SUPPLEMENTARY MATERIAL

Genetic Architecture Distinguishes Systemic Juvenile Idiopathic Arthritis from Other Forms of Juvenile Idiopathic Arthritis: Clinical and Therapeutic Implications

Michael J. Ombrello, Victoria L. Arthur, Elaine F. Remmers, Anne Hinks, Ioanna Tachmazidou, Alexei Grom, Dirk Foell, Alberto Martini, Marco Gattorno, Seza Özen, Sampath Prahalad, Andrew S. Zeft, John F. Bohnsack, Norman T. Ilowite, Elizabeth D. Mellins, Ricardo Russo, Claudio Len, Maria Odete E. Hilario, Sheila Oliveira, Rae S. M. Yeung, Alan Rosenberg, Lucy R. Wedderburn, Jordi Anton, Johannes-Peter Haas, Angela Rosen-Wolff, Kirsten Minden, Klaus Tenbrock, Erkan Demirkaya, Joanna Cobb, Elizabeth Baskin, Sara Signa, Emily Shuldiner, Richard H. Duerr, Jean-Paul Achkar, M. Ilyas Kamboh, Kenneth M. Kaufman, Leah C. Kottyan, Dalila Pinto, Stephen W. Scherer, Marta E. Alarcón-Riguelme, Elisa Docampo, Xavier Estivill, Ahmet Gül, British Society of Pediatric and Adolescent Rheumatology (BSPAR) Study Group, Inception Cohort of Newly Diagnosed Patients with Juvenile Idiopathic Arthritis (ICON-JIA), Childhood Arthritis Prospective Study (CAPS) Group, Randomized Placebo Phase Study of Rilonacept in sJIA (RAPPORT) Investigators, Sparks-Childhood Arthritis Response to Medication Study (CHARMS) Group, Biologically Based Outcome Predictors in JIA (BBOP) Group, Carl D. Langefeld, Susan Thompson, Eleftheria Zeggini, Daniel L. Kastner, Patricia Woo, and Wendy Thomson

FULL ALPHABETICAL MEMBERSHIP LISTING OF COLLABORATING GROUPS

<u>British Society of Pediatric and Adolescent Rheumatology (BSPAR) Study Group:</u> Mario Abinum¹, A. Bell², Alan W. Craft³, Esther Crawley⁴, Joel David⁵, Helen Foster⁴, Janet Gardener-Medwin⁶, Jane Griffin⁷, Ann Hall⁸, M. Hall⁹, Ariane L. Herrick¹⁰, Peter Hollingworth¹¹, Lennox Holt¹², Stan Jones¹³, Gillian Pountain¹⁴, Clive Ryder¹⁵, Tauny Southwood¹⁵, I. Stewart¹³, Helen Venning¹⁶, Lucy R. Wedderburn¹⁷, Patricia Woo⁴, Sue Wyatt¹⁸

¹Department of Immunodeficiency and Paediatric Rheumatology. Newcastle University, Newcastle, U.K.; ²Queens University, Belfast, U.K.; ³Royal Victoria Infirmary, Newcastle, U.K.; ⁴Division of Infection and Immunity, University College London, London, U.K.; ⁵Department of Rheumatology, Nuffield Orthopaedic Hospital, Oxford, U.K.: ⁶The Roval Hospital for Sick Children. Yorkhill Children's Hospital. Glasgow. U.K.: ⁷Chase Farm Hospital, London, U.K.; ⁸Department of Rheumatology, Wexham Park Hospital, Berkshire, U.K.; ⁹Department of Rheumatology, Cardiff Royal Infirmary, Cardiff, U.K.; ¹⁰University of Manchester, Manchester Academic Health Science Centre, Salford Royal Hospital, Salford, U.K.; ¹¹Department of Rheumatology, Bristol Royal Infirmary, Bristol, U.K.; ¹²Department of Rheumatology, Manchester University, Manchester, U.K.; ¹³Victoria Hospital, Blackpool, Lancashire, U.K.; ¹⁴Hitchingbrooke Hospital, Cambridgeshire, U.K.; ¹⁵Department of Paediatric Rheumatology, Institute of Child Health, Birmingham, Children's Hospital-NHS Foundation Trust, University of Birmingham, Whittall Street, Birmingham, U.K.; ¹⁶Nottingham University Hospital, Nottingham, U.K.: ¹⁷Rheumatology Unit, Institute of Child Health, University College London, London, U.K.; ¹⁸Department of Paediatric Rheumatology, Leeds Children Hospital, Leeds, U.K.

Childhood arthritis prospective study (CAPS) Group:

Eileen Baildam¹, Nick Bishop², Lynsey Brown¹, Joanne Buckley³, Alice Chieng³, Roberto Carrasco⁴, Joanna Cobb⁴, Lucy Cook⁵, Joyce Davidson^{6,7}, Annette Duggan³, Michael Eltringham⁵, Helen Foster⁵, Elizabeth Friel⁷, Mark Friswell⁵, Janet Gardner-Medwin^{7,8}, Paul Gilbert⁴, Vikki Gould⁶, Kelly Hadfield⁴, Kimme Hyrich⁴, Julie Jones⁹, Sham Lal⁴, Mark Lay⁴, Gabrielle Lloyd¹, Olivia Lloyd¹, Carol Lydon¹, Natasha Makengo⁹, Ann McGovern³, Alexandra Meijer⁹, Nicola Mills-Wierda⁷, Theresa Moorcroft¹, Vicki Price⁷, Liang Qiao⁵, Kay Riding⁶, Jane Sim⁷, Tauny Southwood¹¹, Wendy Thomson⁴, Maureen Todd⁷, Susan Tremble¹, Katharine Venter¹, Debbie Wade⁵, Peter Ward⁴, Sharon Watson⁷, Gwen Webster¹, Lucy R Wedderburn^{9, 10}, Jadranka Zelenovic⁷

¹Alder Hey Children's Hospital, Liverpool, U.K.; ²Academic Unit of Child Health, University of Sheffield, Sheffield, U.K.; ³The Royal Manchester Children's Hospital, Manchester, U.K.; ⁴Arthritis Research UK Epidemiology Unit, Stopford Building, Manchester Academic Health Science Centre, NIHR Manchester Musculoskeletal Biomedical Research Unit, The University of Manchester, Manchester, M13 9PT, U.K.; ⁵Royal Victoria Infirmary, Newcastle, U.K.; ⁶Royal Hospital for Sick Children, Edinburgh, Scotland, U.K.; ⁷Royal Hospital for Sick Children, Yorkhill Children's Hospital, Glasgow, Scotland, U.K.; ⁸University of Glasgow, School of Medicine, Glasgow, Scotland, U.K.; ⁹Great Ormond Street Hospital, London, U.K.; ¹⁰Rheumatology Unit, UCL Institute of Child Health, London, U.K.; ¹¹Department of Paediatric Rheumatology, Institute of Child Health, Birmingham Children's Hospital, NHS Foundation Trust, University of Birmingham, Birmingham, U.K.

