable genetic resource for revealing the molecular mechanisms for the 50 

cavefish-like characters. 51 

Keywords: Clearhead icefish; Protosalanx hyalocranius; Whole genome 52 

sequencing; Genome assembly; Gene prediction; Repetitive sequences 53 
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 54 

Data description 55 

Background 56 

Icefishes (Osmeriformes, Salangidae) are widely distributed in freshwater, coastal and 57 

estuarine habitats in East Asian countries [1-3]. Chinese clearhead icefish 58 

(Protosalanx hyalocranius), a diadromous fish, mainly inhabits in coastal areas and 59 

adjacent freshwaters [4-6]. As an economically important fish in China, the clearhead 60 

icefish was widely introduced into some lakes from the original Lake Taihu half a 61 

century ago, and it has developed a resident life history in these water areas [2, 7, 8]. 62 

Because of its transparent body and nearly scaleless skin, similar to the 63 

Sinocyclocheilus cavefishes [9], we are very interested in this surface-dwelling fish 64 

and are performing comparative genomics studies to explore the mechanisms for 65 

these biological phenotypes. However, with the rapid development of the Chinese 66 

economy in recent decades, population size of the clearhead icefish has been seriously 67 

declining because of overfishing, construction of water conservancy facilities and 68 

water pollution in the ecological systems [10]. To maintain its sustainable 69 

development in China, here we performed whole genome sequencing of Chinese 70 

clearhead icefish to support its biological and economic importance.  71 

 72 

Sample and Sequencing 73 

In this study, we applied Illumina whole genome sequencing (WGS) strategy to 74 

sequence the genome of Chinese clearhead icefish (NCBI Taxonomy ID: 418454; 75 

Fishbase ID: 12236). Genomic DNA was isolated from the muscle tissue of an 76 

individual collected from the Lake Taihu of Jiangsu Province in China. We 77 

constructed seven paired-end libraries with three short-insert libraries (250, 500 and 78 

800 bp) and four long-insert libraries (2, 5, 10 and 20 kb) using the standard protocol 79 

provided by Illumina (San Diego, USA). Subsequent paired-end sequencing was 80 
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performed by the Illumina HiSeq 2000 platform for each library. Finally, we obtained 81 

252.1 Gb of raw reads for further analysis. 82 

 83 

Genome size estimation and genome assembly 84 

The SOAPfilter v2.2 software [11] with optimized parameters (-y -p -g 1 -o clean -M 85 

2 -f 0) was utilized to remove low-quality raw reads (including reads with 10 or more 86 

Ns and low-quality bases) and PCR-replicates as well as adaptor sequences. In total, 87 

we obtained 169.0 Gb of clean reads. Subsequently, we estimated the genome size 88 

based on the 17-mer depth frequency distribution method [12]. A 17-mer represents 89 

an artificial division with 17-bp length nucleotide segment of sequencing reads, 90 

therefore, a raw sequence read with a total length of L bp contains (L-17+1) 17-mers. 91 

The genome size was estimated with the following formula: G = K_num/K_depth, in 92 

which G is the genome size, K_num is the total number of 17-mer, and K_depth is the 93 

highest frequency of 17-mer analysis. In our current study, the K_num was 94 

10,500,000,000 and the K_depth was 20. Hence, we estimated that the genome size of 95 

Chinese clearhead icefish is 525 Mb. 96 

The filtered reads were assembled using SOAPdenovo2 v2.04.4 software [13] with 97 

optimized parameters (pregraph -K 79 -d 1; contig -M 1; scaff -F -b 1.5 -p 16) to 98 

generate contigs and original scaffolds. The gaps were filled using GapCloser v1.12 99 

software [14] with default parameters and –p set to 25. Finally, we generated a draft 100 

genome assembly of 536 Mb, with the scaffold N50 reaching 1.163 Mb (Table 1).  101 

The completeness of our assembly was evaluated by using CEGMA [15] and BUSCO 102 

[16]. The CEGMA program (Core Eukaryotic Genes Mapping Approach; version 2.4) 103 

assessment with 248 conserved Core Eukaryotic Genes (CEGs) was performed for 104 

evaluation of the gene space completeness. Our results revealed that the assembled 105 

genome had a CEGMA completeness score at 90.32% and 98.39%, which was 106 

calculated from the complete gene set and the partial gene set, respectively. 107 

