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1. Introduction to Quantum Computing

Here we provide a brief review of quantum computing for those
that are not experts in quantum computing. The aim of this
review is to introduce the basic concepts and notations that
are used in quantum computing as well as introduce quantum
algorithms for simulating chemistry and also quantum error
correction. For a more detailed exposition see [1]. These
concepts will be used in section 2 where we discuss quantum
processes such as phase estimation.

Qubits and Quantum Gates. In quantum computation, quan-
tum information is stored in a quantum bit, or qubit. Whereas
a classical bit has a state value s ∈ {0, 1}, a qubit state |ψ〉 is
a linear superposition of states:

|ψ〉 = α|0〉+ β|1〉 = [ αβ ] , [1]

where the {0, 1} basis state vectors are represented in Dirac
notation (called ket vectors) as |0〉 =

[
1 0

]T , and |1〉 =[
0 1

]T , respectively. The amplitudes α and β are complex
numbers that satisfy the normalization condition: |α|2 +|β|2 =
1. Upon measurement of the quantum state |ψ〉, either state
|0〉 or |1〉 is observed with probability |α|2 or |β|2, respectively.

Dirac notation is used largely because it contains an implicit
tensor product structure that makes expressing qubit states
much easier. For example, that the four-qubit state |0000〉
is equivalent to writing the tensor product of the four states:
|0〉 ⊗ |0〉 ⊗ |0〉 ⊗ |0〉 = |0〉⊗4 = [ 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ]T .

A general n-qubit quantum state lives in a 2n-dimensional
Hilbert space and is represented by a 2n× 1-dimensional state
vector whose entries represent the amplitudes of the basis
states. A superposition over 2n states is given by:

|ψ〉 =
2n−1∑
i=0

αi|i〉, such that
∑
i

|αi|2 = 1, [2]

where αi are complex amplitudes and i is the binary represen-
tation of integer i. The ability to represent a superposition over
exponentially many states with only a linear number of qubits
is one of the essential ingredients of a quantum algorithm —
an innate massive parallelism.

In a quantum computation, unitary transformations are
used to transform quantum states into other quantum states.
In particular, the quantum state |ψ1〉 of the system at time t1
is related to the quantum state |ψ2〉 at time t2 by |ψ2〉 = U |ψ1〉
for a unitary operator U .

In general we cannot expect that a quantum computer can
implement every unitary transformation on n qubits exactly
because there are an infinite number of such transformations.
Instead, gate model quantum computers use a discrete set of

quantum gates (which can be represented as 2n × 2n unitary
matrices) to approximate these continuous transformations.
Any such set of gates is known as universal if any unitary
transformation can be expressed, within arbitrarily small error,
as a sequence of such gates.

The gate set that we consider in this work includes the
following gates:

• the X gate which is the classical NOT gate that maps
|0〉 → |1〉 and |1〉 → |0〉.

• the Hadamard gate H maps |0〉 → 1√
2 (|0〉+ |1〉) and |1〉 →

1√
2 (|0〉 − |1〉).

• the Z gate maps |1〉 → −|1〉 and T is the fourth–root of
Z, and can be used to interconvert Z and X gates via
HZH = X.

• the Y gate maps |1〉 → −i|0〉 and |0〉 → i|1〉.

• the identity gate is represented by I.

• the two-qubit controlled-NOT gate, CNOT, maps |x, y〉 →
|x, x⊕ y〉. The corresponding unitary matrices are:

H = [ 1 1
1 -1 ] , X = [ 0 1

1 0 ] , Y =
[

0 i
−i 0

]
, Z = [ 1 0

0 -1 ] ,

T =
[ 1 0

0 eiπ/4
]
, I = [ 1 0

0 1 ] , CNOT =
[

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

]
.

Measurement is an exception to this rule; it collapses the
quantum state to the observed value, thereby erasing any
information about the amplitudes α and β. This means that
extracting information from a quantum system irreversibly
damages a state. Consequently, although the exponential par-
allelism that quantum computers naturally possess is mitigated
by the fact that most quantum computations will have to be
repeated many times to extract the necessary information
about the output of the quantum algorithm.

Quantum Circuit Synthesis. In order to understand how the
cost estimates of our algorithms are found it is important
to understand how arbitrary unitaries can be converted into
discrete gate sequences. For our purposes, we consider the
Clifford + T gate library discussed above, but compilation
into other gate sets is also possible [2, 3]. The simplest case
to consider is that of single qubit unitary synthesis where
U ∈ C2×2. In such cases, an Euler angle decomposition exists
such that, up to an irrelevant overall phase,

U = eiαZHeiβZHeiγZ . [3]
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Thus the problem of implementing a single qubit transfor-
mation reduces to the problem of performing the rotation
eiθZ = cos(θ)I + i sin(θ)Z. The general case of U ∈ C2n×2n

similarly reduces to instances of single qubit synthesis inter-
spersed with entangling gates such as CNOT. Thus implementing
single qubit rotations can be seen as an atomic operation on
which compilation process for U is based.

There are a host of methods known for decomposing ro-
tations into Clifford and T gates. Perhaps the earliest such
algorithm is the Solovay–Kitaev algorithm [4], which provided
an efficient method for performing this decomposition based on
Lie–algebraic techniques. In recent years, much more efficient
methods for decomposition have been discovered that are based
on number theory. These methods require near–quartically
fewer operations than the Solovay–Kitaev algorithm would
need [4] and are useful, if not necessary, for reducing the gate
counts of the simulation algorithm to a palatable level.

In the absence of ancillae, the cost required to approximate
an axial rotation within error ε for the worst possible input
angle, C(ε), is known to lie within the interval [5]

4 log2(1/ε)− 9 ≤ C(ε) ≤ 4 log2(1/ε) + 11. [4]

Subsequent work [6] has provided a method that has an average
case complexity roughly 3/4 of this worst case bound and also
has made the compilation process efficient [7].

More recent methods have introduced the use of ancillae to
reduce the costs of synthesis [8]. These methods can substan-
tially reduce the number of T gates required to perform the
synthesis. This approach can reduce the scaling of the average
number of T gates needed to implement an axial rotation

C(ε) ≈ 1.15 log2(1/ε) + 9.2. [5]

This approach requires one additional ancilla qubit.
Asymptotically better methods exist, such as repeat-until-

success (RUS) synthesis with fallback [8], but these methods
do not outperform this method given the range of ε that we
require for the simulation to reach chemical accuracy. Further
methods such as PAR rotations [9] or gearbox circuits [10] can
be used to substantially reduce the T–depth of the simulation
circuits at the price of requiring greater parallel width. While
we do not consider the impact of gearbox synthesis here, we
will examine the costs and benefits of PAR rotations.

An important issue arises when using such methods for
parallel execution. If several rotations are implemented simul-
taneously on different qubits and RUS synthesis is used then
the dominant contribution to the cost is given by the longest
sequence of gates used in each block of parallelized rotations.
In particular, while RUS synthesis reduces the expectation
value by a factor of roughly 4 from the worst case bounds, it is
clear that when performing many of them in parallel it is very
likely that at least one of them will saturate the bound. For
this reason we use upper bounds on deterministic synthesis
given by Eq. (4), which have a better worst case scaling.

Simulating Quantum Chemistry. Our approach to quantum
chemistry simulations closely follows the strategy proposed in
Ref. [11]. We begin by representing the quantum chemistry
Hamiltonian in a second quantized form, keeping track of
the locations of the electrons by using the occupations of a
discrete basis of spin-orbitals. Since a spin orbital can only
contain one electron, such states are very natural to express

in a quantum computer. Each spin orbital is assigned a qubit
where the state |1〉 corresponds to an occupied orbital and |0〉
an unoccupied orbital.

These states are often described using creation and annihi-
lation operators which obey a†|0〉 = |1〉, a†|1〉 = 0, a|1〉 = |0〉
and a|0〉 = 0. Since these operators correspond to creat-
ing electrons, they must respect the symmetries appropri-
ate for Fermions. The most important property is the anti–
commutation property {a†i , aj} = δi,j . This means that while
it may be tempting to identify a† = (X− iY)/2, such a repre-
sentation does not satisfy the anti–commutation relation for
Fermionic operators. Instead, these creation and annihilation
operators can be converted into Pauli operators using the
Jordan–Wigner or Bravyi–Kitaev [12] transformations.

In order to simulate the dynamics of the system we need
to emulate the unitary dynamics that the system undergoes
using a sequence of gate operations. This dynamics is of the
form e−iHt where

H =
∑
pq

hpqa
†
paq + 1

2
∑
pqrs

hpqrsa
†
pa
†
qaras, [6]

Once these fermionic creation and annihilation operators are
translated into Pauli operators using, for example, the Jordan–
Wigner transformation then the Hamiltonian can be translated
into a sequence of operations that individually could be per-
formed on a quantum computer. Well known circuits exist
for performing the exponentials yielded by the Trotter–Suzuki
formulas [1, 13, 14].

The most direct method for estimating the ground-state en-
ergy is phase estimation (see Section 2 for more detail). Phase
estimation uses quantum interference between controlled ex-
ecutions of I, e−iHt1 , e−iHt2 , . . ., to infer the eigenvalues of
e−iHt. If t is smaller than π/‖H‖ this also directly yields the
eigenvalues of H. Apart from the ability to directly sample
from the eigenvalues, a further advantage to phase estima-
tion is that it requires O(1/ε) applications of e−iHdt to learn
its eigenphase within error ε with high probability. This is
quadratically better than bounds on the variance that would
be seen from optimal classical sampling methods using an
unbiased estimator.

It is necessary to apply phase estimation on an initial state
that has large overlap with the ground state in order to find
the ground-state energy with high probability,. Specifically,
if applied to an initial state |ψ〉 = ag|EG〉+

√
1− |ag|2

∣∣E⊥G〉
then PE returns an estimate of ground-state energy EG with
probability |ag|2. The simplest state to use is the Hartree–
Fock state, which only requires applying a sequence of NOT
gates to the state |0〉n, however configuration interaction with
sufficiently high excitations may be required to achieve high
overlap for systems that have strong correlations in their
ground states. We do not consider the cost of preparing such a
state here, since such a cost of preparing a sufficiently accurate
approximation to the ground state of FeMoco is difficult to
determine in absentia of large scale quantum computers. We
discuss this issue in more detail in Section 6.

Quantum error correction. Quantum hardware is far less ro-
bust to errors as classical hardware. Quantum error correction
provides a way to reduce the errors in the device without
sacrificing the quantum nature of the system. Quantum error
correcting codes require that the physical error rates, say of
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qubits, quantum gates, and measurements, are less than a
given threshold value. This threshold value depends on the
error correcting code being used and the type of noise of the
system. If error rates are below the threshold, then errors in
the computation, referred to as the logical gates and logical
qubits, can be made arbitrarily small at only a polylogarithmic
overhead.

The surface code is currently the most popular code due
in part to its relatively high threshold of 1% [15]. Much of
this enthusiasm has arisen because of evidence that existing
superconducting quantum computers may already have error
rates near this threshold [16]. This raises the hope that a
fault-tolerant, scalable quantum computer may be just over
the horizon.

While quantum error correction promises the ability to
perform arbitrarily long quantum computations on a noisy
device, the resources required to execute such a fault-tolerant
computation can be large if the system operates close to
the threshold. The majority of the cost of quantum error
correction arises from the need to perform a universal set
of quantum gates. While protecting so-called Clifford gates
requires very little overhead in the surface code, in comparison
protecting a non-Clifford gate, such as a T or Toffoli gate,
requires substantial resources. While several techniques for
producing fault-tolerant non-Clifford gates exist [17–20], here
we focus on the use of magic state distillation in conjunction
with the surface code [15]. Magic state distillation [21] takes
as input a set of noisy resource states and outputs a cleaner
resource state. For the surface code, we must distlll the T
state as it cannot be implemented directly in the code. Here
we consider the 15−1 distillation scheme of Bravyi and Kitaev
[21], where 15 noisy input states with error rate p produce
a single magic resource state with error rate roughly 35p3.
Magic state distillation consists only of Clifford operations,
which can be implemented easily within the surface code.

Further details about the architectural issues that arise
when implementing quantum error correction in future devices
can be found in [22–24].

2. Implementing Phase Estimation

In this section, we discuss how to implement the phase esti-
mation protocol in quantum computers. This is important
to our subsequent estimates of the complexity of simulating
nitrogenase’s FeMoco because phase estimation constitutes
the outer most loop of the quantum simulation and hence is a
major driver of the cost of the simulation.

