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Abstract

Background: The MinION sequencing instrument from Oxford Nanopore
Technologies (ONT) produces long read lengths from single-molecule sequencing
– valuable features for detailed genome characterization. To realize the potential
of this platform, a number of groups are developing bioinformatics tools tuned for
the unique characteristics of its data. We note that these development efforts
would benefit from a simulator software, output of which could be used to
benchmark analysis tools.

Findings: Here, we introduce NanoSim, a fast and scalable read simulator that
captures the technology-specific features of ONT data, and allows for
adjustments upon improvement of nanopore sequencing technology. The first
step of NanoSim is read characterization, which provides a comprehensive
alignment-based analysis, and generates a set of read profiles serving as the input
to the next step, the simulation stage. The simulation stage uses the model built
in the previous step to produce in silico reads for a given reference genome.
NanoSim is written in Python and R. The source files and manual are available at
the Genome Sciences Centre website:
http://www.bcgsc.ca/platform/bioinfo/software/nanosim

Conclusion: In this work, we model the base-calling errors of ONT reads to
inform the simulation of sequences with similar characteristics. We showcase the
performance of NanoSim on publicly available datasets generated using the R7
and R7.3 chemistries and different sequencing kits and compare the resulting,
synthetic reads, to that of other long sequence simulators and experimental ONT
reads. We expect NanoSim to have an enabling role in the field and benefit the
development of scalable NGS technologies for the long nanopore reads, including
genome assembly, mutation detection, and even metagenomic analysis software.

Keywords: Nanopore sequencing; statistical modeling; sequence read simulation;
NanoSim

Findings

Background

DNA sequencing is dominated by sequencing-by-synthesis technologies, and mature

next generation systems (NGS) such as those from Illumina Inc. are amongst the

most widely adopted. In recent years, third generation single molecule sequencing

using nanopore-based technologies have emerged, with promises of longer reads and

lower cost. Launched by Oxford Nanopore Technologies (ONT) in April 2014, the

MinION sequencer stands out among existing third generation sequencing tech-

nologies due to its ability to generate ultra-long reads, albeit with high error rates.

For example, the S. cerevisiae dataset from Goodwin et al. (2015) has an average

Manuscript Click here to download Manuscript bmc_article.tex 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/giga/download.aspx?id=9466&guid=51d68bf6-eb95-4e14-9cb8-1f796e181600&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=9466&guid=51d68bf6-eb95-4e14-9cb8-1f796e181600&scheme=1


Yang et al. Page 2 of 8

read length of 5,473 bp, and maximum reaching 147 kbp, although with low se-

quence identity, 64% for 1D reads and 75% for 2D reads, 1D and 2D referring to

interrogation of a DNA molecule template once or twice, respectively.

Long nanopore reads hold great potential for de novo assembly and transcriptome

analysis as they can span more repetitive regions and multiple exon junctions, or

even entire transcripts. However, the error-prone reads pose new challenges to algo-

rithm design [1]. As it is the case for other sequencing platforms [2], a read simulator

designed specifically for ONT reads is desirable in order to develop and benchmark

new algorithms, with the aim to harness the full potential of this new sequencing

platform. Currently, however, no state-of-the art DNA sequence simulator emulates

the properties of ONT reads.

Here, we introduce NanoSim, a nanopore sequence read analysis and simulation

pipeline. The tool analyzes ONT reads from experimental data to model read fea-

tures, such as error profiles and length distributions, and uses these features to

generate in silico reads for an input reference. We show that the statistical models

NanoSim uses remain valid as the nanopore sequencing technology evolves.

Methods

NanoSim is implemented using R for error model fitting, and Python for read length

analysis and simulation (Supplementary Fig. S1). The first step of NanoSim is read

characterization, which provides a comprehensive alignment-based analysis, and

generates a set of read profiles serving as the input to the next step, the simulation

stage. The simulation tool uses the model built in the previous step to produce in

silico reads for a given reference genome. It also outputs a list of introduced errors,

consisting of the position on each read, error type and reference bases.

