# Imposing control on self-assembly: rational design and synthesis of a mixed-metal, mixed-ligand coordination cage containing four types of component

Alexander J. Metherell and Michael D. Ward

Supporting Information

- 1 Experimental information
- 2 Bond distances (Å) around the metal ions from the crystal structure
- 3 High-resolution electrospray mass spectra of selected signals
- 4 Additional NMR data
- 5 Additional figures of the crystal structure of  $[Ru_4Cd_{12}(L^{ph})_{12}(L^{naph})_{12}]$ (PF<sub>6</sub>)<sub>7</sub>(BF<sub>4</sub>)<sub>25</sub>

#### 1. Experimental information

#### General details

Metal salts and all organic reagents were purchased from Alfa or Sigma-Aldrich and used as received. <sup>1</sup>H NMR spectra were recorded on Bruker DRX 500 MHz, Bruker AV-III 400 MHz or AV-1 800 MHz instruments. Low-resolution electrospray mass spectra were recorded on a Micromass LCT instrument. High-resolution electrospray mass spectra were measured on an electron transfer dissociation (ETD) enabled ThermoFisher-Scientific Orbitrap Elite, equipped with an HESI source (ThermoFisher Scientific). UV/Vis absorption spectra were measured on a Cary 50 spectrophotometer.

## Preparation of $[Ru_4Cd_{12}(L^{ph})_{12}(L^{naph})_{12}](PF_6)_7(BF_4)_{25}$

To a stirred solution of *fac*-[Ru(L<sup>ph</sup>)<sub>3</sub>](PF<sub>6</sub>)<sub>2</sub> (0.023 g, 0.015 mmol; preparation in ref 1) in nitromethane (10 cm<sup>3</sup>) was added [Cd<sub>3</sub>(L<sup>naph</sup>)<sub>3</sub>](BF<sub>4</sub>)<sub>6</sub> (0.035 g, 0.015 mmol; preparation in ref. 6, main text). The initially turbid solution became clear after heating at 60 °C for 1 hour, after which the mixture was passed through a membrane filter. Slow diffusion of di-isopropyl ether into the nitromethane solution yielded the complex as large yellow blocks of X-ray quality, which were separated from the mother liquor and washed with di-isopropyl ether. Yield: 0.022 g, 40 %. ESMS (selected peaks): *m/z* 2835, ([Ru<sub>4</sub>Cd<sub>12</sub>(L<sup>ph</sup>)<sub>12</sub>(L<sup>naph</sup>)<sub>12</sub>](BF<sub>4</sub>)<sub>26</sub>(PF<sub>6</sub>))<sup>5+</sup>; 2348,

 $([Ru_4Cd_{12}(L^{ph})_{12}(L^{naph})_{12}](BF_4)_{25}(PF_6))^{6+}; 2000, ([Ru_4Cd_{12}(L^{ph})_{12}(L^{naph})_{12}](BF_4)_{24}(PF_6))^{7+}.$ UV/Vis in MeCN [ $\lambda_{max}$ /nm (10<sup>-3</sup>  $\epsilon$ /M<sup>-1</sup> cm<sup>-1</sup>)]: 397 (50.3), 287 (577.0), 229 (783.8). Note that the extinction coefficient associated with the Ru-based MLCT absorption at 397 nm is *ca.* four times more intense than for mononuclear *fac*-[Ru(L<sup>ph</sup>)<sub>3</sub>](PF\_6)<sub>2</sub> (ref. 12, main text).