Phase Estimation. Phase estimation is one of the most critical
components of the quantum simulation algorithm. Without
phase estimation, the amount of simulation time needed to
estimate the ground-state energy would grow quadratically
as ε−2 with the precision ε required. Since ε is on the order
of 0.1mHartree, the phase must be estimated for one time
step of the evolution operator within an error 0.1/r mHartree
where r is the number of Trotter steps required. If statistical
sampling, rather than phase estimation, were used to estimate
the phase then on the order of 1012 experiments would be
needed to make the variance in the estimate sufficiently small.
This would be impractical and so phase estimation is crucial
for most large scale applications in quantum chemistry.

|0〉 H Rz(Mθ) H

|ψ〉 UM

Fig. 1. Iterative phase estimation. This circuit is used in iterative phase estimation
algorithms wherein the eigenvalues are inferred from measurement statistics.

The standard quantum phase estimation algorithm [1] al-
lows eigenvalues to be learned within error ε with probability
at least 1/2 uses a number of applications of the unitary circuit,
M(ε), that is bounded above by

M(ε) ≤ 16π
ε
. [7]

This value is far from optimal time scaling of π/ε, but has the
advantage of requiring neither measurements of the quantum
system nor a classical computer to infer the most likely eigen-
value. We will also use this result below because it provides
an upper bound on the cost of the optimal phase estimation
algorithm.

An alternative approach is to use iterative phase estimation.
Iterative phase estimation forgoes storing the phase in a quan-
tum register and instead uses a classical inference algorithm to
learn the eigenphase from measurements of an auxiliary probe
qubit that is iteratively measured and re-entangled with the
system. Kitaev proposed the first variant of iterative phase
estimation. The circuit used in this process is given in Fig 1.

The ultimate limit that can be achieved, in terms of the
number of times the unitary is applied as a function of desired
error tolerance, is given by [25–27]

M(ε) ≈ π

ε
. [8]

Furthermore, Gaussian strategies such as rejection filter phase
estimation (RFPE) [28] yield Bayesian Cramer–Rao bounds
that come close to saturating this: 3.3/ε. As these bounds are
often saturated for likelihood functions of this form [29] and be-
cause the Gaussian assumption causes the user to throw away
substantial information from higher moments in the posterior
distribution, we expect that Eq. (8) represents the ultimate
limit for phase estimation and that based on previous studies
the use of optimized policies [30–32] will enable performance
that comes close to saturating this limit. As a result we use
M(ε) ≈ π/(2ε) as a surrogate for the expected performance of
these optimized approaches, where the factor of 2 difference
follows from an important optimization that holds for the case
of quantum simulation algorithms that we discuss in detail in
the following section.

Controlled rotations. While the previous discussion only
showed how to perform a Z–rotation, we need to perform
controlled Z–rotations to perform the phase estimation algo-
rithm. Fortunately, there are well known methods that can
be used to perform such controlled rotations using a pair of
rotations and two CNOT gates. A better approach, previously
shown in unpublished work by Tsuyoshi Ito in 2012, is given
in Figure 2 and the validity of the circuit is proven in the
following lemma.
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|c〉 −θ/2

|ψ〉 θ/2

Fig. 2. Controlled Rotation. Low depth circuit for controlled Z–rotations where the θ
gate represents eiθZ .

Lemma 1. The circuit of Fig. 2 implements the controlled
operation Λ(RZ(2θ)) where the top most qubit is the control.

Proof. Assume that |c〉 = |0〉 or |1〉 then the CNOT gate per-
forms

|c〉|ψ〉 7→ (Xc ⊗ I)(a|00〉+ b|11〉). [9]

The rotation gates then prepare the state

(aei(1−(−1)c)θ/2|c〉|0〉+ be−i(1−(−1)c)θ/2|c⊕ 1〉|1〉). [10]

Finally the CNOT gate yields the state

|c〉(aei(1−(−1)c)θ/2|0〉+ be−i(1−(−1)c)θ/2|1〉)
= (Λ(Rz(2θ))|c〉|ψ〉) . [11]

Therefore the circuit functions properly for either |c〉 = |0〉 or
|c〉 = |1〉. By linearity it is also valid for any input.

This form of a controlled rotation is well suited for many
quantum simulation applications because it allows the con-
trolled evolutions to be replaced with evolutions that control
only on the single qubit rotations in the circuits for imple-
menting the individual terms in the Hamiltonian. However,
it is not optimal here because we can implement a variant of
a controlled rotation gate to in effect double the impact that
the eigenphase has on the measurement probabilities.

Lemma 2. Let U =
∏Nexp
j=1 Bj(I⊗ Rz(φj))B†j where Bj are

unitary transformations and assume that it is chosen such
that U† =

∏Nexp
j=1 Bj(I⊗Rz(−φj))B†j then if U |φ〉 = eiφ then

there exists a quantum protocol that uses an M rotations and
samples from a Bernoulli distribution such that the probability
of the protocol outputting 0 is

P (0|φ; θ,M) = 1 + cos(2M [φ+ θ])
2 .

Proof. Our proof is constructive and follows directly from
the arguments presented informally in [33]. The idea behind
the protocol is to replace every controlled rotation used in
the circuit in Fig. 1 with the circuit in Fig. 3. Formally
we denote this by replacing the controlled operation Λ(UM )
with WM , which is defined such that W |0〉|ψ〉 = |0〉U |ψ〉
and W |1〉|ψ〉 = |1〉U†|ψ〉. Since XRz(θj)X = Rz(−θj), the
operation W can be written as

W =
Nexp∏
j=1

BjΛ(X)(I⊗Rz(−φj))Λ(X)B†j , [12]

where the controlled–not operation Λ(X) uses the control
qubit as its control and the qubit that Rz acts on as its target.
This circuit is shown in Fig. 3.

|c〉

|ψ〉 θ/2

Fig. 3. Rotation with conditional direction. Circuit used to implement analogue of
controlled Z–rotations used in Lemma 2, which is a rotation whose sign is conditioned
on the control qubit.

Applying (H⊗I)W (H⊗I) to the eigenstate |0〉|φ〉, such that
U |φ〉 = eiφ|φ〉, yields

1
2
(
|0〉|φ〉(1 + e2i(θ−φ)M ) + |1〉|φ〉(1− e2i(θ−φ)M )

)
, [13]

up to a global phase. The probability of measuring the ancilla
qubit to be zero is (1 + cos(2M(φ− θ)))/2 as claimed.

Lemma 2 shows that the number of rotations needed to
perform phase estimation is 1/4 the value that would be
expected if circuits such as that of Fig. 2 were used (or 1/2 the
cost in parallel settings). As an example, for the case of RFPE
numerical experiments show that we can learn the eigenphase
within error ε with probability 1/2 using

M(ε) ≈ 2.3
ε
. [14]

In comparison, the ultimate lower limit given by previous stud-
ies becomes π/(2ε) and the Bayesian Cramer–Rao bound gives
a lower limit of approximately 1.6/ε under the assumptions
of Gaussian priors made in RFPE [28]. We show in Section 8
that the lower bound on the depth can be reached using a
new adaptive approach to phase estimation that uses a small
cluster of quantum computers. Similarly the upper bounds on
the cost of traditional QPE in [1] become 8π/ε rather than
16π/ε if these circuits are used.

While the assumption that the underlying Trotter–Suzuki
formula can be inverted by simply inverting the sign of the
evolution time applies for the (2k + 1)th order Trotter-Suzuki
formulas for all k ≥ 1, it does not apply to the second order
formula unless further assumptions are made. We can see this
from the fact that(

N∏
j=1

e−iHjt

)(
N∏
j=1

eiHjt

)
= 1 +O(t2).

If we assume that we are interested only in the ground-state
energy and the Hamiltonian is real valued (like in the quan-
tum chemistry applications that we consider) then the error in
assuming that U† can be formed by simply flipping the signs
is O(t3) [34], which is by no means fatal but it could poten-
tially contribute to the error in Trotter–Suzuki decompositions.
Whereas if the third (or higher) order Trotter–Suzuki formula
is used then no such danger exists. This, along with the su-
perior bounds proven for the error in the third order formula,
provide the justification for using this formula in preference
to the asymptotically equivalent second–order formula.
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3. Trotter errors

Here we discuss the issue of how errors from the use of Trotter-
Suzuki formulas lead to systematic errors in the ground-state
energy estimates output by phase estimation. We further
discuss the methodology that we use to upper bound these
errors and also give empirical estimates of the scaling of such
errors.

Rigorous bounds. A major source of error in most quantum
simulation algorithms arises from the use of Trotter formula
expansions. Such errors can be made arbitrarily small but
the need to make such errors smaller than chemical accuracy
means that the cost of doing so can substantially impact the
time required to perform the simulation. In this appendix
we will provide a detailed discussion about how to bound the
error in low–order Trotter formulas.

Trotter errors arise from the fact that the terms in the
Hamiltonian used in the expansion do not commute. In princi-
ple, the Zassenhaus formula provides everything that is needed
in order to understand the scaling of these errors:

e(A+B)t = eAteBte
1
2 [A,B]t2 +O(t3), [15]

and thus

‖e(A+B)t − eAteBt‖ ∈ O(‖[A,B]‖t2). [16]

Although this expression is useful in estimating the scaling
of simulation errors, the question that we are interested in
is somewhat orthogonal to this. Instead, we are interested
in the errors in estimated eigenvalues. The Baker–Campbell–
Hausdorff formula, which is the dual to the Zassenhaus formula,
can be used to estimate these errors. If H =

∑L

α=1 Hα where
the Hα correspond to terms in Eq. (6) then the second order
Trotter–Suzuki formula (also known as the Strang splitting)
gives

L∏
α=1

e−iHαt/2
1∏

α=L

e−iHαt/2 = e−iHefft, [17]

where H −Heff is

− 1
12
∑
α≤β

∑
β

∑
α′<β

[Hα(1− δα,β
2 ), [Hβ , Hα′ ]]t2 +O(t3). [18]

This shows that, to leading order, the error in the Strang
splitting can be estimated by the ground–state expectation
value of a double commutator sum. Furthermore, since L ∈
O(N4) it is clear from this form that the error in the Trotter
formula must scale at most as O(N10t2). It is not O(N12t2)
because the commutator structure restricts two of the orbitals
Hα and Hβ act on. Although this estimate can be computed
in polynomial time, there are too many terms for this to be
reliably estimated for molecules on the scale of nitrogenase
even using Monte Carlo methods [35].

An upper bound on the asymptotic scaling can be trivially
found by applying the triangle inequality to Eq. (18). This
approach is not appropriate for our purposes because we do
not know a priori how large t must be for the leading order
term to be dominant. As a result, we use the following result,

which is provably an upper bound on the error in the energy
of the evolution:

∆ETS/t
2 ≤4

∑
α,β,α′

‖Hα‖‖Hβ‖‖Hα′‖

× (δα>βδα′>β + δβ>αδα′,α)W (α, β, α′), [19]

where W (α, β, α′) is an indicator function that takes the value
1 if and only if the corresponding double commutator is non–
zero. Note that this is slightly tighter than the bound used in
(16) of [36].

There are several criteria that we know a priori lead to a
double commutator vanishing:
1. Hα′ and Hβ act on disjoint sets of qubits.

2. Hα acts on a disjoint set of qubits from the set of qubits
that Hα′ and Hβ act on.

3. Hα′ and Hβ correspond to PP or PQQP terms.

4. Hα′ and Hβ correspond to PR and PQQR terms with
the same P and R.

5. Only one of [Hα, [Hβ , Hα′ ]], [Hβ , [Hα′ , Hα]] and
[Hα′ , [Hα, Hβ ]] is non–zero according to the prior rules
(Jacobi identity).

There are other symmetries to the terms that can be used to
argue that even more terms are necessarily zero. Since we do
not consider these properties, we overcount the contribution of
any such terms and so our estimate remains an upper bound.

This bound is much more computable than the original
expression, but is computationally challenging to compute
exactly owing to the O(N10) terms in the double commutator
sum. The Cauchy–Schwarz inequality can be used to convert
this expression into one that can be computed in O(N4) oper-
ations, but doing so can over-represent the influence of large
terms in the Hamiltonian [36].