The modeling stage of NanoSim takes a reference and a training read set in FASTA

format as input. The reads are aligned to the reference genome using LAST with

tuned parameters (‘-r 1 -q 1 -a 1 -b 1’) by default, consistent with other pub-

lished work [3, 4]. Alternatively, the tool also allows the input of an alignment file

in MAF format. If not unique, the best alignment of each read is chosen based on

alignment length to avoid the influence of mis-alignments to repeat regions (Sup-

plementary Fig. S2).

Based on alignment results, training reads are classified into two types: aligned and

unaligned reads. For aligned reads, typically only a middle region can be aligned,

leaving the flanking head and tail regions soft-clipped from alignments. The length

distribution of these head and tail regions exhibits a multimodal pattern. The full

read length distribution can be characterized by two empirical distributions: one for

the length of the aligned regions, the second for the ratio of alignment lengths to

read lengths. Length distributions of unaligned reads are also generated to simulate

unaligned reads. The perfet flag of NanoSim can generate perfect reads with no

errors, relying on the full-length distribution of aligned reads.

Sequencing errors on the aligned region share similar patterns among different

datasets, which can be described by statistical mixture models [5]:

Mismatch : Pm ∼ αm Poisson(λm) + (1− αm)Geometric(pm)

Insertion : Pi ∼ αi Weibull(λi, κi) + (1− αi)Geometric(pi)

Deletion : Pd ∼ αd Weibull(λd, κd) + (1 − αd)Geometric(pd)
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Here αm/i/d ∈ (0, 1) are mixture parameters, pm/i/d are the event probabilities in

the geometric distributions, λm is the expected value of the Poisson distribution,

and λi/d and κi/d, respectively, are the scale and shape parameters of the Weibull

distributions.

The mixture model describes stretches of substitution errors as being distributed

according to Poisson distribution, whereas indels followingWeibull distributions. All

error modes have a second component of geometric distribution, which we postulate

describes stochastic noise. The parameters for mixture models are estimated dur-

ing the modelling stage (Supplementary Method Section). The model parameters

and error profiles for the tested datasets are provided with the software download

package, and can be directly used for simulation.

During simulation, the lengths of errors are drawn from the statistical models, and

the error types are determined by a Markov chain, simulating the transitional prob-

ability between two consecutive errors (Supplementary Fig. S3). Interval lengths

between errors (length of matched bases) are observed to be auto-correlated, and

justifies the use of a Markov chain to model consecutive correct base calls between

errors (Supplementary Fig. S4).

Reads that are unaligned are more difficult to characterize. Rather than assuming

them to be random sequences, we extract sequences from the reference, and use an

arbitrarily high error rate compared to the aligned reads. We pick the length of

each error in these reads from the same mixture models as the aligned reads, and

randomly place them on the simulated sequence.

Another feature of NanoSim is that it is able to simulate either circular or linear

genomes. A read extracted from a circular genome can start from any position and

may wrap around. If the length of a read is longer than the length of the whole

genome, which is unlikely but possible for a plasmid or viral genome, it will be

truncated to the genome length. For a linear genome to maintain a read length

distribution similar to the training profile, NanoSim will only extract reads from

chromosomes that are longer than the read length.

The k -mer bias of ONT reads, especially the deficiency of long homopolymers, has

been well-studied [6]. As a DNA molecule with a stretch of homopolymer sequence

traverses through a nanopore, the change in electric current is not detectable or fails

to be interpreted by the base-calling algorithm, leading to a deficient representation

of homopolymers longer than the number of bases that can fit in the nanopores.

The k -mer bias mode of NanoSim compresses all homopolymers longer than n into

n-mers (default n=5), simulating the process of base-calling. The under or over

representation of other k -mers is not supported in the current version of NanoSim.

Admittedly, this method is oversimplistic, because sequencing or basecalling errors

occur more often in homopolymer regions, including 4-mer and 3-mer homopolymer

sequence. However, we expect this sequencing bias to be addressed by the vendor

and the scientific community in the future, given (1) past improvements of the R7.3

chemistry compared to the previous R7 chemistry (Supplementary Fig. S5) as well

as on-going improvements to the pore chemistry; (2) the emergence of new and

improved basecalling algorithms including DeepNano, which uses recurrent neural

network [7]. In this study, we confirm that the R9 2D dataset does not have the

same homopolymer underrepresentation problem as was the case with previous (R7
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and R7.3) chemistries. However, we do observe the opposite, the presence of long

homopolymers that do not exist in the reference genome.