<u>Randomized Placebo Phase Study of Rilonacept in sJIA (RAPPORT) Investigators:</u> James D. Birmingham¹, Melissa Elder², Beth S. Gottlieb³, Normal T. Ilowite⁴, Lisa F. Imundo⁵, Yukiko Kimura⁶, Yuliya Lokhnygina⁷, Michael L. Miller⁸, Diana Milojevic⁹, Kathleen O'Neil¹⁰, Marilynn G. Punaro¹¹, Kristi Prather⁷, Natasha M. Ruth¹², Christy I. Sandborg¹³, Laura E. Schanberg¹⁴, David D. Sherry¹⁵, Nora G. Singer¹⁶, Steven J. Spalding¹⁷, Stacey E. Tarvin¹⁰, James W. Verbsky¹⁸, Carol A. Wallace¹⁹, and Lawrence S. Zemel²⁰

¹Michigan State University College of Human Medicine, East Lansing, MI; ²University of Florida, Gainesville, FL; ³Steven and Alexandra Cohen Children's Hospital, New York, NY; ⁴Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York ⁵Morgan Stanley Children's Hospital of New York-Presbyterian, Columbia University Medical Center, New York, NY; ⁶Joseph M. Sanzari Children's Hospital, Hackensack University Medical Center, Hackensack, NJ; ⁷Duke Clinical Research Institute, Durham, NC; ⁸Ann and Robert H. Lurie Children's Hospital, Chicago, IL; ⁹University of California, San Francisco, CA; ¹⁰Riley Hospital for Children, Indianapolis, IN; ¹¹Texas Scottish Rite Hospital, Dallas, TX; ¹²Medical University of South Carolina, Charleston, SC; ¹³Stanford University, Stanford, CA; ¹⁴Duke University Medical Center, Durham, NC; ¹⁵Children's Hospital of Philadelphia, PA; ¹⁶Metro Health Medical Center, Cleveland, OH; ¹⁷The Cleveland Clinic, Cleveland, OH; ¹⁸Medical College of Wisconsin, Milwaukee, WI; ¹⁶Seattle Children's Hospital & Research Institute, Seattle, WA; ²⁰Connecticut Children's Medical Center, Hartford, CT

<u>Sparks-Childhood Arthritis Response to Medication Study (CHARMS) Group:</u> Kate Armon^{1,2}, Katrin Burkle³, Joanna Cobb⁴, Rebecca Cutts⁵, Angela Etheridge⁶, Eirini Giannakopoulou⁶, Paul Gilbert⁴, Anne Hinks⁴, Shashi Hirani³, Clare Heard⁶, Ruth Howman⁷, Cerise Johnson⁶, Laura Kassoumeri⁶, Sham Lal⁴, Alice Leahy⁵, Lucy Marshall⁶, Laura Melville³, Halima Moncrieffe⁶, Kathleen Mulligan³, Stanton Newman³, Jason Palman⁶, Fiona Patrick⁶, Emily Robinson⁶, Stephanie Simou⁶, Stefanie Stafford⁸, Tauny Southwood⁷, Wendy Thomson⁴, Petra Tucker², Simona Ursu⁶, Kishore Warrier⁸, Joanna Watts¹, Lucy R Wedderburn⁶, Pamela Whitworth⁷, Patricia Woo⁹

¹Norfolk & Norwich University Hospital NHF Foundation Trust, Birmingham, U.K.; ²Cambridge University Hospital NHS Foundation Trust, Cambridge, U.K.; ³Health Psychology, School of Health Sciences, City University, London, U.K.; ⁴Arthritis Research UK Epidemiology Unit, Stopford Building, Manchester Academic Health Science Centre, NIHR Manchester Musculoskeletal Biomedical Research Unit, The University of Manchester, Manchester, U.K.; ⁵University Hospital Southampton NHF Foundation Trust, Southampton, U.K.; ⁶UCL GOSH Institute of Child Health, London U.K.; ⁷Birmingham Children's Hospital NHS Foundation Trust, Birmingham, U.K.; ⁸Nottingham University Hospitals NHS Trust, Nottingham, U.K. ⁹Division of Infection and Immunity, University College London, London, U.K.

Biologically Based Outcome Predictors in JIA (BBOP) Group:

Adam Baxter-Jones¹, Susanne Benseler², Gilles Boire³, David A. Cabral⁴, Bonnie Cameron², Sarah Campillo⁵, Gaëlle Chedeville⁵, Anne-Laure Chetaille⁶, Paul Dancey⁷, Ciaran Duffy⁸, Karen Watanabe Duffy⁸, Janet Ellsworth⁹, Michele Gibbon⁸, Chantal Guillet¹⁰, Jaime Guzman⁴, Kristin Houghton⁴, Adam M. Huber¹¹, Roman Jurencak⁸, Bianca Lang¹¹, Ronald M. Laxer², Lynn Maenz¹, Loren Matheson¹, Kiem G. Oen¹², Ross E. Petty⁴, Suzanne E. Ramsey¹¹, Elham Rezaei¹, Alan M. Rosenberg¹, Johannes Roth⁸, Rayfel Schneider², Rosie Scuccimarri⁵, Stephen W. Scherer¹³, Earl Silverman², Lynn Spiegel², Elizabeth Stringer¹¹, Shirley M. L. Tse², Lori B. Tucker⁴, Stuart Turvey⁴, Richard F. Wintle¹⁴ and Rae S. M. Yeung²

¹University of Saskatchewan, Saskatoon, Canada; ² The University of Toronto and The Hospital for Sick Children, Toronto, Canada; ³Université de Sherbrooke, Sherbrooke, Canada; ⁴British Columbia Children's Hospital, Vancouver, Canada; ⁵McGill University, Montreal, Canada; ⁶le Centre Hospitalier Universitaire de Quebec, Quebec, Canada; ⁷Janeway Children's Health and Rehabilitation Centre, St.John's, Canada; ⁸Children's Hospital of Eastern Ontario, Ottawa, Canada; ⁹University of Alberta, Edmonton, Canada; ¹⁰Sante et Services Sociaux, Quebec, Canada; ¹¹IWK Health Centre and Dalhousie University, Halifax, Canada; ¹²University of Manitoba, Winnipeg, Canada; ¹³The Centre for Applied Genomics, Hospital for Sick Children and McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Canada; ¹⁴The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Canada;