Empirical Estimates of Trotter Error. Given that computation
of the matrix elements of the error operator in Eq. (18) is
computationally challenging, we rely on Monte Carlo sampling
to estimate the upper bound in Eq. (19). Monte Carlo sampling
is much more effective here because the use of the triangle
inequality removes the alternating sign that we see when
summing the original series. We achieve this by drawing M
samples uniformly at random for {αj : j = 1 . . .M}, {βj : j =
1 . . .M} and {βj : j = 1 . . .M}. We then reject the sample
if (δα>βδα′>β + δβ>αδα′,α)W (α, β, α′) = 0, and otherwise
compute the product of the products of the norms of the three
corresponding Hamiltonian terms. If there are L terms in the
Hamiltonian and define

Γ(α, β, α′) :=4‖Hα‖‖Hβ‖‖Hα′‖
× (δα>βδα′>β + δβ>αδα′,α)W (α, β, α′) [20]

then

∆ETS /
L3

M

M∑
j=1

Γ(αj , βj , α′j)t2 := ht2. [21]

This implies that, for a fixed h, if we wish to achieve an error
ε in the eigenvalues of the Trotter–Suzuki expansion then it
suffices to pick

t =
√
ε

h
. [22]
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The variance in this estimator is

L6Vα,β,α′(Γ(α, β, α′))t4

M
, [23]

which implies using Chebyshev’s inequality that with proba-
bility greater than 75% the sample error is less than 2ε if

M ≥
L6Vα,β,α′(Γ(α, β, α′))t4

ε2
= L6Vα,β,α′(Γ(α, β, α′))

h2 .

[24]
In practice, uniform sampling is not necessarily the best

option because the importance of the different terms can vary
wildly within a class. For example, the one-body terms tend
to be much larger than the two-body terms but the two-
body terms are far more numerous. This means that uniform
sampling can underestimate the contributions of such terms
because of their relative scarcity in the sample space.

We combat this by sampling from each type of double
commutator. In particular, we sample over a class of double
commutators such as [PQ, [PP,PQ]] and uniformly draw PQ,
PP and PQ terms to estimate those terms contribution to the
overall error. The total error is then the sum of the estimates
over all such classes. We use a minimum of 108 samples per
class, which renders the sample standard deviation in our
estimates of the error less than 1%.

The resultant bounds can be seen in Fig. 4 wherein we
examine the predicted Trotter numbers and the empirically
observed Trotter numbers for small molecules. The rough
scaling of the upper bound on the Trotter number that we see
corresponds to N2.5 which was noted in previous numerical
studies [36], but owing to the scatter of the data due to the
widely varying chemical properties of the molecules, this scal-
ing should not be seen as definitive. We observe that the upper
bounds seem to be roughly a factor of 10 000 times too loose
for small molecules. For this reason we plot three reasonable
extrapolations of the scaling based on the numerical results
for small molecules. The most pessimistic bound rescales the
scaling extracted from the upper bound such that all the data
remains beneath the curve. The middle one rescales the upper
bound data by the average discrepancy between the upper
bound and the numerically computed examples. The most
optimistic curve is simply a polynomial fit to the numerical
data that ignores the upper bound. We expect the middle
curve to be the most realistic estimates, but provide resource
estimates for these three cases below as well as results that
follow from using the upper bound.

4. Error propagation

Here we provide proofs of some basic results that we will use
to propagate these errors through the quantum simulation.
These results are crucial for the cost estimates in the sub-
sequent section because they show how large the worst case
errors can be in the eigenvalue estimation given errors of these
magnitudes. It is worth noting that we expect these results to
yield substantial overestimates of the error because they do
not consider the natural cancellations that are likely to occur
in practical eigenvalue estimation problems.

Lemma 3. Let A and B be Hermitian operators acting on
finite dimensional Hilbert spaces such that ‖A−B‖2 ≤ ε and
A|ψA〉 = EA|ψA〉 and B|ψB〉 = EB |ψB〉 where EA and EB are
the smallest eigenvalues of either operator then |EA−EB | ≤ ε.

Proof. Because A and B are Hermitian they satisfy the varia-
tional property meaning that

EB ≤ 〈ψA|B|ψA〉. [25]

Since ‖A − B‖2 ≤ ε it follows that there exists C such that
‖C‖2 ≤ 1 and A = B + εC. This implies that

EB ≤ 〈ψA|A+ εC|ψA〉 = EA + ε〈ψA|C|ψA〉. [26]

Thus
EB − EA ≤ ε〈ψA|C|ψA〉. [27]

If EA ≤ EB then we have from the definition of ‖ · ‖2 that

|EB − EA| ≤ ε|〈ψA|C|ψA〉| ≤ ε. [28]

Now assume that EB > EA. We then have

EA ≤ 〈ψB |A|ψB〉. [29]

Then by repeating the same argument we conclude that |EB−
EA| ≤ ε regardless of the sign of EA − EB .

Now we will go beyond this bound to show that the error
scaling in the eigenvalues of the unitary evolutions generated
by two similar Hamiltonians is no more pathological than the
scaling of errors in the ground-state energies.

Lemma 4. Assume that for Hermitian bounded operators A
and B acting on a finite dimensional Hilbert space ‖e−iAt −
e−iBt‖2 ≤ tγ(t) for γ(t) a non–decreasing continuous function
of t on [0,∞) then ‖A−B‖2 ≤ γ(t).

Proof. Using standard bounds [1], we have that ‖e−iAt −
e−iBt‖2 ≤ ‖A−B‖2t and furthermore from Taylor’s theorem
‖e−iAt − e−iBt‖2 = ‖A−B‖2t+O([‖A−B‖2t]2). Therefore
the former upper bound is tight in the limit as t → 0. By
assumption ‖e−iAt − e−iBt‖2 ≤ tγ(t) for all t in a compact
subinterval containing 0. Assume that limt→0 γ(t)/‖A−B‖2 <
1. This implies that there exists a compact interval containing
0 such that for all t in this interval ‖e−iAt − e−iBt‖2 > ‖A−
B‖2t, which leads to a contradiction because we have already
demonstrated that ‖A − B‖2t is a tight bound on the error
in this limit. Therefore γ(t) ≥ limt→0 γ(t) ≥ ‖A−B‖2 under
the assumptions of the lemma.

Theorem 1. Let H =
∑M

j=1 Hj where each Hj is a
bounded Hermitian operator acting on a finite dimensional
Hilbert space. Furthermore, let e−iH̃jt/2 be exponentials of
individual terms in the Hamiltonian yielded by a synthe-
sis process that approximates them within error at most
δt in ‖ · ‖2 for any t ≥ 0. Finally, let ‖e−iHt −∏M

j=1 e
−iHjt/2

∏1
j=M e−iHjt/2‖2 ≤ ∆ETS(t)t. Then the dif-

ference in ground-state energies between H(t) and H̃(t) :=
i log(

∏M

j=1 e
−iH̃jt/2

∏1
j=M e−iH̃jt/2)/t is at most ∆ETS(t) +

(2M − 1)δ.

Proof. First, since H̃j is Hermitian

M∏
j=1

e−iH̃jt/2
1∏

j=M

e−iH̃jt/2

is a unitary operator. The matrix logarithm is defined if
and only if the matrix in question is invertible and hence
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Fig. 4. Trotter number (1/dt) needed to reach 0.1 mHartree of accuracy assuming no errors from synthesis or phase estimation. Lines represent projections based on current
data.

the matrix logarithm exists because unitary matrices are in-
vertible. The logarithm is then clearly an anti–Hermitian
operator and hence H̃(t) is Hermitian. This implies that∏M

j=1 e
−iHjt/2

∏1
j=M e−iHjt/2 ≡ e−iH̃(t)t.

In order to use Lemma 4 to prove the result, we need to
have constant operators. However, the particular H̃j applied
at each step depends on the value of t used. This can be
decoupled by introducing a parameter, s, such that H̃j(s = t)
corresponds to the H̃j at s = t.

The triangle inequality implies that

‖e−iHt − e−iH̃(t)t‖2 ≤ max
s
‖e−iHt − e−iH̃(s)t‖2 ≤∥∥∥∥∥e−iHt −

M∏
j=1

e−iHjt/2
1∏

j=M

e−iHjt/2

∥∥∥∥∥
2

+ max
s

∥∥∥∥∥
M∏
j=1

e−iHjt/2
1∏

j=M

e−iHjt/2 − e−iH̃(s)t

∥∥∥∥∥
2

. [30]

Then using our assumptions about the error in each exponen-
tial for all s and standard inequalities for the errors in unitary
operations [1] this error is at most

[∆ETS(t) + (2M − 1)δ]t. [31]

This is a non-decreasing function of t so applying Lemma 4
yields ‖H−H̃(s)‖2 ≤ ∆ETS(t)+(2M−1)δ for all s. The result
then follows from taking s = t and applying Lemma 3.

This result trivially extends to the case of quantum chem-
istry simulation where each Hj is an n–qubit Pauli operator.

In such cases, it suffices to choose synthesis error that shrinks
linearly with the timestep used in the Trotter decomposition.
Since the cost of circuit synthesis of rotations in the Clifford
+ T gate library scales logarithmically with δ = ∆synth/t [5],
where ∆synth is the synthesis error in the quantum circuit.

5. Cost estimates for nitrogenase

Fundamentally, two factors contribute to the cost of the quan-
tum simulation (assuming that the user can prepare an exact
copy of the ground state at negligible cost). The first is the
cost of implementing the Trotter decomposition of the Hamil-
tonian and the second is the number of times that the Trotter
circuit must be repeated in the phase estimation algorithm.

One might object that the number of time steps required
in the Trotter–Suzuki decomposition also is a driving factor
in the cost. Of course the Trotter decomposition is a major
driver of the cost, but it comes in only indirectly through
the cost of phase estimation. This is because, in principle,
the phase estimation algorithm learns the eigenphases of a
single Trotter step. The Trotter error can be made arbitrarily
small by choosing shorter evolution times, but this in turn
requires the phase estimation algorithm to take more steps. As
the cost of phase estimation scales inversely with the desired
uncertainty, this causes the cost to scale inversely with the
time step used in the Trotter–Suzuki decomposition. Thus the
cost of the simulation can be thought of as arising from only
two sources, the cost of each depending on the error tolerances
allowed for all three contributions to the error.

If we then define ε1 to be the error in phase estimation,
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Upper Bound LIQUi|〉
Molecule Spin Orbitals Basis Molecule Spin Orbitals Basis

HF 12 sto6g H2O (frozen core) 12 sto6g
FeMoco 16 tzvp BeH2 14 sto6g

NH3 16 sto6g H2O 14 sto6g
CH4 18 sto6g CH4 (frozen core) 16 sto6g
F2 20 sto6g FeMoco 16 tzvp
HCl 20 sto6g NH3 16 sto6g
H2S 22 sto6g Li2 20 sto6g

FeMoco 24 tzvp HCl 20 sto6g
H2CO 24 tzvp F2 20 sto6g
H2O 26 p321 CH4 20 sto6g
CO2 30 sto3g H2S 22 sto6g
O3 30 sto6g

H2O 38 dzvp
H2O 50 p6311ss
CO2 54 p321
H2O 62 p6311ss
CO2 90 dzvp

FeMoco 108 tzvp
Fe2S2 112 sto3g

FeMoco 114 tzvp
Table 1. Table contains the identities of each molecule sorted first by the number of spin orbitals, which is twice the number of spatial orbitals,
and then by the actual, or upper bounded, Trotter number.

ε2 := ∆ETS to be the error in the Trotter–Suzuki expansion
and ε3 := (2M − 1)∆synth/t to be the error in circuit synthesis
then it follows from the triangle inequality and Thoerem 1 that
the error in the ground-state energy is at most 0.1 mHartree if

ε1 + ε2 + ε3 ≤ ε := 10−4Ha. [32]

In this section we will focus on the target of 0.1 mHa level of
accuracy, which is appropriate for quantitative calculations of
the reaction rates.

We estimate the cost of the circuit using the number of
T gates required in the algorithm, which is a function of the
form

C = 2M
⌈
α

ε1

⌉⌈
β

√
ε

ε2

⌉(
γ log2

(
2M
ε3

⌈
β

√
ε

ε2

⌉)
+ δ

)
, [33]

and then optimize over ε1, ε2 and ε3 to minimize C subject
to the constraint in Eq. (32). This functional form follows
directly from the phase estimation algorithm. If iterative phase
estimation requires K experiments, each of which requires a
simulation with R rotations and each rotation requires S T
gates then the overall cost is C = 2MKRS. The factor of 2M
comes from the number of exponentials in the Trotter–Suzuki
decomposition. The functional forms for K, R and S then
come from Eq. (7), Eq. (22) and Eq. (4) respectively. The log
factor contains a factor of 2Mdβ

√
ε/ε2e because we need to

make sure that the sum of the errors in the eigenvalues due to
synthesis synthesis add up to at most ε3.

Here α is the scaling constant for the phase estimation
algorithm used, β is the Trotter number (or multiplicative
factor by which t is decreased from 1 Ha−1) needed to achieve
an error of ε = 0.1 mHa in the ground-state energy estimate
and γ and δ are the constants used in the quantum circuit
synthesis algorithm. Here M = 6.1 × 106 for nitrogenase in
the 54 orbital basis and M = 8.2× 106 for nitrogenase in the
57 orbital basis using the circuits of [11].