Using an E. coli dataset, it has been reported that the GC content of 2D reads is

very close to the reference, and that this has a minor effect on sequencing error rates

[8]. In prior work, we have also observed that substitution errors are not uniform,

with a weak bias towards G and C [5]. Since the underlying mechanism causing this

bias is unclear, this pattern is not reflected in the NanoSim synthetic reads.

Results and Discussion

Six datasets using diffferent generations of sequencing kit were chosen for deriving

the statistical models and benchmarking, including five E. coli datasets and one S.

cerevisiae dataset (Table1). Generally, 2D reads have higher quality than 1D reads,

and are more frequently used in downstream analyses. As such, we tested NanoSim

on reads from 1D rapid kit using R9 chemistry, and 2D reads using R7, R7.3, and

R9 chemistry. All tests were performed on a single machine with 8-core Intel i7-4770

CPUs @ 3.40GHz and 8 GB total RAM.

Speed and memory

The runtime of NanoSim scales up linearly with the number of reads (Supplemen-

tary Fig. S6), and the memory requirement depends on the length of the reference

sequence. For example, the E. coli UCSC dataset contains 45,049 2D reads with an

average length of 7,067 bp. Excluding read alignments, the characterization stage

of NanoSim took 22m:32s, and the peak memory usage was 2.68 GB. Simulating

20,000 E. coli reads took 4m:39s; peak memory usage was 120 MB.

Read alignments and model fitting

NanoSim conducts an alignment-based strategy to characterize base call errors,

hence read-to-reference mapping process is integral to simulations. As such, it would

work the best with an alignment algorithm suitable for the sequencing platform.

Designed to cope with long, error-prone reads, at the time of writing LAST is the

best studied option shown to capture the greatest proportion of mapped reads with

few false positives [1]. Recently, the widely used BWA-MEM algorithm released an

update designed for ONT reads with the -x ont2d option [9]. To reflect the state-

of-the-art, we choose LAST as our default aligner, and users can optionally choose

BWA-MEM or other aligners and feed alignment result into NanoSim.

We observe that the error models derived from the characterization stage in our

test datasets are consistent across both chemistries and organisms (Supplementary

Tables S1-S3). Assessing the goodness of fit via a Kolmogorov–Smirnov test, we

observed that base call error distributions were statistically identical to their fitted

models using a p-value threshold of 0.05 (Supplementary Method Section). We note

subtle difference in alignments compared with the results derived from LAST and

BWA-MEM algorithms. For the UCSC E. coli dataset, LAST aligned 45,049 reads

to the reference genome, while BWA-MEM aligned 45,047 reads. The average error

rates calculated by LAST and BWA-MEM are 12.61% and 12.62%, respectively.

Hence, the performance of both aligners on this dataset appears equivalent. More-

over, the overall error distributions obtained through NanoSim profiling are the

same, and the structures of these models remain unchanged (Supplementary Fig.

S7).
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Simulation results and comparison

Currently, there are simulators that could potentially simulate Nanopore-like reads,

such as PBSIM [10], ReadSim [11] and FASTQSim [12]. Among these, PBSIM is

designed to simulate reads from Pacific Biosciences (PacBio) sequencers, which also

produce long, yet error-rich reads. FASTQSim is a platform-independent simulator

that can theoretically simulate any NGS datasets. ReadSim 1.6 is the only simulator,

which advertises the ability to simulate ONT reads [13].

Thus to evaluate the accuracy of NanoSim, we conducted comparisons only with

ReadSim. In each experiment on the six datasets in Table 1, 20,000 synthetic reads

were generated by NanoSim and ReadSim. ReadSim parameters were specifically

tuned for each dataset (Supplementary Method Section). Since ReadSim is not

capable of simulating genomes with multiple chromosomes, for the yeast dataset

we linked the yeast chromosomes with a single “N” in between before simulation,

and discarded synthetic reads containing “N”s. Simulated reads were aligned back

to the reference genome and analyzed using the characterization tool of NanoSim.