Inception Cohort of Newly Diagnosed Patients with Juvenile Idiopathic Arthritis (ICON-JIA) Study Group:

Ivan Foeldvari¹, Dirk Foell², Gerd Ganser³, Johannes-Peter Haas⁴, Gerd Horneff⁵, Anton Hospach⁶, Hans-Iko Huppertz⁷, Tilmann Kallinich⁸, Jasmin Kümmerle-Deschner⁹, Kirsten Minden⁸, Kirsten Mönkemöller¹⁰, Angela-Roesen Wolff¹¹, Klaus Tenbrock¹²;

Angelika Thon¹³

¹Hamburg Centre for Pediatric and Adolescent Rheumatology, Hamburg, Germany; ²University Hospital Münster, Münster, Germany; ³St. Josef Stift, Seldenhorst, Germany; ⁴German Center for Pediatric and Adolescent Rheumatology, Garmisch-Partenkirchen, Germany; ⁵Asklepios Clinic Sankt Augustin, Sankt Augustin, Germany; ⁶Klinikum Stuttgart Olgahospital, Stuttgart, Germany; ⁷Professor Hess Children's Hospital, Bremen, Germany; ⁸Charité University Medicine, Berlin, Germany; ⁹University of Tübingen Hospital, Tübingen, Germany; ¹⁰Municipal Children's Hospital Köln, Köln, Germany; ¹¹Children's Hospital Dresden, Dresden, Germany; ¹²University Hospital RWTH Aachen, Aachen, Germany; ¹³Medical University of Hannover, Children Hospital, Hannover, Germany

PATIENT SAMPLES

Blood samples were obtained from children diagnosed with systemic juvenile idiopathic arthritis (sJIA) by pediatric rheumatologists at collaborating centers in nine countries (Tables 1 and S1). Centralized collections of sJIA patient samples were provided by the British Society for Paediatric and Adolescent Rheumatology's (BSPAR) Juvenile Idiopathic Arthritis Sample Repository at the University of Manchester; the Inception Cohort of Newly Diagnosed Patients with Juvenile Idiopathic Arthritis (ICON-JIA); the Randomized Placebo Phase Study of Rilonacept in the Treatment of Systemic Juvenile Idiopathic Arthritis (RAPPORT); the Childhood Arthritis Prevention Study (CAPS); the Sparks-Childhood Arthritis Response to Medication Study (CHARMS); and the Biologically Based Outcome Predictors in JIA (BBOP). Blood samples from geographically-matched control subjects were obtained, and where available existing SNP genotype data from geographically-matched population control individuals were utilized, in silico (Supplementary Table 3). In silico control populations included in the study included: 1437 healthy subjects from the University of Pittsburgh and the Cleveland Clinic Foundation with SNP genotypes generated on Illumina Human Omni 1M arrays; 832 healthy subjects from the Cincinnati Children's Hospital Medical Center with SNP genotypes generated on Illumina Human Omni 5M arrays; 1629 population controls from the 1958 British Birth Cohort with SNP genotypes generated on Illumina Human 1M Duo arrays; 2710 population controls from the U.K. National Blood Study with SNP genotypes generated on Illumina Human 1M Duo arrays; 511 healthy subject from the Hospital for Sick Children in Toronto. Canada with SNP genotypes generated with Illumina Human 1M arrays; 260 healthy subjects from Argentina with SNP genotypes generated with Illumina Human Omni 1M arrays; and 200 healthy subjects from Spain with SNP genotypes generated with Illumina HumanHap 300 arrays. Subjects were enrolled into the study in accordance with all local ethics regulations, with approval of each local institutional review board, and with the informed consent of a parent or guardian of each subject.

SNP GENOTYPING AND QUALITY CONTROL OPERATIONS

SNP genotyping of genomic DNA from children with sJIA and healthy children was performed with Human Omni 1M arrays and an iScan bead array reader (Illumina) according to the manufacturer's specifications. SNP genotypes were simultaneously

called for the full set of directly genotyped samples using GenomeStudio software (Illumina) and custom cluster positions generated from the set of directly genotyped samples with the highest call rates. SNPs with GenTrain score < 0.35 (123,541 SNPs) were excluded from further analysis. Samples were stratified by country of origin and affection status, and quality control procedures were performed separately on each group. Samples with call rate < 98% or sample heterozygosity > 3 s.d. from the population-specific mean were excluded from the analysis (Supplementary Table 3). *In silico* SNP genotype data from healthy control subjects were processed using the same quality control parameters, with the exception of the sample call rate, which was determined by analysis of the distribution of call rates within each dataset. Within each stratum, markers were excluded based on the following criteria: MAF < 0.05; SNP call rate < 97%; or Hardy-Weinberg proportion test with *P* < 0.0001 in the population-specific control population. This produced sets of between 156,136 and 740,509 high quality SNPs that were carried forward for subsequent analysis (Supplementary Tables 4).

ASSESSMENT OF POPULATION STRATIFICATION AND ASSEMBLY OF CASE-CONTROL STRATA

To ensure similarity of continental ancestry among the membership of each group of cases or controls, we merged the data from each sample group with SNP genotype data from the European (CEU and TSI), African (ASW, YRI), Asian (CHB, JPT), and Hispanic and South Asian (MEX and GIH) HapMap3 populations. Each dataset was pruned on the basis of pairwise linkage disequilibrium (LD), removing one member of each pair of SNPs with $r^2 < 0.4$ using the estimation-maximization (EM) method. We also excluded the 24 regions of long-range LD identified by Price et al¹. The LDreduced datasets were subjected to multidimensional scaling analysis (MDS) with PLINK v1.07². Outliers of continental ancestry were identified and excluded from each group by visual inspection of MDS plots. Principal components analysis (PCA) was subsequently performed on the LD-reduced SNP set from each group to more stringently identify and remove genetic outliers, thereby restricting the ancestral membership of the groups. In the U.S. case stratum, the datasets from the five contributing centers were consolidated into a single stratum, retaining only the intersecting set of SNPs from the five groups. Pairwise comparisons of allelic frequencies were performed between the five groups to and SNPs whose frequencies differed significantly ($p < 5 \times 10^{-8}$) between any pair of U.S. sJIA groups were excluded. PCA was repeated on the full U.S. case stratum to insure common ancestry across the five groups. Geographically-matched case and control groups were each combined to form the nine case-control strata, each composed of the SNP intersection between the respective case and control groups. Finally, PCA was performed on LD-reduced SNP sets from each case-control stratum to identify and exclude ancestrally dissimilar individuals. Genomic control inflation factors were also calculated using the LD-reduced sets of SNPs from each case-control stratum to objectively quantify their ancestral composition. The sample quality control process produced nine case-control strata with a total of 770 sJIA cases and 6947 control subjects that were subsequently analyzed (Table 1, Supplementary Table 3).