The true optima of Eq. (33) are difficult to find because of
the factor of

√
ε/ε2 in the logarithm. In order to simplify our

optimization we instead choose ε1, ε2 and ε3 to minimize

C̃ = 2M
(
α

ε1

)(
β

√
ε

ε2

)(
γ log2

(2M
ε3

β
)

+ δ

)
, [34]

subject to the same constraint. The global optimum of Eq. (34)
can be found directly from calculus, which allows near opti-
mal parameters for Eq. (33) to be found easily. The value
of Eq. (33) at these parameters is then an upper bound on the
minimum of Eq. (33) and so the estimates provided remain
upper bounds (modulo assumptions about the Trotter error).

The “worst” case assumptions in Table 2 correspond to
only using rigorously proven upper bounds on the cost. These
lead to estimates that are clearly extremely pessimistic. Even
given our optimistic assumptions about the target computer,
the worst case bounds suggest between millions and tens of
thousands of years depending on whether parallelism is used.

The “pessimistic” assumptions use empirical scalings for
circuit synthesis and phase estimation and use the worst scaling
supported from our bounds on the Trotter error, but rescaled
by the ratios observed between the actual Trotter numbers
required and the theoretically predicted ones.

The “rescaled” case takes the rigorous upper bound for ni-
trogenase and divides it by the average ratio observed between
the exact Trotter numbers and their upper bounds for the
tractable molecules. Rescaling the upper bound by a constant
and applying least squares fitting to find the most consistent
constant yields similar results. We suspect these rescaled esti-
mates may provide the most realistic estimate of the Trotter
number required to simulate nitrogenase.

The “optimistic” assumptions again use the same empirical
scalings for PE and synthesis, but instead extrapolate the
average scaling observed for the ensemble of molecules whose
Trotter numbers we can compute and scaling up the result
so that all of the data lies beneath the curve. This scaling
is optimistic, as there is little evidence for a clear trend in
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Case Gates Time (100 MHz T gates)

Rigorous bound 1.0× 1021 3.2× 105 years.
Clifford 1.4× 1021 –

Rigorous + PAR 3.2× 1022 8500 years.
Clifford 3.3× 1022 –

Pessimistic bound 7.9× 1015 30 months
Clifford 1.2× 1016 –

Pessimistic + PAR 2.3× 1017 31 days
Clifford 2.3× 1017 –

Rescaled bound 1.2× 1015 135 days
Clifford 1.8× 1015 –

Rescaled + PAR 3.5× 1016 120 hours
Clifford 3.5× 1016 –

Optimistic bound 1.6× 1014 19 days
Clifford 2.4× 1014 –

Optimistic + PAR 4.7× 1015 17 hours
Clifford 4.7× 1015 –

Case α β γ δ

Rigorous 8π 7× 106 4 11
Pessimistic π/2 1075 1.15 9.2
Rescaled π/2 166 1.15 9.2
Optimistic π/2 24 1.15 9.2

Table 2. Resource estimates for simulation of nitrogenase’s FeMoco
in structure 1 which requires a small basis consisting of 108 spin
orbitals. PAR uses γ = 4 and δ = 11.

Case Gates Time (100 MHz T gates)

Rigorous bound 1.8× 1021 5.5× 105 years.
Clifford 2.5× 1021 –

Rigorous + PAR 5.9× 1022 1.5× 104 years.
Clifford 6.0× 1022 –

Pessimistic bound 1.2× 1016 3.8 years
Clifford 1.8× 1016 –

Pessimistic + PAR 3.5× 1017 48 days
Clifford 3.5× 1017 –

Rescaled bound 2.2× 1015 250 days
Clifford 3.1× 1015 –

Rescaled + PAR 6.3× 1016 9 days
Clifford 6.3× 1016 –

Optimistic bound 2.3× 1014 27 days
Clifford 3.5× 1014 –

Optimistic + PAR 6.6× 1015 23 hours
Clifford 6.6× 1015 –

Case α β γ δ

Rigorous 8π 9.5× 106 4 11
Pessimistic π/2 1233 1.15 9.2
Rescaled π/2 225 1.15 9.2
Optimistic π/2 25 1.15 9.2

Table 3. Resource estimates for simulation of nitrogenase’s FeMoco
in structure 2 which requires a small basis consisting of 114 spin
orbitals. PAR uses γ = 4 and δ = 11.

the empirical data and the range provided is insufficient to
meaningfully extrapolate out to 108 spin orbitals (54 spatial
orbitals) or more. We provide this estimate because it pro-
vides the best scaling that could reasonably be claimed to be
supported by the data.

Variance-based estimates. Such errors arise from three
sources: the systematic error in the TS decomposition εTS,
the statistical error tolerance for phase estimation εQPE, and
the statistical error in synthesizing rotations from Clifford
and T gates εRot. We then require the total error to be
εTS +

√
ε2QPE + ε2Rot = 0.1 mHa. The three uncertainties

are then chosen such that the number of T gates required for
the simulation is minimized given the target accuracy.

The previous analysis for the estimates in the error can be
used within this expression for the error under the assumptions
that the errors in QPE and synthesis are not adversarial. This
approach was taken with the estimates in the main body,
wherein the three dominant costs are optimized against each
other to minimize the resources needed to achieve the 0.1
mHartree target. The optimization process is exactly the
same as that used to minimize the cost given in Eq. (33),
however a different constraint linking the three errors is used.
This leads to modest reductions in the costs relative to the
worst case bounds, which we provide in Tables 2 and 3.

PAR circuits. There are several approaches that can be taken
to parallelize rotations. The first, often coined nesting, is
discussed in [34, 37]. It involves taking terms that commute
with each other in the Hamiltonian and grouping them together
so that they can be executed simultaneously. In principle, this
can lead to substantial reductions in the depth but in practice
it is difficult to assess the performance of these schemes here
because of the size of the molecule and the fact that we have
chosen to restrict ourselves to lexicographic ordering. This
means that if we are to estimate the impact that parallelization
can bring to these calculations we need to introduce a method
that can reduce the T–depth without changing the ordering
of terms in the Trotter–Suzuki decomposition.

The PAR method gives a way to achieve this goal [9]. It
works by teleporting a rotation into a state with probability 1/2
using only Clifford operations and a pre–rotated ancilla. In the
event that this method fails then instead of performing Rz(θ)
it performs Rz(−θ). This can be corrected by teleporting a
rotation Rz(2θ) into the qubit in question. Should this fail
(and it will half the time) the rotation can be corrected by
teleporting a rotation of Rz(4θ) and so on. This creates a
geometric distribution of the number of pre–cached qubits
needed to perform a given rotation. These rotation angles
are known before hand and so can be prepared offline in
parallel. Hence a logarithmic multiplicative overhead in space
is needed to guarantee that enough ancilla qubits are prepared
to perform the rotations with such high probability that it is
unlikely that the cache of ancillae will ever be depleted.

In order to bound the number of ancillae needed to paral-
lelize M rotations with high probability consider the following
protocol.

• Divide the terms in the Trotter expansion of the Hamil-
tonian into blocks consisting of M sequential terms.

• For each rotation angle θj in a given block and each
j = 0, . . . , n−1, prepare the states Rz(2jθj)|+〉 in parallel
for a predetermined value of n.

• Implement each of the M (possibly sequential operations)
using programmable ancilla rotations using at most n
attempts, if the PAR circuit fails in each attempt then a
failure is said to have occurred.
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• If a failure occurs then implement the correct rotation
and proceed to the next precached rotation.

This protocol can be used to perform the desired rotation and
its performance is summarized below.

Theorem 2. There exists a protocol for implement-
ing PAR rotations that caches M rotations of the form
Rz(θj), Rz(2θj), . . . , Rz(2n−1θj) for j = 1, . . . ,M such that
the expected number of rotations performed before a failure
occurs is

2n(1− (1− 2−n)M ).

Proof. The proof is constructive. To see this consider the
protocol discussed above. Such a protocol fails when all n
PAR circuits fail for any of the M rotations cached, and a
failure occurs when all n attempts at the rotation that have
been precomputed are expended. The probability of such
a failure is clearly 2−n because the PAR circuit’s success
probabilities are independent and each attempt has success
probability 1/2 [9].

From the geometric distribution, the probability that no
failure occurs in M trials is then simply (1−2−n)M . Similarly,
the probability that a failure occurs after precisely k attempts
is 2−n(1− 2−n)k−1. Since there are only M rotations in the
cache any branch that has more than M successes can only
yield M rotations. This implies that the mean is

M∑
k=1

k2−n(1− 2−n)k +M(1− 2−n)M = 2n(1− (1− 2−n)M ).

[35]

A consequence of Theorem 2 is that a PAR cache ofM rota-
tions that further caches the correction operations for n failures
can reduce the T–depth by a factor of 2n(1− (1−2−n)M ). We
can therefore adjust these parameters to substantially reduce
the T–depth without adding a prohibitive number of rotations.

Note that as n→∞ Eq. (35) approaches M as expected.
This suggests that taking large n allows the PAR rotations to
be parallelized more efficiently, but this comes at the price of
requiring more T gates and hence increases the overheads of
quantum error correction.

Factory approach. A major challenge with costing PAR in a
fault tolerant setting is that all the non–Clifford operations
can be prepared simultaneously and offline. This means that
if we take the cost model where only T gates are considered
then we come to the absurd conclusion that the costs of all
quantum simulation algorithms can be reduced to that of
synthesizing a single rotation. In order to prevent such absurd
tradeoffs we assume here that a delay of time equal to 1 T gate
is included to model the measurement and feed-forward step
that is needed for the programmable ancilla rotation. This
fixed cost means that even if all of the T–gates are precached
before hand then the time required for the remainder of the
simulation will never be zero.

The above assumptions lead to an alternative approach
to implementing PAR rotations, which we follow in the PAR
costs in the following as well as the main body. Rather than
constructing a large cache of rotations offline, it makes sense
to produce the rotations just in time. Specifically if the cost
of synthesizing a rotation is C T gates then it makes sense to

have nC factories constantly producing rotation states of the
form Rz(2jθj)|+〉 for j = 1, . . . , n. Each of these nC factories
is staggered such that one set of factories finishes with their n
states at least 1 cycle before the next rotation is needed. As
soon as a set of factories finishes it then proceeds on to the
next set of rotations needed (excluding those that are currently
being generated). If a failure occurs, then the factory approach
halts just like the traditional approach and waits for a rotation
to be synthesized that applies the correct rotation online.

Imagine for the moment that the PAR circuit succeeds in
C consecutive attempts. Since each attempt requires time
equivalent to a single invocation of a T gate and the cost
of synthesis is C T gates, the first set of factories will have
finished producing their states before the last set applies theirs.
This means that with C such factories rotation states can be
continuously generated even in the “worst case scenario” where
each PAR circuit succeeds on the first attempt. This is why
in this setting it does not make sense to use more than nC
rotation factories given the assumption that the cost of each
PAR attempt is 1 T gate and that the rotations for at most n
failures are to be pre-cached.

Theorem 3. The average time required per rotation to apply
the factory–based PAR strategy, assuming each PAR applica-
tion requires time at most equal to 1 T gate and all remaining
Clifford operations are free, is(

2− n+ 2
2n

)
+ C + n

2n .

Proof. The probability of success in any PAR attempt is 1/2
therefore the expected number of T gates that need to be
applied before a solution is found is

n∑
j=1

j

2n + C + n

2n . [36]

The latter term gives the expected impact of a failure, which
occurs with probability 1/2n, makes n PAR attempts and
incurs a cost of C T gates in applying the fallback rotation.
The result then follows from summing the geometric series.

We use the above theorem to compute the expected time
required by PAR under our assumptions of the costs of feed
forwarding. If such costs are neglected then the online cost of
performing a PAR rotation is simply C/2n T gates.

Nesting estimates. Finally, we would like to reiterate that in
both the serial and PAR cases, the costs are found by building
the circuit corresponding to the TS formula and counting the
gates that compose it. The estimates for nesting given in the
main body are upper bounds based on empirical estimates
of the number of terms that can be simultaneously executed.
We estimate this by taking FeMoco and greedily grouping
terms that act on distinct sets of spin orbitals. We specifi-
cally find that there exists a grouping that can simultaneously
execute 26.43 terms simultaneously for strucure 1 and 27.83
for structure 2. These values roughly correspond to the opti-
mal scaling of N/4 that can be achieved through this nesting
strategy. We then assume the quantum computer can simulta-
neously execute each of these commuting groups and find the
corresponding time by dividing the T count by these factors.

Rather than executing the grouping in LIQUi|〉 we use
a simple upper bound on the number of Clifford gates that
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could arise from the grouping. We do this because the group-
ing strategy breaks the lexicographic ordering that leads to
dramatic cancelation of the CNOT strings that arise from the
Jordan–Wigner decomposition.