| $C_{1}(1) N(11K)$                                                | 2 208(0)                           | $C_{1}(2) N(11D)$                                                                | 2 275(9)                           |
|------------------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------|------------------------------------|
| Cd(1)-N(11K)                                                     | 2.298(9)                           | Cd(2)-N(11D)                                                                     | 2.2/5(8)                           |
| Cd(1)-N(11E)                                                     | 2.313(8)                           | Cd(2)-N(31C)                                                                     | 2.310(8)                           |
| Cd(1)-N(22E)                                                     | 2.327(8)                           | Cd(2)-N(42C)                                                                     | 2.316(10)                          |
| Cd(1)-N(22K)                                                     | 2.342(10)                          | Cd(2)-N(42V)                                                                     | 2.329(10)                          |
| Cd(1)-N(22B)                                                     | 2.345(8)                           | Cd(2)-N(22D)                                                                     | 2.380(8)                           |
| Cd(1)-N(11B)                                                     | 2.358(8)                           | Cd(2)-N(31V)                                                                     | 2.418(11)                          |
|                                                                  |                                    |                                                                                  |                                    |
| Cd(4)-N(11Q)                                                     | 2.287(9)                           | Cd(6)-N(42E)                                                                     | 2.278(10)                          |
| Cd(4)-N(41N)                                                     | 2.298(9)                           | Cd(6)-N(31F)                                                                     | 2.283(9)                           |
| Cd(4)-N(31D)                                                     | 2.317(11)                          | Cd(6)-N(31E)                                                                     | 2.295(11)                          |
| Cd(4)-N(22Q)                                                     | 2.347(9)                           | Cd(6)-N(42F)                                                                     | 2.338(9)                           |
| Cd(4)-N(42D)                                                     | 2.360(11)                          | Cd(6)-N(11H)                                                                     | 2.357(11)                          |
| Cd(4)-N(31N)                                                     | 2 377(10)                          | Cd(6)-N(22H)                                                                     | 2 381(12)                          |
|                                                                  |                                    | Cu(0) 1 (2211)                                                                   | 2.001(12)                          |
| Cd(9)-N(111)                                                     | 2 248(10)                          | Cd(10)-N(42W)                                                                    | 2 231(11)                          |
| Cd(9)-N(11L)                                                     | 2.210(10)                          | Cd(10) - N(31M)                                                                  | 2.231(11)<br>2 298(10)             |
| Cd(9)-N(11N1)                                                    | 2.291(11)<br>2.202(0)              | Cd(10) - N(3101)                                                                 | 2.298(10)<br>2.215(11)             |
| Cd(9)- $N(22L)$                                                  | 2.302(9)                           | Cd(10) - N(22T)                                                                  | 2.313(11)<br>2.221(0)              |
| Cd(9)-N(42A)                                                     | 2.309(10)                          | Cd(10)-N(111)                                                                    | 2.321(9)                           |
| Cd(9)-N(22M)                                                     | 2.350(10)                          | Cd(10)-N(31W)                                                                    | 2.331(13)                          |
| Cd(9)-N(31A)                                                     | 2.3/4(11)                          | Cd(10)-N(42M)                                                                    | 2.3/3(11)                          |
|                                                                  |                                    |                                                                                  |                                    |
| Cd(11)-N(42G)                                                    | 2.258(13)                          | Cd(12)-N(42P)                                                                    | 2.246(10)                          |
| Cd(11)-N(11R)                                                    | 2.284(10)                          | Cd(12)-N(42R)                                                                    | 2.269(13)                          |
| Cd(11)-N(42O)                                                    | 2.315(12)                          | Cd(12)-N(31R)                                                                    | 2.306(12)                          |
| Cd(11)-N(310)                                                    | 2.329(10)                          | Cd(12)-N(31P)                                                                    | 2.316(12)                          |
| Cd(11)-N(22R)                                                    | 2.340(9)                           | Cd(12)-N(31X)                                                                    | 2.341(13)                          |
| Cd(11)-N(31G)                                                    | 2.412(12)                          | Cd(12)-N(42X)                                                                    | 2.374(12)                          |
|                                                                  |                                    |                                                                                  |                                    |
| Cd(14)-N(31J)                                                    | 2.257(13)                          | Cd(15)-N(42I)                                                                    | 2.221(16)                          |
| Cd(14)-N(22C)                                                    | 2.287(10)                          | Cd(15)-N(42T)                                                                    | 2.283(13)                          |
| Cd(14)-N(310)                                                    | 2.297(11)                          | Cd(15)-N(31L)                                                                    | 2.283(9)                           |
| Cd(14)-N(42O)                                                    | 2.303(13)                          | Cd(15)-N(42L)                                                                    | 2.329(9)                           |
| Cd(14)-N(11C)                                                    | 2 321(10)                          | Cd(15)-N(31T)                                                                    | 2 364(10)                          |
| Cd(14)-N(421)                                                    | 2.399(12)                          | Cd(15)-N(311)                                                                    | 2.388(12)                          |
|                                                                  | 2.577(12)                          |                                                                                  | 2.500(12)                          |
| Cd(16)-N(11F)                                                    | 2 245(14)                          | Cd(7)-N(110)                                                                     | 2 293(9)                           |
| Cd(16) N(22F)                                                    | 2.243(14)<br>2 297(14)             | Cd(7) N(110)                                                                     | 2.275(7)                           |
| Cd(16) N(21K)                                                    | 2.27(14)                           | Cd(7) N(22P)                                                                     | 2.317(10)<br>2.322(10)             |
| Cd(16) - N(31K)                                                  | 2.312(12)<br>2.220(11)             | Cd(7) - N(221)                                                                   | 2.322(10)<br>2.220(10)             |
| Cd(10)-N(42K)                                                    | 2.330(11)<br>2.227(16)             | Cd(7)-N(420)                                                                     | 2.339(10)<br>2.359(0)              |
| Cd(10)-N(425)                                                    | 2.337(10)                          | Cd(7)-N(220)                                                                     | 2.339(9)                           |
| Ca(10)-IN(318)                                                   | 2.41(2)                            | $\operatorname{Ca}(7)$ -IN(31U)                                                  | 2.300(12)                          |
| $D_{1}(2) \rightarrow T(1,1,2)$                                  | 2.022(0)                           | $\mathbf{D}_{\mathbf{r}}(\mathbf{z}) \mathbf{N}(\mathbf{z}\mathbf{z}\mathbf{I})$ | 2.02((0)                           |
| $\frac{\text{Ku}(3)-\text{N}(11\text{V})}{\text{N}(22\text{V})}$ | 2.022(9)                           | Ru(5)-N(22J)                                                                     | 2.036(9)                           |
| Ru(3)-N(22V)                                                     | 2.032(8)                           | Ru(5)-N(11G)                                                                     | 2.043(9)                           |
| Ru(3)-N(22A)                                                     | 2.038(9)                           | Ku(5)-N(31H)                                                                     | 2.046(11)                          |
| Ru(3)-N(42B)                                                     | 2.075(8)                           | Ru(5)-N(22G)                                                                     | 2.058(10)                          |
| Ru(3)-N(31B)                                                     | 2.083(9)                           | Ru(5)-N(11J)                                                                     | 2.074(9)                           |
| Ru(3)-N(11A)                                                     | 2.089(9)                           | Ru(5)-N(42H)                                                                     | 2.083(9)                           |
|                                                                  |                                    |                                                                                  |                                    |
| Ru(8)-N(22S)                                                     | 2.029(10)                          | Ru(13)-N(11I)                                                                    | 1.988(13)                          |
| Ru(8)-N(22U)                                                     | 2 059(9)                           | Ru(13)-N(22N)                                                                    | 2.053(10)                          |
| $D_{(0)} M(11W)$                                                 | =:00)())                           |                                                                                  |                                    |
| Ru(8)-N(11W)                                                     | 2.072(10)                          | Ru(13)-N(11N)                                                                    | 2.071(12)                          |
| Ru(8)-N(11W)<br>Ru(8)-N(22W)                                     | 2.072(10)<br>2.083(9)              | Ru(13)-N(11N)<br>Ru(13)-N(22X)                                                   | 2.071(12)<br>2.074(9)              |
| Ru(8)-N(11W)<br>Ru(8)-N(22W)<br>Ru(8)-N(11U)                     | 2.072(10)<br>2.083(9)<br>2.100(10) | Ru(13)-N(11N)<br>Ru(13)-N(22X)<br>Ru(13)-N(11X)                                  | 2.071(12)<br>2.074(9)<br>2.098(11) |

