Supporting Information

for

Substrate and Lewis Acid Coordination Promote O-O Bond Cleavage of an Unreactive $L_2Cu^{II}_2(O_2^{2^-})$ Species to Form $L_2Cu^{III}_2(O)_2$ Cores with Enhanced Oxidative Reactivity.

Isaac Garcia-Bosch,* Ryan E. Cowley, Daniel E. Díaz, Ryan L. Peterson, Edward I. Solomon* and Kenneth D. Karlin*

1. UV-Vis experiments.

1.1 Reaction of $[(MeAN)_2Cu_2(O_2^{2^*})]^{2^+}$ towards external substrates.

3 mL of a [(MeAN)Cu¹](BAr^F) solution (0.2 mM) in acetone were placed in a 10 mm path quartz cell equipped with a stir bar and it was capped with a rubber septum. After cooling down the cell to -90 °C, dioxygen was added to generate the corresponding [(MeAN)₂Cu^{II}₂(O₂²⁻)]²⁺ (^SP^{MeAN}) (λ_{max} : 365 nm; ϵ = 22 mM⁻¹ cm⁻¹). After complete formation, 100 µL of an acetone solution containing excess of the corresponding substrate were added. No spectral change was observed with substituted phenols, PPh₃, DHA, thioanisole, Me₂Fc, or Fc within 30 minutes after substrate addition. On the other hand, addition of Me₈Fc or Me₁₀Fc (10 equiv.) led to decay of the ^SP^{MeAN} UV-Vis features with concomitant formation of 1 equiv. of the corresponding Me_nFc⁺ (Figure S1). NOTE: the formation of only one equiv. suggests a disproportion reaction.

Figure S1. UV-vis spectra for the 1e⁻ reduction of ^SP^{MeAN} (brown spectrum) by Me₁₀Fc (10 equiv). The decay of ^SP^{MeAN} features concluded 1 minute after the addition of the reductant with concomitant formation of 1 equiv. of Me₁₀Fc⁺ (pink spectrum).

1.2 Reaction of $[(MeAN)_2Cu_2(O_2^{2^-})]^{2^+}$ with substituted sodium phenolates (4-NO₂, 4-CN, 4-Cl, 4-Me, 4-MeO and 2,6-F₂)

2.9 mL of a [(MeAN)Cu¹](BAr^F) solution (0.1 mM) in acetone were placed in a 10 mm path quartz cell equipped with a stir bar and it was capped with a rubber septum. After cooling down the cell to -90 °C, dioxygen was added to generate the corresponding [(MeAN)₂Cu^{II}₂(O₂⁻²)]²⁺ (0.05 mM. After complete formation, 100 μ L of an acetone solution containing the corresponding 4-substituted sodium phenolate were added (0.2 mM). Initial formation of a putative [(MeAN)₂Cu^{III}₂(O²⁻)₂(R-PhO⁻)]⁺ was observed followed by its decay (**Figures S3-S7**). Kinetic analysis was performed by fitting the exponential decay of [(MeAN)₂Cu^{III}₂(O²⁻)₂(R-PhO⁻)]⁺ at 400 nm. Pseudo-first-order rate constants k_{obs} obtained for each substrate are summarized in **Table S1** and plotted in **Figure S2** (Hammett plot). Note: the reaction rates (k_{obs}) were plotted against σ^+ . When k_{obs} was plotted against σ , a poor linear correlation was observed, confirming the proposed mechanism in which during the rate determining step, electrophilic attack of the Cu₂O₂ to the arene leads to formation of a carbocation intermediate. This analysis has also been previously carried out in the reactivity of other Cu₂O₂ species towards phenolates (see references S1-S4).¹⁻⁴

R-PhO ⁻	σ_p^+	[R-PhO ⁻]₀ (mM)	k _{obs} (s⁻¹)
4-MeO	-0.778	0.2	0.29 ± 0.02
4-Me	-0.31	0.2	0.082 ± 0.003
4-Cl	0.114	0.2	0.039 ± 0.004
4-CN	0.659	0.2	0.0061 ± 0.0001
2,6-F ₂	-	0.2	0.00194 ± 0.0004

Table S1. Summary of kinetic experiments for the reactivity of ^SP^{MeAN} towards substituted sodium phenolates.

Figure S2. Hammett plot (ln (k_{obs}) vs. σ +) for the reaction of ^S**P**^{MeAN} (0.05 mM) towards 4-substitued phenolates (see Table S1).¹⁻⁴

Figure S3. UV-vis spectra for the reaction of ${}^{S}P^{MeAN}$ (0.05 mM) (brown spectrum) towards 4-CN-phenolate (0.2 mM) to form the [(MeAN)₂Cu^{III}₂(O²⁻)₂(4-CN-PhO⁻)]⁺ (blue spectrum). Inset: kinetic traces (400 nm) for the decay of [(MeAN)₂Cu^{III}₂(O²⁻)₂(4-CN-PhO⁻)]⁺.