Meanwhile, we used the representative metazoa gene set [17], which contains 843 108 
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single-copy genes that are widely present in metazoan, as a reference. The assessment 109 

demonstrated that the BUSCO values is 89%, containing [D: 10%], F: 7.7%, M: 2.9%, 110 

n: 843 (C: complete [D: duplicated], F: fragmented, M: missed, n: genes). These data 111 

from CEGMA and BUSCO indicate that the assembled genome covered majority of 112 

the gene space. 113 

 114 

Repeat annotation 115 

Firstly, a de novo repeat library was constructed by the RepeatModeller v1.05 [18] 116 

and LTR_FINDER.x86_64-1.0.6 [10] with default parameters. Then, the assembled 117 

genome sequences were aligned against the RepBase v21.01 [19] and the de novo 118 

repeat libraries to recognize the known and novel transposable elements ( TEs ) using 119 

the RepeatMasker v4.06 [20]. Meantime, the Tandem Repeat Finder v4.07 [21] with 120 

parameters “Match=2, Mismatch=7, Delta=7, PM=80, PI=10, Minscore=50, and 121 

MaxPeriod=2000” was utilized for annotation of tandem repeats. Furthermore, the 122 

RepeatProteinMask software v4.0.6 [20] was used to predict TE relevant proteins in 123 

our genome assembly. Finally, we observed that the repeat sequences account for 124 

24.43% of the assembled genome (Table 1), and the de novo annotation method 125 

predicted the most abundant repeat sequence among the four methods (Table 2). 126 

 127 

Genome Annotation 128 

In brief, we utilized two different methods to predict total gene set of the clearhead 129 

icefish.  130 

1) de novo annotation. The AUGUSTUS v2.5 [22] and GENSCAN v1.0 [23] were 131 

executed to ab initio predict genes within the assembled genome, with the repetitive 132 

sequences masked as “N” in order to discard pseudo gene prediction. Those 133 

low-quality genes with short length (<150 bp), premature termination or 134 

frame-shifting were removed.  135 
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2) Homology annotation. We aligned the protein sequences from six published 136 

genomes, including Danio rerio [24], Oryzias latipes [25], Takifugu rubripes [26], 137 

Tetraodon nigroviridis [27], Esox lucius [28] and Gasterosteus aculeatus [29], against 138 

our assembly to predict homology-based genes. The potential homology-based genes 139 

were searched by TblastN [30] with an e-value of 10-5. The TblastN results were then 140 

processed by SOLAR (Sorting Out Local Alignment Result [31]) to obtain the best hit 141 

of each alignment. Subsequently, GeneWise v2.2.0 [32] was performed to detect the 142 

possible gene structure for the best hit of each alignment. The low-quality genes were 143 

also removed as described in the above-mentioned de novo annotation.  144 

3) Integration of annotation results. We employed the GLEAN [33] to generate a 145 

non-redundant and comprehensive gene set. Finally, the best hit of each protein was 146 

obtained through all protein sequences from the GLEAN results aligned to the 147 

databases of the SwissProt and TrEMBL [34] (Uniprot release 2011.06) by BlastP 148 

with an e-value of 10-5. Overall, we generated a final gene set with 19,884 genes for 149 

the Chinese clearhead icefish.  150 

CEGMA was performed again to evaluate the coverage rate between KOG 151 

(EuKaryotic Orthologous Groups) genes predicted by CEGMA and the predicted total 152 

gene set. It demonstrates that the predicted gene set mapped 96.4% of the KOGs. 153 

Simultaneously, the BUSCO was implemented again to assess completeness of the 154 

predicted gene set. The BUSCO values were calculated as follows: C: 79% [D: 16%], 155 

F: 9.8%, M: 10%, n: 843 (C: complete [D: duplicated], F: fragmented, M: missed, n: 156 

genes). The assessment values from both CEGMA and BUSCO proved high accuracy 157 

of the annotation. 158 

4) Function annotation. The predicted protein sequences of the clearhead icefish 159 

were aligned against several public databases (Pfam [35], PRINTS [36], ProDom [37] 160 

and SMART [38]) for detection of functional motifs and domains. Finally, we found 161 

that 96.2% of the predicted total gene set had been annotated with at least one 162 
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functional assignment from other public databases (Swiss-Prot [39], Interpro [40], 163 