# 2. Bond distances (Å) around the metal ions from the crystal structure

### 3. High-resolution electrospray mass spectra of selected signals









# 4. Additional NMR data



**Figure S3** COSY spectrum (500 MHz, 298K) of [Ru<sub>4</sub>Cd<sub>12</sub>(L<sup>ph</sup>)<sub>12</sub>(L<sup>naph</sup>)<sub>12</sub>](PF<sub>6</sub>)<sub>7</sub>(BF<sub>4</sub>)<sub>25</sub> in CD<sub>3</sub>NO<sub>2</sub>.



**Figure S4** DOSY spectrum (400 MHz, 298K) of [Ru<sub>4</sub>Cd<sub>12</sub>(L<sup>ph</sup>)<sub>12</sub>(L<sup>naph</sup>)<sub>12</sub>](PF<sub>6</sub>)<sub>7</sub>(BF<sub>4</sub>)<sub>25</sub> in CD<sub>3</sub>NO<sub>2</sub>.

5. Additional figures of the crystal structure of  $[Ru_4Cd_{12}(L^{ph})_{12}(L^{naph})_{12}]$ (PF<sub>6</sub>)<sub>7</sub>(BF<sub>4</sub>)<sub>25</sub>



Figure S5View of one of the large  $Ru_2Cd_4$  windows of  $[Ru_4Cd_{12}(L^{ph})_{12}(L^{naph})_{12}]$ <br/>(PF<sub>6</sub>)<sub>7</sub>(BF<sub>4</sub>)<sub>25</sub>, with an associated  $[PF_6]^-$  anion forming C-H...F contacts with<br/>the surface of the cage.



Figure S6 Space-filling version of Fig. S5



**Figure S7** View of one of the Cd<sub>3</sub> windows, with an associated [BF<sub>4</sub>]<sup>-</sup> anion forming C-H...F contacts with the surface of the cage.

![](_page_8_Picture_2.jpeg)

**Figure S8** Spacefilling view of Fig. S7 from a different orientation.