Figure S4. UV-vis spectra for the reaction of ^S**P**^{MeAN} (0.05 mM) (**brown spectrum**) towards 4-Cl-phenolate (0.2 mM) to form the $[(MeAN)_2Cu^{III}_2(O^{2-})_2(4-Cl-PhO^{-})]^+$ (**blue spectrum**). Inset: kinetic traces (400 nm) for the decay of $[(MeAN)_2Cu^{III}_2(O^{2-})_2(4-Cl-PhO^{-})]^+$.

Figure S5. UV-vis spectra for the reaction of ${}^{S}P^{MeAN}$ (0.05 mM) (brown spectrum) towards 4-Mephenolate (0.2 mM) to form the $[(MeAN)_2Cu^{III}_2(O^{2-})_2(4-Me-PhO^{-})]^+$ (blue spectrum). Inset: kinetic traces (400 nm) for the decay of $[(MeAN)_2Cu^{III}_2(O^{2-})_2(4-Me-PhO^{-})]^+$.

Figure S6. UV-vis spectra for the reaction of ${}^{S}P^{MeAN}$ (0.05 mM) (brown spectrum) towards 4-MeO-phenolate (0.2 mM) to form the [(MeAN)₂Cu^{III}₂(O²⁻)₂(4-MeO-PhO⁻)]⁺ (blue spectrum). Inset: kinetic traces (400 nm) for the decay of [(MeAN)₂Cu^{III}₂(O²⁻)₂(4-MeO-PhO⁻)]⁺.

Figure S7. UV-vis spectra for the reaction of ^S**P**^{MeAN} (0.05 mM) (brown spectrum) towards 2,6-F₂-phenolate (0.2 mM) to form the $[(MeAN)_2Cu^{III}_2(O^{2-})_2(2,6-F_2-PhO^{-})]^+$ (blue spectrum). Inset: kinetic traces (400 nm) for the decay of $[(MeAN)_2Cu^{III}_2(O^{2-})_2(2,6-F_2-PhO^{-})]^+$. Note: slight deviation of the kinetic trace observed (400 nm) from the calculated exponential decay fit is attributed to the slow accumulation of the $[(MeAN)_2Cu^{III}_2(O^{2-})_2(2,6-F_2-PhO^{-})]^+$ during the first 50 seconds of reaction coupled with its decay (i.e., formation of $[(MeAN)_2Cu^{III}_2(O^{2-})_2(2,6-F_2-PhO^{-})]^+$ and its decay have similar reaction rates).

1.3 Generation of Lewis acid adducts of [(MeAN)₂Cu₂(O₂²⁻)]²⁺ (O^{MeAN}-LA)

3 mL of a [(MeAN)Cu¹](BAr^F) solution (0.2 mM) in acetone were placed in a 10 mm path quartz cell equipped with a stir bar and capped with a rubber septum. After cooling the cell to -90 °C, O₂ was added to generate the corresponding ^SP^{MeAN} (λ_{max} : 365 nm; ϵ = 22 mM⁻¹ cm⁻¹). After complete formation, 100 µL of an acetone solution containing the corresponding equivalents of Lewis acids (0.2 mM DMF·CF₃SO₃H, 0.1 mM Sc(CF₃SO₃)₃, or 0.1 mM B(C₆F₅)₃) were added to generate the corresponding (**O**^{MeAN}-L**A**) species (**Figure S8**). NOTE: addition of (NBu₄⁺)(CF₃SO₃⁻) didn't lead to the isomerization of the ^SP^{MeAN} to the **O** species.

Figure S8. UV-vis spectra of ^SP^{MeAN} (brown) and the different O^{MeAN}-LA species O^{MeAN}-2H⁺ (red), O^{MeAN}-Sc³⁺ (blue), and O^{MeAN}-2BR₃ (green).

1.4 Lewis Acid titration and reversibility experiments

<u>1.4.1</u> **O**^{MeAN}-**2H**⁺: After formation of ^S**P**^{MeAN} (0.1 mM, -90 °C), consecutive additions of substoichiometric and stoichiometric amounts of DMF·CF₃SO₃H (0.05 – 0.2 mM) were added, observing full formation of **O**^{MeAN}-**2H**⁺ (λ_{max} : 410 nm; ε = 21 mM⁻¹ cm⁻¹). NOTE: addition of excess amounts of DMF·CF₃SO₃H (up to 1 mM) led to the slow decomposition of **O**^{MeAN}-**2H**⁺.

Formation of $O^{MeAN}-2H^+$ could be reversed by addition of proton sponge (1,8-bis(dimethylamino)naphthalene) in excess (0.6 mM) leading to full regeneration of ^SP^{MeAN} (Figure S9). $O^{MeAN}-2H^+$ could be formed again by re-addition of DMF·CF₃SO₃H (0.6 mM were required in order to full formation, due to the presence of proton sponge excess in solution).