SNP IMPUTATION, ASSOCIATION TESTING, AND META-ANALYSIS OF THE MHC LOCUS

Using the high-quality sets of directly genotyped SNPs, we performed genome-wide SNP imputation separately in each separately in each of the nine case-control strata. Genotypes were phased using the Markov Chain Monte Carlo algorithm implemented in IMPUTE2 v2.3.2³ software. SNP imputation was performed using IMPUTE2 v2.3.2 and a multi-ethnic reference panel of phased haplotypes from the 1000Genomes project (Phase3 integrated dataset), as previously described⁴. Following SNP imputation, genotypic probabilities from the set of common SNPs (MAF > 0.04 in case collections) that were imputed with high quality (info > 0.8) were subjected to frequentist association testing with SNPTESTv2.5 software under the additive and dominant models, adjusting for gender and ancestry informative principal components. Association meta-analyses were performed using GWAMA⁵ software under the fixed-effect model. Heterogeneity of effect was evaluated in using the l² statistic and markers with a high probability of heterogeneity (l² > 0.7) were excluded. The meta-analytic associations of the set of SNPs with ORs between 0.25 and four that were evaluated in 4 or more strata and a minimum of 2500 samples were included in subsequent analyses.

COMPARISON OF GENETIC ARCHITECTURE OF SYSTEMIC JUVENILE IDIOPATHIC ARTHRITIS WITH THOSE OF OLIGOARTICULAR AND POLYARTICULAR FORMS OF JUVENILE IDIOPATHIC ARTHRITIS

To compare the genetic architecture of sJIA with those of oligoarticular and seronegative polyarticular juvenile idiopathic arthritis (JIA), we analyzed weighted genetic risk scores (wGRS) according to the method of Karlson and colleagues⁶. wGRS were calculated in each individual as the sum of the risk allele counts, weighted by the natural logarithm of the odds ratio (OR). For the group of oligoarticular and seropositive polyarticular JIA (polygoJIA), the wGRS incorporated 23 independent polygoJIA risk SNPs reported by Hinks and colleagues⁷. For rheumatoid factor positive polyarticular JIA (RF+polyJIA), we utilized the wGRS-11 that was previously reported by Prahalad and colleagues⁸. For each wGRS, scatter plots and kernel density plots were generated to visually compare the wGRS distributions between the cases and controls in each stratum and in the full collection. The case and control distributions of risk alleles and wGRSs were evaluated with the non-parametric Wilcoxon Rank Sum Test. Association of wGRSs with sJIA was also tested in each individual stratum and in the full study collection using logistic regression, adjusted for gender and ancestry. Furthermore, receiver operator characteristic (ROC) curves were generated and the area under the curve (AUC) calculation was performed using R in each of the 9 strata and in the full study population to determine the ability of the wGRSs to discriminate between sJIA and other JIA subtypes. In to wGRS analyses, the genetic architecture of sJIA was compared with that of polygoJIA using conditional guantile-guantile (Q-Q) plots, as previously reported ⁹. Specifically, we generated a Q-Q plot of meta-analytic association with sJIA for all SNPs that were also examined in the study of polygoJIA by Hinks and colleagues⁷. We also created Q-Q plots for five sets of SNPs with increasing levels of association with polygoJIA: p < 0.1; p < 0.01; p < 0.001; p < 0.0001; and p < 0.0001; and p < 0.0001; p0.00001.

SUPPLEMENTARY TEXT REFERENCES

- Price AL, Weale ME, Patterson N, et al. Long-range LD can confound genome scans in admixed populations. *Am J Hum Genet* 2008; **83**(1): 132-5; author reply 5-9.
- Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. *Am J Hum Genet* 2007; 81(3): 559-75.
- 3. Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. *PLoS Genet* 2009; **5**(6): e1000529.
- 4. Howie B, Marchini J, Stephens M. Genotype imputation with thousands of genomes. *G3 (Bethesda)* 2011; **1**(6): 457-70.
- 5. Magi R, Morris AP. GWAMA: software for genome-wide association metaanalysis. *BMC Bioinformatics* 2010; **11**: 288.
- Karlson EW, Chibnik LB, Kraft P, et al. Cumulative association of 22 genetic variants with seropositive rheumatoid arthritis risk. *Ann Rheum Dis* 2010; 69(6): 1077-85.
- Hinks A, Cobb J, Marion MC, et al. Dense genotyping of immune-related disease regions identifies 14 new susceptibility loci for juvenile idiopathic arthritis. *Nat Genet* 2013; 45(6): 664-9.
- Prahalad S, Conneely KN, Jiang Y, et al. Susceptibility to childhood-onset rheumatoid arthritis: investigation of a weighted genetic risk score that integrates cumulative effects of variants at five genetic loci. *Arthritis Rheum* 2013; 65(6): 1663-7.
- Liley J, Wallace C. A pleiotropy-informed Bayesian false discovery rate adapted to a shared control design finds new disease associations from GWAS summary statistics. *PLoS Genet* 2015; **11**(2): e1004926.

Gene/Locus	Marker	Polygo JIA Risk Allele
HLA-DQB1-HLA-DQA2	rs7775055	G
PTPN22	rs6679677	А
STAT4	rs10174238	G
PTPN2	rs2847293	А
ANKRD55	rs71624119	G
ANKRD55	rs10213692	т
IL2-IL2I	rs1479924	А
IL2RA	rs7909519	А
SH2B3-ATXN2	rs3184504	А
SH2B3-ATXN2	rs7137828	С
ERAP2-LNPEP	rs27290	G
ERAP2-LNPEP	rs27293	А
UBE2L3	rs2266959	А
C5orf56-IRF1	rs6894249	А
C5orf56-IRF1	rs4705862	А
RUNX1	rs8129030	А
RUNX1	rs9979383	А
IL2RB	rs2284033	G
ATP8B2-IL6R	rs11265608	А
ATP8B2-IL6R	rs72698115	С
FAS	rs7069750	С
ZFP36L1	rs12434551	т
ZFP36L1	rs3825568	С

Table S1. Variables included in the polygo JIA weighted genetic risk score (polygo-wGRS)

Polygo, rheumatoid factor negative polyarticular and oligoarticular juvenile idiopathic arthritis. wGRS, weighted genetic risk scores. sJIA, systemic juvenile idiopathic arthritis.