For the nested data, the number of timesteps needed is
assumed to be the same as for the other cases, which is reason-
able given that operator ordering tends to not have a dramatic
impact on the error. Subsequent work will investigate the
precise interplay that operator ordering has in nesting.

6. State Preparation

We discuss in this section the issue of state preparation, which
is a major unanswered question that impacts the cost of quan-
tum simulations. While we do not discuss these costs in detail
in the rest of the paper, we discuss below the issues that
arise when using elementary state preparation methods based
on coupled cluster, configuration interaction or Hartree–Fock
states as well as adiabatic state preparation. We also provide
numerical results showing that the ground state overlap with
Hartree–Fock states scales for small molecules and discuss the
costs involved in adiabatic state preparation.

Elementary state preparation methods. Although we cannot
rigorously prove that elementary state preparation methods
such as Hartree–Fock states, unitary coupled cluster or trun-
cated configuration interaction states (such as CISD or differ-
ence dedicated CI (DDCI) [38] states) will suffice for preparing
a state with large overlap with the ground state, it is still impor-
tant to ask how good simple ansatzes perform for numerically
tractable cases. We provide some numerical evidence for small
molecules showing that the overlaps of the true ground state
with the Hartree–Fock ground state is not necessarily small.
We leave similar studies of the overlap for unitary coupled
cluster and truncated configuration interaction ansatzes for
subsequent work.

We see in Figure 5 that there is substantial overlap be-
tween the Hartree–Fock state and the true ground state of the
molecules calculated using LIQUi|〉 . In particular, the small-
est overlap that we see is 89%. Other studies that have looked
at chains of hydrogen atoms that are near disassociation show
very small overlaps with the Hartree–Fock states and propose
methods to address such problems [39]. Thus there are small
molecules that can be constructed that are not well described
by such ansatzes.

We find that roughly 50% of the data points are well ap-
proximated by 107.75%× e−0.0076n where n is the number of
spin orbitals. This scaling would suggest that the overlap with
the Hartree–Fock state for a molecule typical of this ensemble
of the scale of FeMoco may be roughly 43%, we cannot say
whether nitrogenase is indeed typical of this ensemble. In-
deed, one may expect this to be a dramatic over-estimate for
molecules that contain atoms with d–electrons because the
resultant correlations are much greater than those examined
in Figure 5 and multi-reference states are likely needed to
achieve good over lap. Such molecules are frequently outside
of our ability to simulate classically so finding an appropriate
ensemble of molecules to use for such benchmarks remains an
open research problem; however, the success of methods such
as CI dynamically extended active space (CI-DEAS) [40, 41]
in DMRG suggests that elementary truncated configuration
interaction states may also suffice for quantum simulation [42].
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Fig. 5. Accuracy of Hartree Fock. Percent overlap (|〈ψ|ψHF〉|2 × 100) of
the Hartree–Fock state with the electronic ground state computed by LIQUi|〉 . All
integrals are computed in a sto6g basis except for H2 and HeH+. The integrals for
those molecules are computed using sto3g and 3-21g bases respectively. The blue
dashed line shows a possible extrapolated trend from the data.

We further see no compelling evidence for scaling with the
maximum nuclear charge of the constituent atoms for the
molecules in this set. This can clearly be seen from BeH2
which has substantially better fidelity with the ground state
than Be does. Similarly, HF and HCl have nearly identical
overlaps despite the fact that Cl has nearly twice the nuclear
charge of F. More study is needed in order to understand how
these overlaps scale for strongly statically correlated molecules,
however it is obvious that orbitals optimized for a multi-
configurational wavefunction will be required to accurately
model highly correlated ground states.

The choice of orbitals is crucial for accurate calculations. As
orbital optimization requires the one- and two-body reduced
density matrices, whose calculation will not be efficient on a
quantum computer with present-day algorithms, it is decisive
to start from suitable molecular orbitals which do not require
further optimizations. This unfortunate situation our scheme
shares with traditional approaches. (Restricted open-shell)
Hartree-Fock orbitals are likely to be not the best choice, and
hence one may exploit a small-CAS CASSCF calculation for
the generation of suitable orbitals. We have observed [43] in
DMRG calculations that such orbitals are well suited and yield
results similar to fully optimized DMRG-SCF calculations.
Whereas this result might not hold in general, it shows that
suitable a priori orbital preparation is a way out of the self-
consistent optimization of orbitals in a multi-configurational
framework.

Adiabatic State Preparation. Adiabatic state preparation [44]
provides an alternative approach state preparation wherein
the Hamiltonian to be simulated is replaced with a time–
dependent Hamiltonian whose final ground state coincides
with the target ground state and whose initial ground state is
an easily preparable state. An example of such a Hamiltonian
is

H(s) =
∑
p

hppa
†
pap +

∑
p,q

hpqqpa
†
pa
†
qapaq

+ s

(
H −

∑
p

hppa
†
pap −

∑
p,q

hpqqpa
†
pa
†
qapaq

)
, [37]
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where s ∈ [0, 1] is a dimensionless time that is 0 at the begin-
ning of the evolution and 1 at the end. It is then easy to see
that the ground state of H(0) is the Hartree–Fock state and
the ground state of H(1) is the full configuration interaction
(FCI) ground state.

For such Hamiltonians (or more generally for those that
are differentiable at least three times and whose resulting
derivatives are O(1) [45]) a sufficiently slow evolution under
the Hamiltonian will cause the Hartree–Fock state to be trans-
formed into the FCI ground state of H. In other words if T is
the time–ordering operator which is defined such that

∂sT (e−i
∫ s

0
H(s′)ds′T ) := −iH(s)T (e−i

∫ s
0
H(s′)ds′T ) [38]

and if we define P to be a projector onto the FCI ground
state and ∆(s) to be the smallest eigenvalue gap between the
ground state and the rest of the spectrum of H(s) then

|(I−P)T (e−i
∫ 1

0
H(s′)ds′T )|ψHF〉| ∈ O

(
maxs ‖Ḣ(s)‖
mins ∆2(s)T

)
. [39]

Here we take T � 1 and treat the other parameters to be
bounded above by a constant in this asymptotic expansion.
For such Hamiltonians the triangle inequality clearly shows
that ‖Ḣ(s)‖ ∈ O(N4) (although on physical grounds we expect
‖ ˙H(s)‖ to be in O(η2) ∈ O(N2) because the potential energy
scales quadratically with the number of constituent particles).
Thus if we want to have O(1) probability of preparing the
FCI ground state it suffices to simulate the time–dependent
Hamiltonian H(s) for time

T ∈ O
(

N4

mins ∆2(s)

)
. [40]

Prima facie, the best known bounds on the costs of Trotter–
Suzuki based simulation give the circuit size for such a simu-
lation to be [46, 47]

Noperations ∈

(
N4
[

hN8

mins ∆2(s)

]1+o(1)
)
, [41]

where h ≥ max{|hpq|, |hpqrs|}. If we take h ∈ O(1), this rigor-
ous bound suggests that the cost of adiabatic state preparation
may be prohibitively expensive even if the eigenvalue gap is
constant, it is important to note that this upper bound on the
norm of the derivative of H is expected to be extremely loose
and the scaling of the error in the Trotter–Suzuki formulas is
expected to be much better than the scaling quoted above.

If we take the depth of second-order Trotter–Suzuki formula
simulations of real molecules to scale as O(N5.5), as observed
in previous studies [36], and take the norm of the Hamiltonian
to scale as O(N2) as anticipated asymptotically for a local
basis [48] then the scaling that arises from using the second–
order Trotter formula for time–dependent Hamiltonians [46]
would be

O

(
h3/2N8.5

mins ∆3(s)

)
. [42]

If the effective value of h scales as h ∈ O(N−2) then this scaling
reduces to N5.5/mins ∆3(s). This scaling of the effective h
(more accurately the root-mean-square value of |hpqrs| and
|hpq| is emperically observed to scale as O(N−2. Such scaling is
expected if the molecule is at constant filling fraction, two body

terms dominate the cost of the Trotter–Suzuki decomposition
and ‖H‖ ∈ Θ(N4h). If we further assume that the Trotter-
Suzuki error is dominated by the pqrs-terms and thus hpp, hpq
etc can be neglected in this expression for the error. Since
‖H‖ ∈ O(N2) under these assumptions it follows that h ∈
O(N−2). This means that even after making strong empirical
assumptions, highly gapped adiabatic paths are likely to be
necessary for adiabatic state preparation to be useful.

It is worth mentioning that adiabatic state preparation
has been investigated for other systems and in these settings
it has been found to be a highly practical method of state
preparation [33, 49]. Although it should be noted that the
paths used from the initial Hamiltonian to the final Hamilto-
nian are often non-trivial. These observations suggest that
the above complexity analysis may be quite loose. Further
work is needed to better estimate the cost of adiabatic state
preparation for realistic molecules and also the cost of learning
optimal adiabatic paths from easily preparable Hamiltonians
to the FCI Hamiltonian.

7. Cost estimates for topological qubits

In this section we will examine the impact topological quantum
computing may have on these numbers. This is important
because the fault tolerant overheads quoted in the main body
depend sensitively on the error rate. Topological quantum
computing promises to provide physical error rates that are
orders of magnitude beyond what is achievable in alternative
platforms; however there is a catch. Much of the current
research underway focuses on topological quantum computing
using Ising anyons, which provide topological protection for
Clifford operations but do not provide protection for T gates.
This means that even if we achieve very low error rates using
this technology then the costs of magic state distillation may
not be reduced dramatically despite the quality of the Clif-
ford gates that topological quantum computing affords. We
examine this by modeling the errors in generating the T states
to be 10−4 and then consider the costs of using the surface
code to distill the necessary gates. We provide the data for
this scenario in Table 4.

The data in Table 4 shows that even in this setting assum-
ing low quality magic states does not remove the benefit of
topological protection for the Clifford operations. In partic-
ular, if we look at the savings in physical qubits that occur
from going from error rate 10−6 to 10−9 we see in the data in
the main body that roughly an order of magnitude separates
the two numbers of physical qubits. In contrast, if we assume
the lower quality magic states given above then the reductions
are more modest: they are roughly a factor of 5. This shows
that while having high fidelity magic states is ideal, even if
such states are low quality then a topological quantum com-
puter with protected Clifford operations can nonetheless see
advantages from having topologically protected gates at the
level of accuracy required to simulate nitrogenase.

8. Further optimizations for quantum simulation

In many architectures, such as ion traps and existing super-
conducting qubits, the ability to perform T gates every 10 ns is
beyond the capability of existing implementations. While some
of these issues can be addressed by incorporating cold classical
logic within the cryostat to reduce speed of light issues, it
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Serial rotations PAR rotations Nested rotations
Clifford Error Rate 10−6 10−9 10−6 10−9 10−6 10−9

Required code distance 9,3 5,3 9,5 5,3 9,3 5,3

Quantum processor
Logical qubits 111 110 109
Physical qubits per logical qubit 1013 313 1013 313 1013 313
Total physical qubits for processor 1.1× 105 3.5× 104 1.1× 105 3.4× 104 1.1× 105 3.4× 104

Discrete Rotation factories
Number 0 1872 26
Physical qubits per factory – – 1013 313 1013 313
Total physical qubits for rotations – – 1.9× 106 5.9× 105 2.6× 104 8.1× 103

T factories
Number 64 30 41110 23248 1427 813
Physical qubits per factory 2.7× 104 2.7× 104 7.5× 104 2.7× 104 7.5× 104 2.7× 104

Total physical qubits for T factories 1.7× 106 8.1× 105 3.1× 109 6.4× 108 1.1× 108 2.2× 107

Total physical qubits 1.8× 106 8.5× 105 3.1× 109 6.4× 108 1.1× 108 2.2× 107

Table 4. Fault Tolerance Overheads. This table gives the resource requirements including error correction for simulations of nitrogenase’s
FeMoco in a 54 (spatial) orbital basis within the times quoted in Table I in the main body using physical gates operating at 100 MHz. Here we
use error rates that are appropriate for quantum computing with Ising anyons, wherein topological protection is granted to Clifford operations
but not to non–Clifford rotations. The error rate used in the production of the raw magic states is taken to be 10−4 in all of the above cases.

may be possible that when quantum computers emerge that
they will be initially slower than optimistic speeds envisioned
in the main body. In such cases, further optimizations to
the quantum simulation algorithms may be useful to allow
the simulations to be performed using a modest amount of
resources.

Here we present several optimizations that can be used to
reduce the depth of such quantum simulations and parallelize
the phase estimation component over several quantum comput-
ers connected with either quantum or classical interconnects.
These optimizations can reduce the time by many orders of
magnitude but incur space/time tradeoffs that need to be
addressed on a case by case basis within the limitations of the
hardware.