Note: addition of excess equivalents of $Na(CF_3SO_3)$ did not lead to any spectral change associated with O-O bond cleavage.

Figure S9. Titration (left) and reversibility experiments (right) of the ^S**P**^{MeAN}/**O**^{MeAN}-2**H**⁺ equilibrium (see above for experimental details).

<u>1.4.2</u> **O**^{MeAN}-**Sc**³⁺: After formation of ^S**P**^{MeAN} (0.1 mM, -90 °C), consecutive additions of substoichiometric and stoichiometric amounts of Sc(CF₃SO₃)₃ (0.025 - 0.15 mM) were added, observing full formation of **O**^{MeAN}-**Sc**³⁺ (λ_{max} : 412 nm; ϵ = 23 mM⁻¹ cm⁻¹).

Formation of O^{MeAN} -Sc³⁺ could be reversed by addition of 1,10-phenantroline in excess (0.8 mM), leading only to partial formation (75%) of ^SP^{MeAN} (Figure S10) due to the ability of 1,10-phenantroline to trap Cu(I) (430 and 455 nm bands, see Figure S10). O^{MeAN} -Sc³⁺ could be partially formed again by re-addition of Sc(CF₃SO₃)₃ (0.2 mM were required in order to full formation, due to the presence of excess 1,10-phenanthroline in solution).

Figure S10. Titration (left) and reversibility experiments (right) of the ^SP^{MeAN}/O^{MeAN}-Sc³⁺ equilibrium (see above for experimental details).

<u>1.4.3</u> **O**^{MeAN}-**2BR**₃: After formation of ^S**P**^{MeAN} (0.1 mM, -90 °C), consecutive additions of substoichiometric and stoichiometric amounts of B(C₆F₅)₃ (0.05 – 0.30 mM) were added, observing full formation of **O**^{MeAN}-**2BR**₃ (λ_{max} : 414 nm,; ϵ = 24 mM⁻¹ cm⁻¹).

Formation of O^{MeAN} -2BR₃ could be reversed by addition of TASF (tris(dimethylamino)sulfonium difluorotrimethylsilicate) in excess (0.6 mM), leading only to partial formation (60%) of ^SP^{MeAN} (Figure S11). However, O^{MeAN} -2BR₃ could be partially formed again by re-addition of B(C₆F₅)₃.

Figure S11. Titration (left) and reversibility experiments (right) of the ^SP^{MeAN}/O^{MeAN}-2BR₃ equilibrium (see above for experimental details).

1.5 Reactivity of O^{MeAN}-LA towards external substrates

After generation of the corresponding (O^{MeAN} -LA) as described above (Section 2.3), 100 µL of an acetone solution containing excess of the corresponding substrate (PPh₃, DHA, thioanisole, and Fc (e⁻)) were added. No spectral change was observed, not even 30 minutes after substrate addition. On the other hand, addition of Me₁₀Fc, Me₈Fc or Me₂Fc ($^{S}P^{MeAN}$ was not able to be reduced by Me₂Fc) led to decay of the UV-vis features of the (O^{MeAN} -LA) cores (Figure S12). NOTE: the formation of only one equiv. of Me₂Fe⁺ and regeneration of 0.5 equiv. of $^{S}P^{MeAN}$ suggests a disproportion reaction after electron transfer.

Figure S12. UV-vis for the 1e⁻ reduction of O^{MeAN} -2H⁺ by Me₂Fc (10 equiv.). The decay of O^{MeAN} -2H⁺ features concluded 1 minute after the addition of the reductant with concomitant formation of 1 equiv. of Me₂Fc⁺ (orange spectrum) and 50% of ^SP^{MeAN}. Note: similar results were obtained in the reduction of O^{MeAN} -2BR₃ and O^{MeAN} -Sc³⁺ with Me₂Fc.

1.5.1 Reaction of **O^{MeAN}-LA** towards C-H bonds (BNAH, BNAD and BzImH): Kinetic studies

After generation of the corresponding (O^{MeAN} -LA) as described above (Section 1.3), 100 µL of an acetone solution containing various amounts of the corresponding substrate (BNAH, BNAD or BzImH) were added, causing the decay of the O^{MeAN} -LA spectral features. The absorbance changes ($\lambda = 400$ nm) were fitted to single exponential decays. In all the cases (BNAH, BNAD and BzImH), a linear correlation between the reaction rate (k_{obs}) and the substrate concentration was found, from which we obtained the second-order rate constant (slope). NOTE: regeneration of 0.2-0.3 equiv. of ^SP^{MeAN} suggests a secondary disproportion reaction after hydride transfer.

Figure S13. UV-vis spectral changes (decay) of the reaction between O^{MeAN}-LA and BNAH.