Table S2. Variables included in the rheumatoid factor positive polyarticular JIA weighted genetic risk score (wGRS-11) from Prahalad *et al.*^a

Gene	Marker	RF+ Poly JIA Risk Allele
HLA-DRB1	HLA-DRB1*0101	Present
HLA-DRB1	HLA-DRB1*0401	Present
HLA-DRB1	HLA-DRB1*0404	Present
HLA-DRB1	HLA-DRB1*0405	Present
HLA-DRB1	HLA-DRB1*1001	Present
HLA-DRB1	HLA-DRB1*0901	Present
PTPN22	rs2476601	Т
STAT4	rs7574865	Т
TNFAIP3	rs10499194	Т
TNFAIP3	rs6920220	А
TRAF-C5	rs3761847	G

^a In the report by Prahalad *et al.*¹⁸, the wGRS-11 was significantly associated with rheumatoid factor positive polyarticular JIA (odds ratio = 3.32; p < 2×10^{-16}).

Table S3. Summary of sample quality control procedures

									_	
	Stratum	Population	Samples	Heterozygosity	Call Rate	Relatedness	MDS	PCA	Excluded	Included
		Cincinnati sJIA	225	14	0	8	41	10	64	161
		Stanford sJIA	34	0	0	0	19	2	21	13
	U.S.	Utah sJIA	42	2	0	0	8	4	10	32
s		Emory sJIA	20	0	0	0	6	1	7	13
ole		RAPPORT SJIA	40	0	0	1	13	2	16	24
m	U.K.	U.K. sJIA	228	6	12	0	10	4	26	202
ŝ		Germany sJIA	159	4	0	11	17	14	44	115
oec	Germany	Germany controls	209	0	0	11	4	3	16	193
tyl	Turkay	Turkey sJIA	54	3	0	1	0	1	5	49
enc	тигкеу	Turkey controls	96	0	2	0	0	0	2	94
5	ltob.	Italy sJIA	55	2	3	1	2	0	6	49
ctI	пану	Italy controls	60	1	0	0	0	0	1	59
Ire	Drozil	Brazil sJIA	51	1	0	0	2	0	3	48
ב	DIAZII	Brazil controls	66	1	0	1	2	0	4	62
	Argentina	Argentina sJIA	33	0	0	0	0	0	0	33
	Canada	Canada sJIA	25	0	0	0	8	0	8	17
	Spain	Spain sJIA	16	1	1	0	0	0	2	14
	Total (sJIA/controls)	982/431	33/2	16/2	22/12	126/6	38/3	212/23	770/408
	Stratum	Population	Samples	Heterozygosity	Call Rate	Relatedness	MDS	PCA	Excluded	Included
S		Pitt/CCF Controls	1437	21	61	0	0	438	511	926
ple	0.5.	Cincinnati Controls	832	33	0	0	0	7	40	792
am		1958BC Controls	1629	8	11	19	0	14	33	1596
ŝ	υ.κ.	NBS Controls	2710	111	0	48	0	51	209	2501
	Spain	Spain Controls	200	5	4	9	0	0	18	182
5	Argentina	Argentina Controls	260	6	47	16	0	132	145	115
11	Canada	Canada Controls	511	6	36	36	0	45	84	427
	Total in	silico controls	7579	191	159	128	0	641	1040	6539

EXCLUSION CRITERIA

sJIA, systemic juvenile idiopathic arthritis. Pitt, University of Pittsburgh. CCF, Cleveland Clinic Foundation. 1958BC, U.K.1958 British Birth Cohort. NBS, U.K. National Blood Service Study. MDS, multidimensional scaling. PCA, principal components analysis. From Ombrello MJ *et al. Proc Natl Acad Sci U S A* 2015; 112(52): 15970-5.

Table S4. Summary of SNP quality control procedures

EXCLUSION CRITERIA											
Stratum	Population	SNPs	MAF < 5%	Non- Autosomal	Call Rate	HWE	 Excluded	Remaining	Intersecting directly genotyped SNPs	Imputed SNPs	Imputed SNPs (post-QC)
115	Merged U.S. sJIA	1,062,530	445,457 2555 243	18 873	2448 52.643	120 073	447,905 2,620,221	614,625 1,672,142	176 106	18 263 07/	6 180 307
0.3.	Pitt/CCF Controls*	1,053,035	334,026	10,023	52,043 18,839	2550	363,570	698,960	470,170	10,203,774	0,107,377
U.K.	U.K. sJIA 1958BC Controls* NBS Controls*	1,062,530 914,714 1,115,428	347,154 86,149 178,713	1537	23,363 0 20,224	2991 14,374	370,517 89,140 214,848	692,013 825,574 900,580	440,688	18,263,701	6,255,387
Germany	Germany sJIA Germany Controls	1,062,530 1,062,530	349,606 349,193		6,974 14,537	760	356,580 363,991	705,950 698,539	682,516	18,266,121	6,391,432
Turkey	Turkey sJIA Turkey Controls	1,062,530 1,062,530	332,343 337,395		4744 22,045	560	337,087 359,667	725,443 702,863	682,598	18,270,612	6,389,103
Italy	Italy sJIA Italy Controls	1,062,530 1,062,530	340,450 340,986		9930 3756	388	350,380 344,919	712,150 717,611	686,397	18,269,173	6,375,260
Brazil	Brazil sJIA Brazil Controls	1,062,530 1,062,530	277,488 288,033		3174 7968	430	280,662 296,197	781,868 766,333	740,509	18,263,563	6,698,947
Argentina	Argentina sJIA Argentina Controls*	1,062,530 985,839	347,035 272,864		20,552 68,333	482	367,587 273,105	694,943 712,734	659,100	18,263,401	6,129,601
Canada	Canada sJIA Canada Controls*	1,062,530 1,027,449	357,390 242,748	22,510	29,262 26,109	3636	386,652 270,675	675,878 736,311	396,935	18,263,146	5,812,530
Spain	Spain sJIA Spain Controls*	1,062,530 311,273	375,042 10,432	8350	38,205 5078	3512	413,247 17,266	649,283 287,593	156,136	18,261,199	4,147,550

* *in silico* control populations. SNP, single nucleotide polymorphism. MAF, minor allele frequency. HWE, Hardy Weinberg equilibrium. QC, quality control. modified from Ombrello MJ *et al. Proc Natl Acad Sci U S A* 2015; 112(52): 15970-5.