Improved circuits for pqrs terms. The general two–body terms
for the second quantized Hamiltonian involve, when expressed
using the Jordan–Wigner transformation, can be written as
tensor product of X and Y operators tensored with Z operators
that appear due to the Jordan–Wigner strings. Conventional
circuits, such as those in [13], break these terms in the Hamil-
tonian into a group of at most 8 commuting operators that
act on the qubits in question. These circuits then diagonalize
each term individually and perform the evolution based on
this.

Here we take a different strategy. Rather than diagonaliz-
ing each term individually, we transform to the simultaneous
eigenbasis of all 8 terms. This allows us to parallelize all 8 ro-
tations while reducing the number of Clifford gates. The price
is that this method requires ancillae to store the eigenvalues
of all 8 terms. This approach can also be trivially applied to
groups of only 2 or 4 commuting Hamiltonians but here we
focus on the most complicated case of 8 terms.

We use the following convention to enumerate the Pauli
operators that appear in the pqrs circuit.

Ps :=
{

X s = 0
Y s = 1

.

We will further ignore the Z operators that arise from the
Jordan–Wigner because they are irrelevant here. Using this
definition, we present a simultaneous eigenbasis for all such
commuting operators in the following lemma.

Lemma 5. Let W = Pi⊗Pj⊗Pk⊗P` then the eigenstates of
W , for any i, j, k, ` in Z2 such that (i+ j + k+ `) = 0 mod 2,
can be expressed as

|a, v〉 := |0〉|v1v2v3〉+ (−1)a|1〉|v̄1v̄2v̄3〉√
2

.

where a ∈ {0, 1} and

W |a, v〉 = (
√
−1)i+j+k+l(−1)a+v·[j,k,l]|a, v〉.

Proof.

W |0〉|v1v2v3〉 =
√
−1i+j+k+l(−1)jv1+kv2+`v3 |1〉|v̄1v̄2v̄3〉.

W |1〉|v̄1v̄2v̄3〉 =
√
−1i+j+k+l(−1)jv̄1+kv̄2+`v̄3+i|0〉|v1v2v3〉.

=
√
−1i+j+k+l(−1)jv1+kv2+`v3 |0〉|v1v2v3〉,

[43]

under our assumption that i+ j+k+ ` mod 2 = 0. Therefore
the eigenvectors of W exist in the span of these two states as
can be seen by

W

(
|0〉|v1v2v3〉+ (−1)a|1〉|v̄1v̄2v̄3〉√

2

)
=
√
−1i+j+k+l(−1)jv1+kv2+`v3+a

×
(
|0〉|v1v2v3〉+ (−1)a|1〉|v̄1v̄2v̄3〉√

2

)
. [44]

The result then follows from jv1 + kv2 + `v3 = v · [j, k, `], and
observing that the eigenvectors corresponding to different a
and v = (v1, v2, v3) are orthogonal.

Now that we know the form of the eigenbasis of these
terms we can find an operator that transforms between the
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computational basis and the eigenbasis of W . We can then
discuss a diagonalizing transformation for the commuting
Hamiltonians.

Definition 1. Let UW be the circuit consisting of one
Hadamard gate on the first qubit followed by N − 1 CNOT
opperations that maps

|0〉N 7→ |0〉
N + |1〉N√

2
.

Corollary 1. Let W = Pi ⊗ Pj ⊗ Pk ⊗ P` for i, j, k, ` in Z2
then

√
−1i+j+k+l

UW
(
Z⊗ Zj ⊗ Zk ⊗ Z`

)
U†W = W.

Proof. We prove the theorem by showing that the two opera-
tors have equivalent actions on the eigenstates of W . First it
is easy to see by applying the inverse of UW that

U†W |a, v〉 = |a〉|v1v2v3〉. [45]

(
Z⊗ Zj ⊗ Zk ⊗ Z`

)
U†W |a, v〉 = (−1)a+v·[j,k,`]|a〉|v1v2v3〉.

[46]
Hence

UW
(
Z⊗ Zj ⊗ Zk ⊗ Z`

)
U†W |a, v〉 = (−1)a+v·[j,k,`]|a, v〉. [47]

Thus every eigenvector of W is also an eigenvector of√
−1i+j+k+l

UW
(
Z⊗ Zj ⊗ Zk ⊗ Z`

)
U†W with the same eigen-

value. Therefore both operators are equivalent.

Definition 2. For {a0, . . . , a7} ⊂ R define

H8 := a0X⊗ X⊗ X⊗ X + a1Y⊗ Y⊗ X⊗ X

+ a2Y⊗ X⊗ Y⊗ X + a3Y⊗ X⊗ X⊗ Y

+ a4X⊗ Y⊗ Y⊗ X + a5X⊗ Y⊗ X⊗ Y

+ a6X⊗ X⊗ Y⊗ Y + a7Y⊗ Y⊗ Y⊗ Y.

Theorem 4. Given {a0, . . . , a7} ∈ R, the circuit of Figure 6
simulates e−iH8t exactly for all t ∈ R.

Proof. Corollary 1 implies, after noting that i+j+k+` = 0, 2, 4
for terms with 0,2 and 4 Y operators respectively, that

e−iH8t = e−i(a0XXXX+···+a7Y Y Y Y )t

= e−i(a0UW (Z⊗I⊗I⊗I)U†
W
−···+a7UW (Z⊗Z⊗Z⊗Z)U†

W
)t)

= UW e
−i(a0Z⊗I⊗I⊗I−···+a7Z⊗Z⊗Z⊗Z)tU†W .

= UW
(
e−ia0Z⊗I⊗I⊗It · · · e−ia7Z⊗Z⊗Z⊗Zt)U†W . [48]

Thus the problem of simulating the unitary evolution reduces
to the problem of sequentially simulating evolution under the
above 8 terms after diagonalizing them using U†W . It is clear
that the first 5 steps of the circuit in Figure 6 performs U†W
on the first four qubits and then prepares the following state
in the quantum computer

|a, v〉|0〉4 7→|a〉|a+ v1〉|a+ v2〉|a+ v3〉|a+ v1 + v2〉
× |a+ v1 + v3〉|a+ v2 + v3〉|a+ v1 + v2 + v3〉.

[49]

Therefore the next step of our circuit implements

|a, v〉|0〉4 7→ e−ia0Zt|a〉eia1Zt|a+ v1〉eia2Zt|a+ v2〉eia3Zt

× |a+ v3〉eia4Zt|a+ v1 + v2〉eia5Zt|a+ v1 + v3〉

× eia6Zt|a+ v2 + v3〉e−ia7Zt|a+ v1 + v2 + v3〉,
[50]

which after resetting the parity bits to 0 is equivalent to(
e−ia0Z⊗I⊗I⊗It · · · e−ia7Z⊗Z⊗Z⊗Zt) |a〉|v1v2v3〉

∣∣04〉. [51]

The remaining circuit serves to transform the ancillae back
to their initial state and hence the circuit simulates e−iH8t as
claimed.

In principle, this optimization can reduce the depth by a
factor of 8 at the price of requiring 4 extra qubits. In practice,
however, few terms consist of all 8 rotations. For nitrogenase,
these circuits offer roughly a factor of 4 reduction in the gate
depth. Further optimizations along these lines are possible
and their application could allow many more commuting terms
to be applied simultaneously than current nesting strategies
permit.

Parallel phase estimation. A major driver of the cost of our
algorithm is the use of phase estimation. Its use dramatically
reduces the T count at the price of increased depth. Fortu-
nately, there are strategies for parallelizing phase estimation.
The first such strategy that we will consider is to network a
number of quantum computers together by sharing GHZ states
and then using these states to accelerate the phase estimation
algorithm in concert with adiabatic state preparation.

The basis behind our technique for parallel phase estimation
was invented by Knill, Ortiz and Somma [50]. The idea behind
the method is the observation that if we have an eigenstate
|λ〉 then

e−iHt|λ〉|λ〉 = e−iHt/2|λ〉e−iHt/2|λ〉. [52]

Thus if we have r copies of an eigenstate then we can simulate
the whole evolution using only evolutions of duration t/r.

By distributing a GHZ state over r quantum computers
connected by quantum channels, we can implement this phase
estimation protocol in 1/r the time. Entanglement distillation
and teleportation can be used to make such a protocol scalable
in the presence of noise in the limit of large r. Once such
states have been distributed the phase estimation procedure
takes the form of

|0〉⊗r + |1〉⊗r√
2

|λ〉⊗r → |0〉
⊗r|λ〉r + |1〉⊗r(e−iHt|λ〉)⊗r√

2
. [53]

The two drawbacks of the Knill, Ortiz and Somma approach
are that substantially more qubits are required to parallelize
the phase estimation and that high-fidelity eigenstates are
needed. This can be seen in the following lemma.

Lemma 6. Assume H|λ〉 = λ|λ〉 and let
∣∣λ̃〉 =

√
1− ε2|λ〉+

ε
∣∣λ⊥〉 where 〈λ|λ⊥〉 = 0 and ε ≥ 0. Then assuming a non–
deterministic phase estimation algorithm that has non–zero
success probability is applied to estimate the eigenvalues of
e−iHt for t > 0 and H a Hermitian matrix in CM×M using the
state

∣∣λ̃〉⊗r, the expected error in the estimate of the eigenvalue

14 | Lead author last name et al.



Fig. 6. Circuit for simulating e−iH8t. The four ancillae are used to store eigenvalues of H8. The effects of the Jordan–Wigner strings can be included by simply applying the
ladder of controlled-not gates to the top most qubit both before the first set of 7 controlled not operations and after the second set.

of e−iH⊗rt (post selected on success of the phase estimation
algorithm) is at most δ > 0 if

ε ≤ 1
r

√
δ

2‖H‖t ,

where ‖ · ‖ is the spectral norm.

Proof. First because the error probability is non–zero, we can
meaningfully discuss the mean error conditioned upon the
phase estimation algorithm succeeding. It is then straight
forward to see that the inner product squared between the
two states is (1 − ε2)r ≥ 1 − rε2. Thus the probability that
phase estimation on e−iH

⊗rt failing to provide the correct
eigenvalue is at most rε2. If the algorithm fails then it follows
from the definition of the spectral norm that the largest error
possible in the estimate of the eigenvalue is 2r‖H‖t. Thus the
expected error is at most 2r2ε2‖H‖t. If we set this error to
be δ > 0 then it suffices to pick ε ≤ 1

r

√
δ

2‖H‖t to ensure that
the post-selected mean error is at most δ.

Thus as r increases, we should aim to have the error in
state preparation must shrink at least linearly with the number
of parallel copies of the state. The approximation error is
typically considered to be fixed for many state preparation
methods, such as Hartree Fock approximations or CCSD(T)
states. This naturally leads to a problem that is known in
chemistry as the Van Vleck catastrophe.

While the Van Vleck catastrophe is indeed catastrophic for
fixed approximations, it is not necessarily for adiabatic state
preparation. Adiabatic state preparation requires time that,
under appropriate assumptions of continuity on the Hamil-
tonian [45, 51], scales as T ∈ Õ(max ‖Ḣ(s)‖/(min gap2ε)),
where H(s) interpolates from an elementary Hamiltonian with
an easily preparable groundstate at s = 0 to the FCI Hamil-
tonian at s = 1. Thus if we take δ ∈ Θ(‖H‖t) it follows that
the time required for adiabatic state preparation is

T ∈ Õ
(
rmax ‖Ḣ(s)‖
min gap2(s)

)
. [54]

Thus even if a well gapped adiabatic path exists between the
initial and final Hamiltonians, the time required for adiabatic
state preparation scales at most linearly with r. Further, since
the cost of quantum simulation scales at least linearly with
T it follows that the depth reduction of a factor of r from
parallelizing does not necessarily compensate for increased cost
of adiabatic state preparation without further assumptions.

However, since we are primarily interested in high–accuracy
state preparation much better strategies exist [52, 53]. If such
approaches, known as boundary cancellation methods, are
employed then the cost is dramatically reduced as we show
below.
Theorem 5. Assume that

• H(s) : C 7→ CM×M is analytic in a strip of width γ ∈ Θ(1)
about the real-line,

• For all q ∈ [1, . . . ,∞) ‖H(q)(s)‖ ∈ O(1),

• for any positive integer q we can choose the above map
such that, H(p)(0) = H(p)(1) = 0 for all p ∈ {1, . . . , q},

• for all s ∈ [0, 1] the spectral gap between the groundstate
of H(s) and any other eigenstate is in Ω(1),

• all assumptions of Lemma 6 are satisfied.
It then follows that the time required to perform adiabatic state
preparation such that, post selected on success of the phase
estimation algorithm, the mean error in the estimate of λ is
at most δ for evolution time

T ∈ Θ(log(r
√

2‖H‖t/δ)).