Figure S14. Decay (400 nm) of the UV-vis features of **O**^{MeAN}-**LA** upon addition of different amounts of BNAH (4, 7 and 10 equiv.)

Figure S15. Top: decay (400 nm) of the UV-vis features of O^{MeAN} -LA upon addition of BNAH, BNAD or BzIMH (10 equiv.). Bottom: kinetic isotope effect (KIE) calculated from plotting the different reaction rates (pseudo-first-order fitting and linear correlation (k_{obs} vs. [BNAH(D)]) obtained from the decay of the UV-vis features of O^{MeAN} -LA upon addition of different amounts of BNAH or BNAD (4, 7 and 10 equiv.).

1.5.2 Reaction of **O^{MeAN}-LA** towards O-H bonds (substituted phenols): Kinetic studies

After generation of the corresponding (O^{MeAN} -LA) as described above (Section 21.3), 100 µL of an acetone solution containing various amounts of the corresponding substrate (substituted phenols) were added, causing the decay of the O^{MeAN} -LA spectral features. The absorbance changes ($\lambda = 400$ nm) were fitted to single exponential decays. In all the cases, a linear correlation between the reaction rate (k_{obs}) and the substrate concentration was found, from which we obtained the second-order rate constant (slope).

The deuterated 4-MeO-C₆H₄OD was prepared by the reaction of the 4-MeO-phenolate (110 mg, 0.75 mmols) with acetic acid-*d* (1.5 mL, 25 mmols). The resulting product was dried under vacuum to eliminate the excess of acetic acid-*d*, and the resulting white solid was dissolved in MeTHF. The resulting solution was filtered and the organic solvent was evaporated under vacuum, leading to the isolation of the 4-MeO-C₆H₄OD as a white powder (44 mg, 47%). The purity of the product was confirmed by ¹H-NMR (95% deuterated).

Figure S16. Decay (400 nm) of the UV-vis features of **O**^{MeAN}-**LA** upon addition of 4-MeO-Phenol (11 equiv.).

Figure S17. Decay (400 nm) of the UV-vis features of **O**^{MeAN}-**LA** upon addition of different substituted phenols. Top left: correlation of rate with phenol reduction potential.

Figure S18. Kinetic isotope effect (KIE) calculated from plotting the different reaction rates (obtained by fitting the pseudo-first order exponential decays, see top) and linear correlation (k_{obs} vs. [4-MeO-PhOH(D)]) obtained from the reaction of **O**^{MeAN}-LA upon with different amounts of 4-MeO-PhOH or 4-MeO-PhOD.

2. Product analysis.

2.1 Reaction of $[(MeAN)_2Cu_2(O_2^{2^*})]^{2^*}$ with substituted sodium phenolates: catechol quantification.

10 mL of a [(MeAN)Cu^I](BAr^F) solution (0.32 mM) in acetone prepared in the glovebox were placed in a 100 mL Schlenk flask equipped with a stir bar and capped with a rubber septum. After cooling the flask to -90 °C (5 minutes at -90 °C), dioxygen was added to generate the corresponding [(MeAN)₂Cu^{II}₂(O₂²⁻)]²⁺ (0.166 mM). After complete formation, 250 μ L of an acetone solution containing the corresponding 4-substituted sodium phenolate were added (1 mM) and the reaction mixture was stirred for 30 minutes at -90 °C. After that, the reaction crude was quenched by addition of 3 mL of an aqueous HCl solution (0.5 M). After warming up, the reaction organic solvents (acetone) were evaporated under vacuum and the resulting aqueous solution was extracted with CH₂Cl₂ (3 x 10 mL). The organic fractions were dried over MgSO₄ and the solvents were removed under vacuum. The resulting solid product was dissolved in 0.7 mL of acetone-d₆ containing 10 μ L of an 0.32 mM acetophenone solution as internal standard. The catechol formation was quantified by ¹H-NMR (**Table S2**).

Table	S2.	Catechol	quantification	from	the	reaction	of	$[(MeAN)_2Cu_2(O_2^{2-})]^{2+}$	with	substituted
sodium	n phe	nolates								

R-PhO ⁻ Na ⁺	σ_p^+	[R-Catechol] (ppm)	Yield (%)
4-Me	-0.31	6.49 (2H)	29
4-CI	0.114	6.72 (2H)	35
4-CN	0.659	7.15 (2H)	41
2,6-F ₂	-	6.65 (3H)	30