ReadSim simulates read lengths through a sample-based method or a Gaussian-

model-based method. The sample-based method was used here and fed with the

empirical lengths of all reads regardless of alignment results. After simulation, over

99.9% synthetic reads produced by ReadSim can be aligned to the reference, while

raw ONT datasets and NanoSim reads agree on the alignment rates ranging from

82.83% to 99.68% for these four datasets.

The length of consecutive perfect/error bases of simulated reads were plotted to-

gether along with their raw experimental read counterparts (Fig. 1A, Supplementary

Fig. S8, Fig. S9-13A). We observed that the ReadSim reads deviate further away

from experimental data because they were simulated with uniformly distributed

errors and randomly chosen error length.

Statistically speaking, for all aligned reads, the lengths of the whole read and

aligned regions of NanoSim reads and ONT reads are drawn from the same dis-

tributions (Fig. 1B, 1C, Supplementary Fig. S9-13B, S9-13C). The distribution of

aligned regions also exhibits bimodal pattern with two peaks except for R9 1D

dataset. Whereas, the only length distribution ReadSim re-produces well is the full

length distribution of aligned reads on E. coli R7.3 dataset (Supplementary Fig.

S10B).

Since the lengths of ReadSim reads are drawn from the empirical data points

directly, and over 99.9% ReadSim reads can be aligned, the full-length distribution

of aligned ReadSim reads should prepresent the full-length distribution of all ONT

reads. By comparing the full length density of ONT and ReadSim aligned reads,

we observe that the length of aligned reads and unaligned reads follow different

distributions for all datasets except E. coli R7.3 (Supplementary Fig. S10B).

The lengths of unaligned regions are determined by the alignment ratio of each

read. NanoSim performed better on E. coli R7 than the other three datasets, gen-

erating almost identical distributions of alignment ratio as the raw ONT reads

(Supplementary Fig. S9D). This leads to similar statistical test results on the dis-

tribution of unaligned head and tail regions (Supplementary Fig. S9B). The un-

aligned regions on experimental ONT reads also have two peaks, and for E. coli

UCSC dataset, they centered at 40 bp and 1000 bp (Fig. 1B). NanoSim reads over-

lap with these two peaks on all six datasets, whereas ReadSim reads have much
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shorter unaligned regions. The head and tail regions are not profiled and thus not

recovered by ReadSim.

de novo assembly of simulated reads

Testing and benchmarking new algorithms with synthetic reads is valuable tool for

algorithm development, as simulated reads carry the ground truth. To illustrate this,

we conducted de novo assemblies using miniasm, an algorithm built for long reads

with high error rates [14]. Dotter version 4.31 was used to compare the assemblies

with the reference genome and evaluate the accuracy [15].

Miniasm successfully assembled the UCSC dataset, and NanoSim simulated reads

into one contig (Fig. 2A). Both assemblies are over 4.5 Mb in length, approaching

the size of the reference genome (4.6 MB), and no large-scale misassemblies are

observed (Fig. 2B, C). In contrast, ReadSim simulated reads yielded 5 contigs, with

the largest contig reaching 2.5 Mbp. The total reconstruction matched the genome

size and the various contigs also show synteny to the reference E. coli K12 MG1655

genome (Fig. 2D).

Conclusions

To our evaluation, NanoSim mimics ONT reads well, true to the major statistical

features of the emerging ONT sequencing platform, in terms of read length and error

modes. The independent profiling module of NanoSim grants users the freedom

to characterize their own ONT datasets, which are expected to evolve with the

nanopore sequencing technology. Yet, we observe the shapes of the error models so

far to hold among different datasets regardless of sequencing kit.