PolygoJIA risk locus ^a	PolygoJIA peakSNP	PolygoJIA p-value	PolygoJIA OR (95 C.I.)	sJIA p-value ^{b,c}	sJIA OR (95 C.I.)	² İ	N studies/ N samples
HLA-DQB1- HLA-DQA2	rs7775055	3.1 x 10 ⁻¹⁷⁴	6.0 (5.3, 6.8)	0.3	1.5 (0.7, 2.8)	0	3/399
PTPN22	rs6679677	1.4 x 10 ⁻¹²	1.6 (1.5, 1.7)	0.1	1.2 (1.0, 1.5)	0	6/7314
STAT4	rs10174238	1.3 x 10 ⁻¹³	1.3 (1.2, 1.4)	0.2	1.2 (0.9, 1.6)	0.46	3/559
PTPN2	rs2847293	1.4 x 10 ⁻¹²	1.3 (1.2, 1.4)	0.1	0.7 (0.4, 1.2)	0.25	7/7408
	rs71624119	4.4 x 10 ⁻¹¹	0.8 (0.7, 0.8)	2.8 x 10 ⁻³	0.7 (0.6, 0.9)	0.10	4/2517
ANNINDSS	rs10213692	2.7 x 10 ⁻¹¹	0.8 (0.7, 0.8)	2.9 x 10 ⁻³	0.7 (0.6, 0.9)	0.16	4/2516
IL2-IL2I	rs1479924	6.2 x 10 ⁻¹¹	0.8 (0.7, 0.9)	0.5	1.1 (0.8, 1.5)	0	9/7713
IL2RA	rs7909519	8.0 x 10 ⁻¹⁰	0.7 (0.6, 0.8)	0.2	0.9 (0.7, 1.1)	0.57	9/7711
	rs3184504	2.6 x 10 ⁻⁹	1.2 (1.1, 1.3)	0.09	1.1 (1.0, 1.2)	0	9/7714
5H2B3-A1XN2	rs7137828	1.6 x 10 ⁻⁹	1.2 (1.1, 1.3)	0.1	1.1 (1.0, 1.2)	0	9/7708
	rs27290	7.5 x 10 ⁻⁹	1.3 (1.2, 1.5)	0.06	1.2 (1.0, 1.5)	0	9/7713
ERAP2-LNPEP	rs27293	7.4 x 10 ⁻⁹	1.3 (1.2, 1.4)	0.06	1.2 (1.0, 1.5)	0	9/7712
UBE2L3	rs2266959	6.2 x 10 ⁻⁹	1.2 (1.2, 1.3)	0.3	1.1 (0.9, 1.3)	0	9/7713
	rs6894249	9.7 x 10 ⁻¹⁰	0.8 (0.7, 0.8)	0.5	1.1 (0.9, 1.3)	0	9/7711
C501150-IKF1	rs4705862	1.0 x 10 ⁻⁸	0.8 (0.8, 0.9)	0.5	1.0 (0.9, 1.1)	0	8/7513
	rs8129030	5.4 x 10 ⁻⁹	0.8 (0.7, 0.8)	0.7	1.0 (0.9, 1.1)	0	8/7513
RUNX1	rs9979383	1.1 x 10 ⁻⁸	0.8 (0.7, 0.9)	0.9	1.0 (0.9, 1.1)	0	8/7520
IL2RB	rs2284033	1.6 x 10 ⁻⁸	0.8 (0.8, 0.9)	0.5	1.0 (0.9, 1.2)	0	9/7716
	rs11265608	2.8 x 10 ⁻⁸	1.3 (1.2, 1.5)	0.03	1.3 (1.0, 1.6)	0	6/7229
AIPOBZ-ILOR	rs72698115	1.3 x 10 ⁻⁸	1.4 (1.2, 1.5)	0.05	1.3 (1.0, 1.6)	0	6/7226
FAS	rs7069750	2.9 x 10 ⁻⁸	1.2 (1.1, 1.3)	0.6	1.0 (0.9, 1.2)	0	9/7712
750001 4	rs12434551	1.6 x 10 ⁻⁸	0.8 (0.7, 0.9)	0.5	1.0 (0.9, 1.1)	0.38	9/7711
ZFP36L1	rs3825568	1.2×10^{-8}	0.8 (0.7, 0.8)	0.8	1.0 (0.9, 1.1)	0.43	9/7712

Table S5. Examination of peak SNPs from polygoJIA susceptibility loci in sJIA case-control collections^{*}

^{*}*TYK2* variant was not examined because its frequency was below the quality control thresholds of the present study. ^a Peak polygoJIA-associated SNPs as reported by Hinks *et al.*¹¹. ^b Association testing was performed under the same model reported by Hinks *et al.*¹¹. ^c Significance threshold is p < 0.0022 (0.05 / 23 independent SNPs tested). SNP, single nucleotide polymorphism. polygoJIA, rheumatoid factor negative polyarticular and oligoarticular juvenile idiopathic arthritis. OR, odds ratio for the minor allele. 95 C.I., 95% confidence interval of the odds ratio. sJIA, systemic juvenile idiopathic arthritis. I², I² test of heterogeneity. N studies, number of strata included in meta-analysis. N samples, number of samples (cases + controls) included in meta-analysis.

Table S6. Minor allele frequencies of polygoJIA risk SNPs in from polygoJIA ImmunoChip study and from INCHARGE sJIA case and control collections.