2.2 Reaction of O^{MeAN}-LA with BNAH: quantification of oxidation products.

10 mL of a [(MeAN)Cu¹](BAr^F) solution (0.32 mM) in acetone prepared in the glovebox were placed in a 100 mL Schlenk flask equipped with a stir bar and capped with a rubber septum. After cooling the flask to -90 °C (5 minutes at -90 °C), dioxygen was added to generate the corresponding [(MeAN)₂Cu¹¹₂(O₂²⁻)]²⁺ (0.166 mM). After complete formation, 250 μ L of an acetone solution containing the corresponding equiv. of Lewis acid (0.32 mM DMF·TfOH, 0.166 mM Sc(CF₃SO₃), or 0.32 mM B(C₆F₅)₃) were added. After 1 minute (to make sure the corresponding O^{MeAN} -LA complex is formed), 250 μ L of an acetone solution containing 10 equiv. of BNAH were added (1.66 mM). After 30 minutes, the reaction crude was quenched by addition of 3 mL of an aqueous HCl solution (0.1 M, 1.1 equiv). The solution was then allowed to warm up to room temp under vacuum and all solvent was removed, yielding a green solid. The ¹H-NMR of the resulting green residue was taken in DMSO-D₆ and BNA⁺ integration was compared to 1,2-dichloroethane as an internal standard.

Table S3. BNA^+ quantification in the oxidation of BNAH by O^{MeAN} -LA. NOTE: Control experiments (without copper) showed that BNAH was oxidized to the corresponding BNA^+ by the Lewis acids. The amount of product derived from that oxidation was subtracted from the values obtained from the quantity obtained in the O^{MeAN} -LA oxidations.

O ^{MeAN} -LA	μmols BNA ⁺ (control ^a)	Yield (%)
O ^{MeAN} -2H+	2.8 (1.2)	99
O ^{MeAN} -Sc ³⁺	2.4 (0.8)	99
O ^{MeAN} -2BR ₃	1.9 (0.7)	75

^a μ mols of BNA⁺ obtained in the control reaction without Cu complex.

2.3 Reaction of O^{MeAN}-LA with 2,4-tBu₂-phenol: quantification of oxidation products.

10 mL of a [(MeAN)Cu^I](BAr^F) solution (0.32 mM) in acetone prepared in the glovebox were placed in a 100 mL Schlenk flask equipped with a stir bar and capped with a rubber septum. After cooling down the flask to -90 °C (5 minutes at -90 °C), dioxygen was added to generate the corresponding [(MeAN)₂Cu^{II}₂(O₂²⁻)]²⁺ (0.166 mM). After complete formation, 250 μ L of an acetone solution containing the corresponding equiv. of Lewis acid (0.32mM DMF·TfOH, 0.166 mM Sc(CF₃SO₃), or 0.32 mM B(C₆F₅)₃) were added. After 1 minute (to make sure the corresponding **O**^{MeAN}-LA complex is formed), 250 μ L of an acetone solution containing 50 equiv. of 2,4-tBu₂-phenol were added (8.3 mM). After 2 hours, the reaction crude was quenched by addition of 3 mL of an aqueous HCI solution (0.5 M). After warming up, the reaction organic solvents (acetone) were evaporated under vacuum and the resulting aqueous solution was extracted with CH₂Cl₂ (3 x 10 mL). The organic fractions were dried over MgSO₄ and the solvents were removed under vacuum. The resulting solid product was solved with 0.7 mL of acetone-d₆ and the C-C coupling product was quantified using 1,2-dichloroethane as an internal standard.

Table S4. C-C coupled product quantification in the oxidation of 2,4-tBu₂-Phenol by O^{MeAN} -LA. Note: the final yield of C-C coupled product was calculated based on a stoichiometry where 1 equiv. of O^{MeAN} -LA leads to 0.5 equiv. of coupling product.⁵

O ^{MeAN} -LA	Yield (%)
O ^{MeAN} -2H+	67
O ^{MeAN} -Sc ³⁺	57
O ^{MEAN} -2BR ₃	66

3. rRaman experiments.

<u>Generation of $[(MeAN)_2Cu_2(O_2^{2^-})]^{2^+}$ (^SP^{MeAN}):</u> 0.57 µL of a $[(MeAN)Cu^{l}]^+$ (1.0 mM) solution in acetone were placed in a 5 mm rubber septum capped NMR tube. After cooling the NMR tub to - 90 °C (acetone/N_{2(liq)} bath), dioxygen was bubbled through the solution mixture to generate the $[(MeAN)_2Cu_2(O_2^{2^-})]^{2^+}$ complex (1 mM).

 $[(\underline{\mathsf{MeAN}}_2 Cu^{|||}_2 (O^{2-})_2 (2,6-F_2-PhO^{-})]^+ (O^{\underline{\mathsf{MeAN}}}-F_2PhO^{-}): 0.57 \ \mu\text{L} of a [(\underline{\mathsf{MeAN}})Cu^{||}^+ (1.0 \ \text{mM}) solution in acetone were placed in a 5 mm rubber septum capped NMR tube. After cooling the NMR tube to -90 °C (acetone/N_{2(liq)} bath), dioxygen was bubbled through the solution mixture to generate the form the [(\underline{\mathsf{MeAN}}_2 Cu_2 (O_2^{2^-})]^{2^+} complex (0.5 \ \text{mM}). To generate the [(\underline{\mathsf{MeAN}}_2 Cu^{||}_2 (O^{2^-})_2 (2,6-F_2-PhO^{-})]^+, 50 \ \mu\text{L} of an acetone solution containing sodium 2,6-F_2-phenolate (3 \ \text{mM}) was added. Two samples were generated, depending on the time they were frozen (10/300 seconds after addition of phenolate).$