NanoSim will benefit the development of bioinformatics technologies for the long

nanopore reads, including genome assembly, mutation detection, and metagenomic

analysis software. Currently, no high-coverage human genome-size data sequenced

by nanopore technologies are yet available. With the help of NanoSim, bioinfor-

matics software developers can easily test the scalability of their tools using simu-

lated reads. For example, NanoSim has been used for profiling and benchmarking

long, error-prone reads overlapping algorithms [16]. Moreover, a mixture of in silico

genomes simulating a microbiome will be helpful for benchmarking algorithms with

application in metagenomics, including functional gene prediction, species detec-

tion, comparative metagenomics, clinical diagnosis. As such, we expect NanoSim to

have an enabling role in the field.

Availability and Requirements

project name: NanoSim

Project home page: http://www.bcgsc.ca/platform/bioinfo/software/nanosim and

https://github.com/bcgsc/NanoSim

Operating system: Unix; Mac OS X

Programming lamguages: Python and R

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Yang et al. Page 7 of 8

Other requirements: LAST (Tested with version 581), R (Tested with version

3.2.3), Python (2.6 or above), Numpy (Tested with version 1.10.1 or above)

License: GNU General Public License - GPL.
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ONT: Oxford Nanopore Technology NGS: Next generation sequencing
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Figure 1 NanoSim and ReadSim simulation results compared with UCSC E. coli experimental
reads. (A) The four plots on the upper panel are cumulative density plots of error match events
and error events. (B) Length density plot of unaligned regions and total read lengths of aligned
reads. (C) Length density plot of aligned regions on each read. (D) Cumulative density plot of the
alignment ratio of each read.

Figure 2 Tool comparison in de novo assembly. (A) Contig sizes and N50 length of miniasm
assemblies using NanoSim reads, ReadSim reads and real reads from the UCSC dataset. The
dashed gray line is the reference genome size and the red dots are contigs with N50 length. Dotter
plots comparing the miniasm assembly of (B) experimental MinION sequence data, (C) NanoSim
and (D) ReadSim simulated reads on the x-axis to the E. coli K-12 MG1655 reference genome on
the y-axis. The position and order of the five contigs in (D) are unclear. Accordingly, Dotter
re-ordered them and aligned them along the reference genome. In this case, the x-axis represents
five contigs, instead of coordinates

Figures

Tables

Table 1 Datasets used for benchmarking

Organism Reference genome Download source Sequencing kit Flow cell
chemistry

Reference Short form in paper

E. coli K12 E. coli str. K-12
substr. MG1655

http://gigadb.org/dataset/100102 SQK-MAP-002 R7 [4] E. coli R7 dataset

E. coli K12 E. coli str. K-12
substr. MG1655

ENA: ERX708228, ERX708229,
ERX708230, ERX708231

SQK-MAP-003
SQK-MAP-004

R7.3 [6] E. coli R7.3 dataset

E. coli K12 E. coli str. K-12
substr. MG1655

ENA: ERX947749, ERX947750 SQK-MAP-005.1 R7.3 [17]
E. coli UCSC
dataset

E. coli K12 E. coli str. K-12
substr. MG1655
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Dear Dr. Edmunds, 
 
Thank you and our reviewers for your consideration of our manuscript. It is with 
excitement that we resubmit to you a revised version of manuscript “NanoSim: 
nanopore sequence read simulator based on statistical characterization”. In our revised 
submission, we have addressed the concerns raised by Reviewer 2 and edited the 
manuscript accordingly.  
 
Sincerely, 
 
Chen Yang / Inanc Birol  
Genome Sciences Centre 
British Columbia Cancer Agency 
 
 
REVIEWER: 2 

The authors have adequately and appropriately addressed my concerns; however I 
would like to see a citation for the statement on page 3 line 57-59.  2D reads from R9 
chemistry does not have homopolymer underrepresentation problem, [sic] which is 
interpreted by a new basecalling algorithm using recurrent neural next work. 
 
Response: Thanks for pointing this out. In the previous version, we stated that 2D reads 
from R9 chemistry does not have homopolymers underrepresentation problem, based 
on our analysis. We reworded paragraph 6 on page 3 in the revision to make it clear. 
We also added a citation to the statement about the recurrent neural network. 
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