Proof. Under our assumptions it follows that our time-
dependent Hamiltonian is a one-parameter family of bounded
Hamiltonians that has some fixed distance, γ > 0, such that
any pole or branch point is distance at least γ from the real-
axis. Thus we can apply Corollary 1 of [52], which states that
for every ε > 0 there exists an interpolation of the adiabatic
path such that the error in the adiabatic approximation for
time T (under our assumptions on the derivatives of H(s)) is
at most

ε ∈ TΘ(1)e−Θ(T ) ⊆ e−Θ(T ), [55]
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under our assumptions on the gap, the derivatives of H and
the constant γ. This implies that

T ∈ Θ(log(1/ε)). [56]

Then from Lemma 6 we see that the post selected mean error in
phase estimation is at most δ for T ∈ Θ(log(r

√
2‖H‖t/δ)).

Since the cost of simulation scales at least linearly with
time (and super-linearly for Trotter-Suzuki formulas [54]) it
follows that the cost of adiabatic state preparation scales at
most poly-logarithmically with r, which itself is O(1/

√
δ) from

previous discussions. This means that under the circumstances
that a gapped adiabatic path exists that satisfies the above
properties, the cost of preparing the state within sufficient
error will not typically dominate the cost of phase estimation
if each of the r Trotter steps used in the longest step in the
phase estimation algorithm are parallelized over. This shows
that quantum methods can be used to inexpensively parallelize
the phase estimation algorithm.

If we apply this strategy to nitrogenase we can potentially
reduce the depth by a factor of roughly 100 from Figure 4.
However, this is predicated on the existence of a gapped
adiabatic path connecting an elementary Hamiltonian (such
as the second-quantized Hartree Fock Hamiltonian) and the
FCI groundstate. Proving such a path exists is typically as
hard, or harder, than the problem of groundstate estimation.
Thus we cannot know how difficult adiabatic state preparation
is for nitrogenase. So although this method is promising, as
with other state preparation methods, its practicality may
need to be assessed using quantum hardware. Regardless,
this demonstrates that the depth of phase estimation can be
substantially reduced given a rudimentary quantum network
capable of distributing the qubits in a GHZ state over a cluster
of quantum computers.

Phase estimation using clusters of quantum computers. The
inference process used in iterative phase estimation algorithms
provides a natural breakpoint to insert classical parrallelism.
In particular, we can use the results from several quantum
computers to infer the most likely eigenphase for a system. In
this section we provide a concrete method for this based on
approximate Bayesian inference. Although efficient schemes
exist for approximate Bayesian inference, we do not use them
here because chemical accuracy provides a fixed target preci-
sion for PE. This means that inefficient methods can be used
provided that they need reasonable time.

Bayesian phase estimation works by positing a prior distri-
bution that represents the user’s subjective beliefs about the
probabilities that certain hypotheses about the eigenphases
are true. The next step involves performing one or more in-
dependent experiments, {E1, E2, . . . , EK} which then inform
these beliefs via Bayes’ rule:

P (φ|E1, . . . , Ek) =

(∏
j
P (Ej |φ)

)
P (φ)∫ (∏

j
P (Ej |φ)

)
P (φ)dφ

. [57]

The probability density P (φ|E1, . . . , Ek) is known as the pos-
terior distribution. The function P (Ej |φ) is known as the
likelihood function, which is given by Lemma 2 for phase esti-
mation. The probability density P (φ) is known as the prior
distribution. In discrete cases the probability densities become

probabilities and the normalizing integral in the denominator
for Bayes’ rule becomes a sum.

Unfortunately, exact Bayesian inference is typically in-
tractable (cases where conjugate priors exist are a notable
exception). Approximate methods therefore typically have to
be employed. The method that we employ is reminiscent of in-
formation theory phase estimation (ITPE) [55], which divides
the hypothesis space for the eigenphase into a fixed number
of bins and then infers the most likely bit value based on the
MLE estimate of the posterior probability of the eigenvalue.
Here we modify this framework by replacing the maximum
likelihood estimator by the posterior mean and use an adap-
tive heuristic to estimate the best times for each round of the
experiment. The procedure we use, which is based on [28], is
given below.

1. Divide the hypothesis space [0, 2π) for the eigenphase into
N discrete bins and select a target uncertainty, ε > 0 such
that ε > 2π/N .

2. Choose P (φ) to be the uniform distribution over these
discrete eigenphases.

3. For each of the C quantum computers in the cluster,
choose the parameter θc : c = 1, . . . , C by sampling C
eigenphases from the prior distribution and choose M =
1/(S

√
C) where S is the circular standard deviation of

the prior probability distribution.

4. Perform each experiment in parallel on a quantum com-
puter.

5. Use Bayes’ rule to update the prior probability distribu-
tion based on the C experiments.

6. Repeat until S ≤ ε and return S and the posterior mean
µ, which is our estimate of the eigenphase.

The guess heuristic used in the above discussion is known
as the particle guess heuristic [28], which is known to be nearly
optimal for non–parallelized phase estimation algorithms. We
modify this heuristic to scale like 1/(S

√
C) rather than 1/S

which we justify based on the fact that the error in parallel
phase estimation scales as O(1/

√
C) for a uniform prior dis-

tribution [27]. In principle, locally optimized methods can
also be used for this such as those considered in [30]. We
therefore choose less informative experiments at each step and
compensate for this by performing many more of them.

We see from Figure 7 that the evolution time needed to
perform phase estimation within chemical precision shrinks as
more quantum computers are added to the cluster. We observe
from the data that we see clear evidence that the mean time
required to achieve an uncertainty in the phase of ε scales as
π/(2ε

√
C) (where ε = 10−4 Ha, 10−3 Ha) asymptotic scaling

of the evolution time required to achieve a fixed uncertainty
target. This scaling is asymptotically optimal [27] (because
the Holevo variance coincides with the circular variance for
narrow distributions), and as such we do not expect that an un-
biased estimator of the eigenphase will be able to substantially
outperform this without either the use of prior information or
additional quantum resources at these fixed accuracy targets.

Note that while the mean uncertainty is small for C ≥ 3,
it is not small for C = 1, 2. The median data in Figure 8
shows that the algorithm still works well, with at least 50%
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Fig. 7. The mean total time required (proportional to circuit depth) for PE in
a cluster of C parallel quantum computers to estimate the phase within an
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Fig. 8. The median total time required (proportional to circuit depth) for PE
in a cluster of C parallel quantum computers to estimate the phase within an
uncertainty of ε = 1, 0.1 mHa. Dashed lines correspond to π/(2ε

√
C).

probability for small C but suffers from rare failures. Also it
is worth noting that small values of C do not allow optimal
scaling because the guess heuristic is not always providing
the best possible experiment. This tendancy dissapears as
C increases because the algorithm can then explore a wider
range of experimental parameters to compensate for guesses
that are individually poor.

A crucial assumption in the above discussion is that an
exact copy of the eigenstate is provided. If one is not provided
then several options remain. The first is to use adiabatic
state preparation to make increasingly accurate estimates of
the groundstate, as discussed previously. The second option
involves using lower bounds on the eigenvalue gap, gap > 0,
and limitted precision phase estimation to project onto the
groundstate. We will discuss this option below.

If the gap is sufficiently large, then the phase estimation
algorithm can be run independently to learn the individual
eigenstates stored in each of the C quantum computers. Since
we know that the eigenvalue gap is g, this can be done in the-
ory by learning each eigenvalue within error ±g and rejecting
the states that do not fall within this range. In practice, this
can be done by fixing a confidence level η and ensuring that
the posterior distribution for φ assigns probability 1− η in a
region of (E0 − g,E0 + g) where E0 is either an empirical or
analytic approximation to the groundstate energy. This typi-
cally requires time on the order of O(log(1/η)/g) to attain [1].
Since η ∈ O(1/C) in order to make sure that the probability
that one of the quantum computers contains an erroneous
eigenphase is small, the process requires time that scales as
O(log(C)/g). Thus this approach can asymptotically pro-
vide an advantage in depth over traditional phase estimation
provided C � exp(g/∆) where ∆ is chemical accuracy.

One issue that remains is that in the worst case scenario this
process requires O(

√
C) times as many quantum operations

performed over all the quantum computers as traditional phase
estimation would require. Thus the logical error rates must be
reduced by a factor of

√
C in order to ensure that the prob-

ability of failure remains small over the entire set. However,
this is unlikely to result in substantially greater overheads for
the computation owing to the fact that the overheads from

error correction are at worst polylogarithmic.
Phase estimation can be realistically distributed over a

small cluster of quantum computers. Roughly 100 quantum
computers computing on the same eigenstate suffice to reduce
the error in phase estimation by a factor of 10, which suggests
that this approach can potentially be used to allow nitrogenase
to be simulated on slower architectures with gate times on
the order of 0.1µs as opposed to the 10ns assumed in previous
discussions without increasing the run time or requiring a
quantum network.

9. FeMoco — the active site of nitrogenase

In this section we provide more background on the importance
of biological dinitrogen fixation and on the active site model
of nitrogenase prepared in different charge and spin states
applied in the feasibility analysis of this work.

For decades, a Holy Grail in chemistry has been the cat-
alytic fixation of molecular nitrogen under ambient conditions.
Less than half a dozen synthetic catalysts have been developed
for this purpose [56–58] (after decades of fruitless efforts). All
of them suffer from low turnover numbers and the synthetic
dinitrogen-fixation problem under ambient conditions can thus
be considered largely unsolved. The process is of tremendous
importance for society as fertilizers are produced from am-
monia, the final product of dinitrogen fixation. Industrially,
ammonia is produced in the very efficient Haber–Bosch pro-
cess, which, however, requires high temperature and pressure
(and consumes up to 2% of the annual energy production) [59].

While it currently appears unrealistic that this simple het-
erogeneous process will be replaced by a sophisticated synthetic
homogeneous catalyst, which is likely to be less stable and
expensive to produce, a mono- or poly-nuclear iron-based cata-
lyst working under ambient conditions and feeding on an easily
accessible source for ’hydrogen’ (and dinitrogen from air) could
become important for local small-scale fertilizer-production
concepts.

In any case, nitrogen fixation represents a tremendous chem-
ical challenge to activate and break the strong triple bond in
dinitrogen at room temperature and pressure. Nature found
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an efficient way to achieve this goal. It is accomplished by the
enzyme nitrogenase whose active site, the iron–molybdenum
cofactor FeMoco, consists of seven iron atoms and one molyb-
denum atom, which are clamped together by bridging sulfur
atoms [60]. The complete structure of the FeMoco was solved
only very recently when a central main-group atom was dis-
covered [61] that, surprisingly, turned out to be a carbon atom
[62–64]. The complex electronic structure of this cluster of
open-shell iron atoms, the possible charge, spin, and protona-
tion states as well as the different ligand binding sites to be
considered makes this active site a nightmare for electronic
structure calculations, which is the basis of all theoretical
approaches toward the elucidation of the mode of action of
metalloenzymes such as nitrogenase.

It is thus no surprise that the specific mechanism of dini-
trogen reduction at this active site has been elusive, especially
given the fact that the mechanism of nitrogenase is difficult to
study experimentally. Computational approaches suffer from
the static electron correlation problem. For two ammonia
molecules to be produced, the transfer of six protons and six
electrons is required per dinitrogen molecule (in fact, eight pro-
tons and eight electrons are needed as one dihydrogen molecule
is produced stoichiometrically). The transfer of these highly
reactive agents leads to many stable intermediates and side
products (see, for example, the analogous discussion of these
steps in Ref. [65] for the first synthetic dinitrogen-fixating com-
plex by Yandulov and Schrock). To elucidate the mechanism of
nitrogenase, which is important for a better understanding of
the activation of inert bonds by synthetic catalysts, therefore
requires the consideration of many molecular structures.

While molecular structure of stable intermediates and tran-
sition states may be optimized within unrestricted Kohn–Sham
DFT, the calculation of their energies demands an accurate
wave-function-based approach. We therefore optimize molecu-
lar structures of a FeMoco model in the resting structure (Fig.
1 (right) in the main article) for varying charge and spin states
in order to create different electronic situations that challenge
the feasibility analysis presented in this work. For these struc-
tures, integrals in a molecular orbital basis have been obtained
that parametrize the electronic structure of the cluster in the
second-quantized quantum-chemical Hamiltonian of Eq. (6).