 $\frac{[(MeAN)_2Cu^{III}_2(O^{2-})_2(DMF \cdot CF_3SO_3H)_2]^{2+} (O^{MeAN}-2H^+)}{[O^{MeAN}-2H^+)!} 0.57 \ \mu L \ of a [(MeAN)Cu^{I}]^+ (1.0 \ mM) \ solution in acetone were placed in a 5 mm rubber septum capped NMR tube. After cooling the NMR tube to -90 °C (acetone/N_{2(liq)} bath), dioxygen was bubbled through the solution mixture to generate the form the [(MeAN)_2Cu_2(O_2^{2^-})]^{2+} \ complex (0.5 \ mM). To generate the O^{MeAN}-2H^+, 50 \ \mu L \ of an acetone solution containing 2 equiv. of DMF \cdot CF_3SO_3H (1 \ mM) were added.$

 $[(\underline{\mathsf{MeAN}})_2 \underline{\mathsf{Cu}}_2^{\text{III}} \underline{(\mathsf{O}^{2^-})_2} (\underline{\mathsf{Sc}}(\underline{\mathsf{CF}}_3 \underline{\mathsf{SO}}_3)_3)]^{2^+} (\underline{\mathsf{O}}^{\underline{\mathsf{MeAN}}} - \underline{\mathsf{Sc}}^{3^+}): 0.57 \ \mu L \ \text{of a } [(\underline{\mathsf{MeAN}}) \underline{\mathsf{Cu}}_1^{1^+} (1.0 \ \text{mM}) \ \text{solution in acetone were placed in a 5 mm rubber septum capped NMR tube. After cooling the NMR tube to -90 °C (acetone/N_{2(liq)} \ \text{bath}), \ \text{dioxygen was bubbled through the solution mixture to generate the form the } [(\underline{\mathsf{MeAN}})_2 \underline{\mathsf{Cu}}_2^{(O_2^{2^-})}]^{2^+} \ \text{complex (0.5 mM)}. \ \text{To generate the } \mathbf{O}^{\underline{\mathsf{MeAN}}} - \underline{\mathsf{Sc}}^{3^+}, \ 50 \ \mu L \ \text{of an acetone solution containing 1 equiv. of } Sc(CF_3SO_3)_3 (0.5 \ \text{mM}) \ \text{were added}.}$

 $\frac{[(MeAN)_2Cu^{III}_2(O^{2-})_2(B(C_6F_5)_3)_2]^{2+} (O^{MeAN}-2BR_3)}{(O^{2-})_2(B(C_6F_5)_3)_2]^{2+} (O^{MeAN}-2BR_3)} 0.57 \ \mu\text{L} of a [(MeAN)Cu^I]^+ (1.0 \ \text{mM}) solution in acetone were placed in a 5 mm rubber septum capped NMR tube. After cooling the NMR tube to -90 °C (acetone/N_{2(liq)} bath), dioxygen was bubbled through the solution mixture to generate the form the [(MeAN)_2Cu_2(O_2^{2-})]^{2+} complex (0.5 \ \text{mM}). To generate the <math>O^{MeAN}-2BR_3$, 50 μL of an acetone solution containing 2 equiv. of B(C₆F₅)₃ (0.5 \ \text{mM}) were added.

4. DFT calculations.

Figure S19. TD-DFT calculated absorption spectra of $[(MeAN)_2Cu^{III}_2(O^{2-})_2(2,6-F_2-PhO^{-})]^+$ with phenolate occupying an axial (left) or equatorial (right) position. The phenolate \rightarrow Cu LMCT is indicated (416 nm and weak for axial phenolate, 470 nm and intense for equatorial phenolate).

Figure S20. Relative energies (Δ G, 298 K) of ^SP^{MeAN} and **O**^{MeAN} isomers with axial (top) or equatorial (bottom) phenolate coordination. The relative energies include a correction of -12 kcal/mol as determined by previous calibration of the B3LYP functional to bis(µ-oxo)/peroxo equilibria.²

Figure S21. Calculated normal modes and ¹⁶O₂/¹⁸O₂ isotope effects for 2,6-F₂-PhO⁻-coordinated O^{MeAN}.

Figure S22. DFT-calculated structures and relevant bond metrics (Å; °) for 2,6-F₂-PhO⁻ and 2,4-F₂-PhO⁻-coordinated ^s P^{MeAN} and O^{MeAN} .