	Hinks e	et al.	U.	К.	U.	S.	Gerr	nany	Ita	ly	Tur	key	Bra	azil	Arge	ntina	Can	ada	Spa	ain
Polygo risk SNP	Polygo	HC	sJIA	HC	sJIA	HC	sJIA	HC	sJIA	HC	sJIA	HC	sJIA	HC	sJIA	HC	sJIA	HC	sJIA	HC
rs7775055	0.12	0.02	0.03	0.02	0.04	0.03	0.04	0.03	0.01	0.03	0.05	0.02	0.07	0.07	0.12	0.09	0.00	0.02	0.04	0.02
rs6679677	0.14	0.10	0.10	0.10	0.10	0.08	0.13	0.10	0.06	0.04	0.03	0.04	0.01	0.03	0.03	0.04	0.15	0.10	0.10	0.07
rs10174238	0.28	0.23	0.24	0.24	0.24	0.26	0.25	0.20	0.30	0.19	0.26	0.30	0.33	0.32	0.29	0.39	0.36	0.25	0.44	0.23
rs2847293	0.20	0.17	0.13	0.16	0.15	0.16	0.11	0.13	0.16	0.11	0.18	0.09	0.17	0.19	0.12	0.12	0.15	0.15	0.04	0.16
rs71624119	0.20	0.25	0.20	0.23	0.18	0.23	0.23	0.28	0.23	0.19	0.19	0.25	0.16	0.19	0.13	0.16	0.23	0.22	0.15	0.23
rs10213692	0.20	0.25	0.20	0.24	0.18	0.23	0.23	0.28	0.23	0.19	0.18	0.25	0.17	0.20	0.13	0.16	0.24	0.22	0.15	0.23
rs1479924	0.24	0.29	0.25	0.29	0.29	0.28	0.28	0.24	0.35	0.32	0.24	0.23	0.28	0.26	0.21	0.19	0.09	0.27	0.32	0.32
rs7909519	0.08	0.11	0.07	0.11	0.12	0.10	0.09	0.12	0.06	0.07	0.13	0.08	0.06	0.09	0.06	0.05	0.09	0.10	0.19	0.08
rs3184504	0.54	0.49	0.51	0.48	0.53	0.49	0.48	0.47	0.50	0.45	0.40	0.36	0.37	0.38	0.36	0.34	0.59	0.49	0.36	0.44
rs7137828	0.54	0.49	0.50	0.48	0.53	0.49	0.49	0.47	0.49	0.45	0.39	0.36	0.36	0.38	0.36	0.36	0.58	0.49	0.36	0.44
rs27290	0.47	0.44	0.43	0.45	0.42	0.45	0.40	0.46	0.35	0.41	0.33	0.26	0.34	0.29	0.29	0.32	0.50	0.44	0.31	0.40
rs27293	0.47	0.44	0.43	0.45	0.42	0.45	0.40	0.46	0.35	0.41	0.33	0.26	0.34	0.29	0.29	0.32	0.50	0.44	0.31	0.40
rs2266959	0.22	0.19	0.21	0.19	0.19	0.19	0.17	0.21	0.25	0.17	0.27	0.18	0.23	0.24	0.38	0.30	0.21	0.18	0.25	0.17
rs6894249	0.35	0.39	0.37	0.39	0.38	0.38	0.40	0.40	0.37	0.27	0.44	0.38	0.48	0.50	0.52	0.47	0.27	0.35	0.37	0.37
rs4705862	0.39	0.44	0.42	0.44	0.42	0.43	0.44	0.45	0.46	0.36	0.45	0.50	0.44	0.44	0.48	0.49	0.31	0.41	0.45	0.42
rs8129030	0.33	0.37	0.38	0.37	0.37	0.37	0.33	0.37	0.31	0.39	0.30	0.35	0.23	0.27	0.33	0.34	0.41	0.33	0.28	0.36
rs9979383	0.33	0.37	0.39	0.37	0.38	0.37	0.33	0.37	0.32	0.41	0.31	0.37	0.23	0.26	0.35	0.34	0.41	0.34	0.27	0.37
rs2284033	0.39	0.44	0.45	0.44	0.41	0.42	0.44	0.39	0.36	0.42	0.36	0.41	0.35	0.32	0.45	0.33	0.44	0.40	0.43	0.40
rs11265608	0.12	0.10	0.11	0.10	0.12	0.09	0.15	0.13	0.04	0.04	0.03	0.02	0.11	0.05	0.03	0.05	0.06	0.10	0.00	0.08
rs72698115	0.12	0.10	0.11	0.10	0.12	0.09	0.15	0.12	0.04	0.04	0.03	0.02	0.05	0.05	0.02	0.05	0.05	0.10	0.00	0.08
rs7069750	0.48	0.44	0.45	0.44	0.47	0.45	0.43	0.42	0.46	0.47	0.39	0.44	0.48	0.48	0.49	0.45	0.46	0.46	0.37	0.45
rs12434551	0.43	0.47	0.46	0.47	0.44	0.47	0.47	0.45	0.48	0.36	0.38	0.55	0.50	0.40	0.49	0.44	0.41	0.43	0.43	0.49
rs3825568	0.42	0.46	0.46	0.47	0.45	0.47	0.47	0.45	0.49	0.36	0.38	0.55	0.48	0.38	0.48	0.45	0.41	0.44	0.44	0.49

PolygoJIA, rheumatoid factor negative polyarticular and oligoarticular juvenile idiopathic arthritis. SNP, single nucleotide polymorphism. sJIA, systemic juvenile idiopathic arthritis. HC, healthy control subject.

Christer	Wilcoxon Ran	k Sum Test p-value	Polygo-wGRS Logistic
Stratum	Polygo-wGRS	Polygo Risk Alleles	Regression p-value
Full collection	0.065	0.112	0.261
Argentina	0.761	0.394	0.479
Brazil	0.945	0.494	0.967
Canada	0.720	0.134	0.799
Germany	0.732	0.558	0.696
Italy	0.926	0.939	0.819
Spain	0.546	0.828	0.944
Turkey	0.415	0.080	0.491
U.K.	0.173	0.103	0.450
U.S.	0.497	0.350	0.462

Table S7. Evaluation of polygo-wGRS in sJIA case-control collections

Polygo, rheumatoid factor negative polyarticular and oligoarticular juvenile idiopathic arthritis. wGRS, weighted genetic risk scores. sJIA, systemic juvenile idiopathic arthritis.

Ctrotum.	Wilcoxon Ran	k Sum Test p-value	RF+Poly-wGRS Logistic			
Stratum	RF+Poly wGRS	RF+Poly Risk Alleles	Regression p-value			
Full collection	0.006	0.747	0.0151			
Argentina	0.732	1.0	0.894			
Brazil	0.508	0.479	0.388			
Canada	0.522	0.836	0.341			
Germany	0.798	0.889	0.992			
Italy	0.777	0.862	0.732			
Spain	0.435	0.693	0.154			
Turkey	0.643	0.397	0.906			
U.K.	0.197	0.563	0.398			
U.S.	0.283	0.841	0.452			

Table S8. Evaluation of RF+poly-wGRS in sJIA case-control collections

RF+poly, rheumatoid factor positive polyarticular juvenile idiopathic arthritis. wGRS, weighted genetic risk score. sJIA, systemic juvenile idiopathic arthritis.