10. Exact diagonalization techniques in chemistry

The electronic structure of a molecular structure determines its
reactivity. Predicting chemical reactions requires the solution
of the electronic Schrödinger equation to obtain the electronic
energy and wave function. Whereas the expansion of the many-
electron wave function into a (quasi-) complete many-electron
basis will produce the exact solution, called full configuration
interaction in chemistry or exact diagonalization in physics,
this approach is unfeasible for molecules of more than a few
atoms. As all standard quantum-chemical solution approaches
construct many-electron basis functions from orbitals, the
number of the former is determined by the number of the
latter. Exact diagonalization is therefore limited to about
18 electrons distributed among 18 spatial orbitals due to the
exponential scaling of the many-electron basis states with the
number of orbitals [66]. Unfortunately, the size of an orbital
basis is already very large for moderately sized molecules. As
a consequence, a restricted orbital space must be chosen.

Of all approximations developed in quantum chemistry

to overcome this problem [67] the complete-active-space self-
consistent-field (CASSCF) approach (and related models) uti-
lizes exact diagonalization, but, because of the exponential
scaling, in a reduced orbital space, the so-called CAS, that
selects orbitals around the Fermi energy. To compensate for
this approximation, the orbitals are relaxed self consistently,
hence the name. Still, the CAS is limited by the 18-orbital
wall and by the neglect of most of the (virtual) orbitals for
the construction of the wave function. Considering the fact
that molecules of a hundred atoms or more quickly require
much more than a thousand one-electron basis functions for an
accurate description of their electronic structure, most of the
orbitals constructed from these basis functions are omitted in
the construction of a CASSCF wave function. Even iterative
techniques such as the density matrix renormalization group
(DMRG), which can be understood as a polynomially scaling
CASSCF approach, can push this wall only to about a hundred
spatial orbitals.

As a result, a CASSCF-type wave function solves only
the so-called static electron correlation problem. It is there-
fore particularly well suited for molecular structures with
near-degenerate orbitals. The resulting electronic structure
is only qualitatively well described. However, this feature is
maintained throughout a reaction coordinate, which makes
a CASSCF-type approach an appealing universal approach.
For a quantitative description, the many virtual orbitals not
considered for the CAS make a nonnegligible contribution to
electronic-energy differences. To account for this so-called
dynamic correlation is mandatory and typically achieved by
a subsequent multi-reference perturbation theory calculation.
Such perturbation theories to second order require elements of
the three- and four-electron reduced density matrices, which
are difficult to calculate and to store.

Instead of this ’diagonalize, then perturb’ approach, also
’perturb, then diagonalize’ ideas have been studied in chemistry.
These latter approaches produce a ’dressed’ many-electron
Hamiltonian which is then better conditioned for a CASSCF-
type approach. A new development in this area is the combi-
nation of density functional theory (DFT), known to describe
dynamic electron correlation well with a CASSCF-type ap-
proach by spatial range separation introduced by Savin (see
Refs. [68, 69] and references cited therein). Range separation
is accomplished for the electron–electron interaction matrix
elements and allows one to apply DFT at short range, whereas
at long range the full flexibility of a CASSCF-type wave func-
tion can be exploited. This approach is very efficient and does
not compromise the efficiency of a CASSCF-type approach
(by contrast to perturbation theory). In combination with
the polynomially scaling DMRG, this approach has delivered
very promising results [69] for benchmark reactions involving
transition metals [70].

As a consequence, a chemically sensible exact diagonal-
ization technique is a CASSCF-type approach that captures
dynamic correlation effects in the one-electron states. Such
an approach could be directly implemented on a quantum
computer with the specific exact diagonalization technology
developed for such a machine.

Thermochemical data may be obtained in our framework by
temperature and entropy corrections added to the electronic
energy differences. These corrections may sufficiently reliably
be calculated by standard (unrestricted) DFT. Their accuracy
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may be enhanced by standard scaling factors that may even be
subjected to rigorous Bayesian error estimation (for a detailed
discussion see Ref. [71]). Such a patchwork approach is ac-
ceptable considering the fact that DFT geometry optimization
will be the source of all molecular structures subjected to
our quantum-computing framework. This is also the case for
traditional methods as massive routine structure optimization
with correlated ab initio approaches will not be possible in the
near future and, at the same time, DFT structures are known
to be surprisingly accurate, also in cases when the energy
assignment to these structures is not reliable.

Considering dynamical electron correlation in a perturb-
then-diagonalize approach may require the calculation of the
one-body reduced density matrix (or its trace, the electron
density) as it is the case for a combination with short-range
DFT in a range-separated ansatz. This would then require a
costly evaluation of the density within the quantum computing
framework that may be circumvented by robust approxima-
tions. One may exploit model densities obtained by small-CAS
CASSCF or DMRG-SCF calculations, by unrestricted den-
sity functional calculations with spin projection, or even by
Hartree-Fock calculations, which has already proved reliable
in traditional CASCI-srDFT implementations. Other perturb-
then-diagonalize approaches such as PDFT may avoid this
altogether by introducing an on-top pair density a posteriori
to the multi-configurational calculation.

What chemical problems will benefit from such an imple-
mentation? Clearly, these will be problems that are dominated
by strong static electron correlation (rather than by weak dis-
persion interactions originating from dynamic electron correla-
tion). The electronic Schrödinger equation assigns an energy
to a given molecular structure in the Born–Oppenheimer ap-
proximation, and this electronic energy (evaluated at zero
Kelvin without vibrational, temperature, and entropy cor-
rections) should dominate the energy change of a chemical
process. Transition-metal catalysis is a field that presents such
situations.

Many important chemical transformations are mediated by
complicated electronic structures featured by transition-metal
complexes. Especially late 3d transition metals are of this
kind, most importantly iron, which is cheap and ubiquitous,
often yields nontoxic compounds, and therefore represents an
ideal catalytic center. Moreover, stable intermediates and,
in particular, transition states of a reaction mechanism often
represent typical static electron correlation problems as bonds
are formed and broken on the way to stable products. To
reliably predict a chemical transformation of this kind usually
requires to study many more than one elementary reaction step
— especially when reactive intermediates are involved. The
number of stable intermediates also increases due to unwanted
side reactions that need to be inspected. Therefore, the total
number of molecular structures whose electronic energy is
required for an understanding of a reaction mechanism is, in
general, very large.

Clearly, all these structures must be optimized with an
efficient quantum chemical method. While the accuracy of
electronic energies obtained with present-day DFT approaches
is often not satisfactory for predictive purposes (see, e.g.,
Refs. [70, 72]), molecular structures can be reproduced with
remarkable accuracy (obviously, a geometry gradient would
replace DFT structures, too). Hence, CASSCF-type methods

will mostly be required for the validation of electronic energies
of DFT-optimized molecular structures, which is the essential
piece of information for establishing a reaction mechanism.

11. Computational Methodology

We optimized the structure of a FeMoco resting-state model
that takes those residues of the protein backbone into account
which anchor the metal cluster in the enzyme (see Fig. 1 (right)
in the main article). Note that different spin and charge states
were considered for the structure optimization in order to
obtain a variety of electronic structures for the assessment of
a solution algorithm on a quantum computer. These spin and
charge states do not necessarily match the one of the resting
state of nitrogenase. Structure 1 for three positive excess
charges and an equal number of α- and β-spins, and structure
2 for an uncharged FeMoco model with one unpaired α-spin.
The Cartesian coordinates of these structures are collected in
Tables 6 and 7. In these unrestricted DFT calculations, the
spin symmetry was broken [73] and only Sz remains as a good
quantum number. For these structure optimizations we chose
the Turbomole program package (V6.4) [74] and employed
the B3LYP density functional [75–78] with the def2-TZVP
Ahlrichs triple-zeta basis set plus polarization functions on
all atoms [79]. An effective core potential was chosen only
for the molybdenum atom [80], which also takes care of all
scalar-relativistic effects on this heavy atom.

Then, integrals in the molecular orbital (MO) basis were
produced MO integrals for structure 1 were generated for
a CAS of 54 electrons in 54 spatial CASSCF orbitals (108
spin orbitals), which were obtained from a singlet CASSCF
calculation with 24 electrons in 16 orbitals. Accordingly, for
structure 2 we generated MO integrals for a CAS of 65 elec-
trons in 57 spatial CASSCF orbitals (114 spin orbitals) from a
quartet CASSCF calculation with 21 electrons in 12 orbitals.
The choice of the large active spaces was based on Pulay’s
UNO-CAS criterion [81, 82], in which the occupation number
of the natural orbitals serves as a selection criterion. However,
rather than unrestricted Hartree–Fock natural orbitals, we
selected those small-CAS CASSCF natural orbitals in the oc-
cupation intervals [1.98,0.02] and [1.99,0.01], respectively. The
molecular orbital integrals for the second-quantized electronic
Hamiltonian in these small-CAS orbital bases were calculated
with the Molcas program [66].

All settings for the calculations are summarized in Table 5.
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Structure Structure opt./B3LYP small-CAS CASSCF orbitals
Total spin S Charge Act. electrons Act. orbitals Total spin S Charge

1 0 3 54 54 0 3
2 1/2 0 65 57 3/2 0

Table 5. The structures optimized for FeMoco and the settings for the small-CAS CASSCF orbital optimization. S is the total spin quantum
number and the charge is measured in units of the elementary charge.

Atom Coordinates Structure 1
S 0.193509 -1.756174 -6.077728

FE -0.073029 0.147462 -7.060398
S -0.155670 -0.304014 -9.055299

FE -1.194342 -0.633669 -4.857848
C 0.097884 0.293121 -3.822079
FE 0.330922 1.682738 -2.639449
S 0.144858 3.427365 -3.756994

FE 0.000866 1.806617 -5.056623
S -1.759709 1.058486 -6.097784

FE 1.393308 -0.388901 -4.927653
S 2.935549 -1.083502 -3.683191

FE 1.581418 -0.451806 -2.290305
S 1.643565 1.242708 -0.922047

MO -0.046077 -0.172415 0.259925
O -0.081763 1.100331 1.760010
FE -0.867802 -0.634367 -2.449654
S -1.333714 1.160052 -1.286619
S -2.410505 -1.577384 -3.437041
S 1.630797 1.240870 -6.345822
S 0.353345 -1.960563 -1.213579
N 1.652155 -0.910661 1.409953
O -1.541962 -0.693648 1.167835
C -2.111338 -0.028674 2.280713
C -0.152453 1.144086 -10.129068
C -1.083149 1.057101 2.683832
H -3.060803 0.437015 2.003587
H -2.276775 -0.745389 3.087505
O -1.167081 1.740174 3.642482
H 0.625836 0.971552 -10.878592
H -1.119129 1.154099 -10.642807
H 0.015059 2.077284 -9.598730
C 2.339711 -0.178076 2.302234
N 3.244459 -0.944382 2.902881
C 3.160159 -2.227901 2.407388
C 2.176178 -2.202712 1.475167
H 1.794821 -3.019854 0.890693
H 3.781670 -3.031530 2.764468
H 3.882526 -0.630293 3.624464
H 2.182421 0.864873 2.517705

Table 6. The coordinates for Structure 1 of FeMoco in Å.

Atom Coordinates Structure 2
S 0.032866 -2.093214 -6.099450

FE 0.017622 -0.056816 -7.223052
S 0.143644 -0.401241 -9.315852

FE -1.471854 -0.721074 -4.983076
C -0.152873 0.225677 -3.664235

FE -0.118135 1.845485 -2.405214
S -0.036661 3.550618 -3.771677

FE -0.049780 1.771611 -5.047025
S -1.760858 1.077437 -6.479794

FE 1.306370 -0.657731 -4.880018
S 2.846629 -1.294232 -3.368478

FE 1.196355 -0.482357 -2.281465
S 1.566535 1.288016 -0.916398

MO -0.186653 -0.006921 0.115165
O -0.140683 1.329614 1.698525
FE -1.529490 -0.648712 -2.302651
S -1.922731 1.225686 -0.982284
S -3.001156 -1.537533 -3.665135
S 1.731662 1.109781 -6.342619
S -0.092449 -1.984660 -1.157533
N 1.598971 -0.845206 1.346832
O -1.365000 -0.810743 1.369699
C -1.748263 -0.161994 2.555155
C 0.321553 1.195240 -10.180658
C -0.891249 1.088353 2.753014
H -2.802446 0.128482 2.480632
H -1.641761 -0.837543 3.407640
O -0.904893 1.741420 3.768510
H 0.360712 0.987604 -11.249659
H -0.529456 1.838638 -9.965894
H 1.243686 1.686635 -9.874888
C 2.191192 -0.163147 2.313386
N 3.212741 -0.875946 2.820353
C 3.284255 -2.074995 2.147363
C 2.276098 -2.042456 1.234236
H 1.996684 -2.787079 0.511609
H 4.022709 -2.823292 2.371900
H 3.814462 -0.573873 3.568856
H 1.907357 0.820486 2.645710

Table 7. Coordinates for Structure 2 of FeMoco in Å.
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