Figure S23. DFT-optimized structures and relative energies of ${}^{S}P^{MeAN}$ and O^{MeAN} and their Lewis acid adducts O^{MeAN} -LA and ${}^{S}P^{MeAN}$ -LA. The relative energy of the bis(µ-oxo) isomer relative to peroxo is given for each complex, which includes an energy correction of -12 kcal/mol as determined by previous calibration of the B3LYP functional to bis(µ-oxo)/peroxo equilibria.⁶

Figure S24. Time-dependent DFT-calculated absorption spectra of O^{MeAN} with the axial N uncoordinated (black), O^{MeAN} -2H⁺ (red), O^{MeAN} -2BMe₃ (green), and O^{MeAN} -ScOTf₂⁺ (blue). Calculated $\pi^*_{\sigma} \rightarrow d_{xy}$ and $\sigma^* \rightarrow d_{xy}$ LMCTs are at 321/382, 317/382, 318/381, and 312/382 nm, respectively.

		t t	t t	tt of the	the state
Normal Mode:	O ^{MeAN}	O ^{MeAN} armoff	O ^{MeAN} -2H ⁺	O ^{MeAN} -2BMe₃	O ^{MeAN} -ScOTf₂ ⁺
	645 (616)	659 (<i>630</i>)	665 (636)	664 (635)	659 (629)
	611 (<i>581</i>)	623 (593)	625 (596)	625 (596)	627 (597)
	604 (579)	618 (593)	618 (592)	620 (594)	618 (592)
•••	577 (557)	593 (574)	592 (573)	592 (572)	593 (572)

Table S5. DFT-calculated normal modes in $Cu^{III}_{2}(\mu-O)_{2}$ models. Calculated frequencies (cm⁻¹, scaled by 0.966 according to reference 7) are given for ${}^{16}O_{2}$ and (${}^{18}O_{2}$) isotopologues.

Figure S25. Comparison of DFT-calculated normal mode frequencies for N-bound vs. O-bound **O**^{MeAN}-2H⁺. The significantly weaker Cu-O bonding in the O-bound isomer results in very low frequency modes inconsistent with the observed resonance Raman data for **O**^{MeAN}.

Figure S26. Comparison of LUMO (Cu dx²-y² + O₂ π^*_{σ}) and LUMO+1 (O₂ σ^*) in the "arm on" and "arm off" isomers of ^SP^{MeAN}. Note the "arm off" isomer shows more unoccupied O₂ π^*_{σ} character (MO 151), which implies slightly higher Cu-O covalency, and less unoccupied O₂ σ^* character (MO 152), which implies stronger Cu \rightarrow O₂ σ^* backbonding and thus a weaker O–O bond.

xyz coordinates for DFT structures:

^SP^{MeAN}

Cu	-1 8267	-0.0161	0 8021
Cu	1 9269	0.0164	0.6945
Cu	0.0400	0.0104	0.0040
0	-0.0100	0.0041	-0.0007
0	0.0101	-0.0026	1.4873
N	2.2486	-2.2900	0.9876
Ν	3.0171	0.6624	2.2000
Ν	2.8757	0.6246	-0.9481
Ν	-2.2489	2.2904	0.4978
Ν	-3.0171	-0.6628	-0.7129
Ν	-2.8752	-0.6234	2.4352
С	-3.5363	2.8912	0.9366
Н	-3.6215	2.8294	2.0240
Н	-4.3855	2.3687	0.4947
Н	-3.5952	3.9528	0.6492
С	-1.1490	3.0196	1.1844
Ĥ	-1.1706	4.0933	0.9411
Н	-0.1906	2.6028	0.8772
Н	-1.2503	2.9057	2.2664
С	-2.0792	2.4762	-0.9762
Н	-2.1799	3.5479	-1.2166
Н	-1.0532	2.1812	-1.2178
С	-3.0498	1.6740	-1.8535
Н	-4.0909	1.8792	-1.5840
Н	-2.9410	2.0592	-2.8757
С	-2.7804	0.1669	-1.9538
н	-3.4032	-0.2575	-2.7547
Н	-1.7339	0.0076	-2.2335
С	-2.5584	-2.0527	-1.0386
Н	-2.7219	-2.7213	-0.1941
Н	-3.1086	-2.4416	-1.9046
Н	-1.4924	-2.0311	-1.2694
С	-4.4816	-0.6816	-0.3757
Н	-4.8316	0.3524	-0.3553
Н	-5.0121	-1.1889	-1.1942
С	-4.8379	-1.3517	0.9590
Н	-4.5246	-2.4005	0.9755
Н	-5.9335	-1.3790	1.0083
С	-4.3623	-0.6109	2.2156
Н	-4.8419	-1.0472	3.1032
Н	-4.6703	0.4378	2.1612
С	-2.4103	-1.9965	2.8056
Н	-2.6191	-2.7068	2.0061
н	-2.9157	-2.3340	3.7189