Polygenic diseases Monogenic diseases Primary angle closure glaucoma Stickler syndrome COL11A1 Lumbar degenerative disc disease Skeletal dysplasia Stroke Coronary artery disease Peripheral artery disease HDAC9 Ulcerative colitis Non-diabetic retinopathy Obsessive-compulsive disorder Inflammatory skin disease LOC101929446 Amyotrophic lateral sclerosis Type 2 diabetes PRICKLE2 Coronary artery calcification Schizophrenia **ZNF521** Periodontitis Colorectal cancer EIF3H Ossification of posterior longitudinal ligament of spine Spinocerebellar atrophy **WWOX** Type 2 diabetes Infantile epileptic epilepsy Schizophrenia Major depressive disorder LOC101928737 / JPH3 Bipolar disorder Alzheimer's disease LOC101927573 / Endometriosis SORCS1 Prion disease TRIM58 Spontaneous pituitary adenoma LOC101928516 / Congenital myopathy COL12A1 Acne LOC257396 / MOCS2 Molybdenum cofactor deficiency Schizophrenia LDB2 / TAPT1 / Syndromic osteochondrodysplasia Amyotrophic lateral sclerosis ZEB2P1 Paget's disease Chronic obstructive pulmonary disease RIN3 / LGMN Alzheimer's disease MTHFSD / FOXL1 / Lymphedema-distichiasis FOXC2

Table S9. Reported associations ($p < 1 \ge 10^{-5}$) between suggestive sJIA susceptibility loci and other diseases.

Underlined and italicized phenotypes have associations that exceed the threshold of genome-wide significance.

B

Figure S1. Summary of study design implemented by genomewide association study of systemic juvenile idiopathic arthritis. The International Childhood Arthritis Genetics Consortium GWAS of sJIA includes children from 14 referral centers (yellow stars) in 9 countries (red shading), as shown in (A). The design of the study, which was stratified on the basis of geographic origin, is summarized in the flow chart in (B).

Figure 1

18

Figure S2. Summary of Quality Control Operations. Collections of directly genotyped sJIA cases and controls were combined with *in silico* SNP genotypes from additional control populations and were combined into 9 groups on the basis of geographic origin. Each collection was subjected to sample and SNP QC processes to produce 9 case-control strata. SNP imputation and association testing was performed separately in each population, and the genome-wide association results were meta-analyzed.

Figure S3. MHC locus is the strongest sJIA susceptibility locus. The regional association plot **(A)** of the MHC locus demonstrates a combination of additive (blue circles) and dominant (green circles) associations with sJIA. The threshold of genome-wide significance ($p < 2.5 \times 10^{-8}$) is depicted by the horizontal black line. The forest plots display the effect of the peak SNP, rs41291794, on sJIA risk. MHC, major histocompatibility complex. OR, odds ratio. sJIA, systemic juvenile idiopathic arthritis. SNP, single nucleotide polymorphism.

Figure S4. Regional association and forest plots of loci highly suggestive of association with sJIA. Regional association plots for susceptibility loci nearest to *COL11A1* (A) and *HDAC9* (B) demonstrate a combination of additive (blue circles) and dominant (green circles) associations with sJIA. The threshold of genome-wide significance ($p < 2.5 \times 10^{-8}$) is depicted by the horizontal black line. Forest plots display the effect of the peak SNP from each susceptibility locus in the study populations. OR, odds ratio. sJIA, systemic juvenile idiopathic arthritis. SNP, single nucleotide polymorphism.

Figure S5. Polygo JIA risk allele counts in sJIA case-control collections. Kernel density plots display the distributions of polygo JIA risk allele counts in 9 sJIA case-control populations (A) and in the case-control collection (B). P values were calculated with the Wilcoxon Rank Sum test.

Figure S6. Polygo JIA weighted genetic risk scores (polygo-wGRS) in sJIA case-control collections. Kernel density plots display the distributions of polygo-wGRS in the 9 sJIA case-control populations. P values were calculated with the Wilcoxon Rank Sum test.

Figure S7. Predictive value of polygo JIA weighted genetic risk score (polygo-wGRS) in sJIA case-control collections. Receiver operator characteristic (ROC) curves with area under the curve (AUC) calculations demonstrate the performance of polygo-wGRS at predicting sJIA status in 9 sJIA case-control collections.

Figure S8. RF+ poly JIA risk allele counts in sJIA case-control collections. Kernel density plots display the distributions of RF+poly JIA risk allele counts in 9 sJIA case-control populations **(A)** and in the full case-control collection **(B)**. P values were calculated with the Wilcoxon Rank Sum test.

Figure S9. RF+ poly JIA weighted genetic risk scores (RF+poly-wGRS) in sJIA case-control collections. Kernel density plots display the distributions of RF+poly-wGRS in the 9 sJIA case-control populations. P values were calculated with the Wilcoxon Rank Sum test.

2

RF+poly-wGRS

-1

0

3

5

6

0.00

0.25

0.50

False positive fraction

0.75

1.00

Figure S10. Examination of RF+ poly JIA weighted genetic risk score (RF+poly-wGRS) in full sJIA collection. Kernel density plot displays the distribution of RF+poly-wGRS in the full sJIA case-control collection (A). P-value was calculated with the Wilcoxon Rank Sum test. In **Panel B**, receiver operator characteristic (ROC) curve with area under the curve (AUC) calculation demonstrates the performance of RF+poly-wGRS at predicting sJIA status in the full case-control collection.

Full sJIA study population

Figure S11. Scatter plot of RF+ poly JIA weighted genetic risk scores (RF+poly-wGRS) in sJIA cases and controls from the full study collection. Histograms demonstrate the distributions of RF+poly-wGRS in sJIA cases (red) and controls (black) from the full study collection. The horizontal lines represent the median values from each group, and the median and mean values are shown in the table to the right.

Figure S12. Predictive value of RF+ poly JIA weighted genetic risk score (RF+poly-wGRS) in sJIA collections. Receiver operator characteristic (ROC) curves with area under the curve (AUC) calculations demonstrate the performance of RF+poly-wGRS at predicting sJIA status in 9 sJIA case-control collections.