TrEMBL [41] and KEGG [42]). 164 

 165 

Genome evolution 166 

We performed phylogenomic analyses with orthologues from representative species 167 

for each clade. We used the Ensembl BioMart (www.ensembl.org/biomart; Ensembl 168 

version 76) to extract orthologues for zebrafish [24], fugu [26], stickleback [29], 169 

medaka [25] and spotted gar [43]. This generated orthologue dataset from six species 170 

was filtered out to retain only one-to-one orthologues. Meanwhile, a new Asian 171 

arowana gene set stem from our recent work [44]. In order to extrapolate the Biomart 172 

orthologues to the arowana and clearhead icefish gene sets, we used zebrafish as the 173 

reference. We ran InParanoid [45] for the three species pairs (zebrafish-arowana and 174 

zebrafish-clearhead icefish) at default settings (i.e., minimum 50% alignment span, 175 

minimum 25% alignment coverage, minimum BLASTP score of 40 bits, minimum 176 

inparalog confidence level of 0.05). By comparing the three InParanoid outputs, we 177 

narrowed down the list of one-to-one orthologues, presented in all the seven species, 178 

to 454 genes. Subsequently, multiple alignments were performed on proteins of each 179 

selected family by MUSCLE (version 3.8.31) [46] and protein alignments were 180 

converted to their corresponding CDS alignments using an in-house perl script. All 181 

the translated CDS sequences were linked into one “supergene” for each species. 182 

Non-degenerated sites extracted from the supergenes were then joined into new 183 

seqeunce of each species to construct a phylogenetic tree (Figure 1) using MrBayes 184 

[47] (Version 3.2, GTR+gamma model). Our phylogenetic data demonstrate the close 185 

relationship between the clearhead icefish and zebrafish & medaka (Figure 1). 186 

 187 

Synteny blocks and genome duplication 188 

Genomic homology between the clearhead icefish and medaka was examined using 189 

i-ADHoRe 3.0 [48] using the following settings: alignment method gg2, gap size 30, 190 
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tandem gap 30, cluster gap 35, q value 0.85, prob cutoff 0.01, anchor points 5 and 191 

multiple hypothesis correction FDR. The output was processed by the pipeline and 192 

included in a relational database to which visualization programs can connect and on 193 

which additional statistical analysis can be performed. For synteny detection, the 194 

cloud mode was enabled (cluster_type = cloud) and appropriate settings were selected 195 

as follows: cloud_gap_size 20, cloud_cluster_gap 20, cloud_filter_method binomial, 196 

prob cutoff 0.01, anchor points 5, multiple hypothesis correction FDR and 197 

level_2_only true. Finally, we identified 660 synteny blocks containing 6,156 genes 198 

between the clearhead icefish and medaka. 199 

Subsequently, Protein sequences of homologous gene pairs in the identified syntenic 200 

regions were aligned using MUSCLE [46], and the protein alignments were then 201 

converted to the CDS alignments. Finally, four-fold degenerative third-codon 202 

transversion (4DTV) values were calculated on these CDS alignments and corrected 203 

using the HKY model in the PAML package [49]. These data indicate that the 204 

clearhead icefish also experienced the teleost-specific whole genome duplication 205 

(WGD), and it appeared more recently than medaka (Figure 2).  206 

 207 

Conclusion  208 

We generated a draft genome assembly of the Chinese clearhead icefish. The novel 209 

genome data were deposited in publicly accessible repositories to promote further 210 

biological research, molecular breeding and resource protection of this representative 211 

and valuable icefish. 212 

 213 

Availability of supporting data 214 

Supporting data are available in the GigaDB database, and the raw genome sequences 215 

are deposited in the SRA under the bioproject number PRJNA328051. 216 
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 389 

Tables 390 

Table 1. The statistics of genome assembly and annotation for P. hyalocranius. 391 

Genome assembly 

Contig N50 size (kb) 17.2 

Scaffold N50 size (Mb) 1.163 

Estimated genome size (Mb) 525 

Assembled genome size (Mb) 536 

Genome coverage (X) 315 

The longest scaffold (bp) 5,398,389 

Genome annotation 

Protein-coding gene number 19,884 

Annotated functional gene number 19,125 (96.2%) 

Unannotated functional gene number 759 (3.8%) 

Repeat content 24.43% 

 392 
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 396 

Table 2. Detailed classification of repeat sequences in the assembled genome. 397 

Type Repeat Size(bp) % of Genome 

ProteinMask 9925152 1.85 

RepeatMasker 5948136 1.11 

TRF 66595756 12.41 

De novo 93726009 17.47 

Total 131090229 24.43 

 398 

 399 

 400 

 401 

 402 

Figure 1. Phylogeny of seven representative ray-finned fishes. The spotted gar was used 403 

as the outgroup species. 404 
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 406 

Figure 2. Distribution of 4DTV distances between the clearhead icefish and medaka. 407 

The horizontal axis stands for the 4DTV distance corrected using the HKY model. The 408 

vertical axis represents the percentage of colinear gene pairs. 409 
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