Н	-1.3341	-1.9694	2.9788
С	-2.5420	0.2902	3.5720
Н	-3.0417	-0.0447	4.4894
Н	-1.4623	0.2896	3.7302
Н	-2.8711	1.3035	3.3419
С	3.5361	-2.8907	0.5486
Н	4.3852	-2.3685	0.9910
Н	3.6215	-2.8282	-0.5387
Н	3.5948	-3.9525	0.8353
С	1.1488	-3.0188	0.3004
Н	0.1904	-2.6020	0.6075
Н	1.2503	-2.9044	-0.7816
Н	1.1702	-4.0926	0.5432
С	2.0787	-2.4767	2.4614
Н	2.1793	-3.5486	2.7011
Н	1.0526	-2.1820	2.7030
С	3.0490	-1.6751	3.3395
Н	2.9397	-2.0608	4.3614
н	4.0902	-1.8804	3.0702
С	2.7799	-0.1679	3.4404
н	3.4027	0.2558	4.2417
н	1.7334	-0.0086	3.7199
С	2.5583	2.0521	2.5265
Н	3.1081	2.4404	3.3930
н	1.4921	2.0305	2.7567
н	2.7223	2.7212	1.6825
С	4.4816	0.6813	1.8632
н	5.0120	1.1883	2.6821
Н	4.8317	-0.3526	1.8425
C	4.8382	1.3520	0.5289
н	4.5250	2.4008	0.5128
Н	5.9337	1.3792	0.4797
C	4.3627	0.6118	-0.7282
н	4.8425	1.0485	-1.6155
Н	4.6705	-0.4369	-0.6742
C	2.4109	1.9979	-1.3179
н	2.9165	2.3359	-2.2309
н	2.6194	2.7077	-0.5179
Н	1.3347	1.9710	-1.4915
	2.0420	-0.2004	-2.0004
н	2.0/20	-1.3018	-1.8559
н	3.0423	0.0471	-3.0027
н	1.4029	-0.2879	-2.2430

ο	м	e/	٩	N
---	---	----	---	---

• •••	4 40 40	0 4004	0 0000
Cu	-1.4349	-0.1291	0.8006
Cu	1.4350	0.1295	0.6859
0	-0.0429	-0.0054	-0.3630
0	0.0430	0.0054	1.8495
Ν	2.2943	-2.5061	0.9598
Ν	2 7220	0 5823	2 1708
N	2 5949	0 5346	-0.9128
N	-2 2042	2 5061	0.5261
N	-2.2042	-0 5827	-0.6838
N	-2.7222	-0.5027	2 3006
C	-3 6132	3 0022	0.8641
й	-3.8017	2 0854	1 0361
	-3.0017	2.9004	0.0050
	-4.41/4	2.0072	0.3232
	-3.0000	4.1000	0.0134
C	-1.2524	3.2452	1.2780
н	-1.2084	4.3073	0.9832
н	-0.2797	2.7875	1.0953
Н	-1.4608	3.1971	2.3499
C	-2.0183	2.6621	-0.9285
н	-2.1734	3.7158	-1.2231
Н	-0.9592	2.4366	-1.0813
С	-2.8492	1.7616	-1.8521
Н	-3.9215	1.8908	-1.6723
Н	-2.6910	2.1287	-2.8752
С	-2.4553	0.2791	-1.9055
Н	-2.9919	-0.1977	-2.7371
Н	-1.3837	0.1935	-2.1006
С	-2.3264	-1.9849	-1.0600
Н	-2.4868	-2.6658	-0.2240
Н	-2.9296	-2.3251	-1.9089
Н	-1.2725	-1.9907	-1.3366
С	-4.1891	-0.5529	-0.3586
Н	-4.4971	0.4908	-0.3091
Н	-4.7198	-1.0156	-1.2011
С	-4.5779	-1.2370	0.9510
Н	-4.2827	-2.2909	0.9717
Н	-5.6734	-1.2407	0.9952
С	-4.0818	-0.4821	2.1818
Н	-4.5582	-0.8786	3.0877
Н	-4.3571	0.5722	2.0986
С	-2.1834	-1.9035	2.8526
Ĥ	-2.3793	-2.6439	2.0769
Н	-2.7422	-2.1775	3.7541
	L.I 766	<u> </u>	0.1041

Н	-1.1177	-1.8897	3.0743
С	-2.2550	0.4360	3.4916
Н	-2.7653	0.1395	4.4149
Н	-1.1768	0.4373	3.6446
Н	-2.5824	1.4333	3.2023
С	3.6131	-3.0924	0.6215
Н	4.4175	-2.5876	1.1603
н	3.8015	-2.9855	-0.4505
Н	3.6564	-4.1662	0.8720
С	1.2522	-3.2445	0.2077
Н	0.2797	-2.7866	0.3910
Н	1.4603	-3.1958	-0.8642
Н	1.2080	-4.3068	0.5019
С	2.0184	-2.6626	2.4143
н	2.1735	-3.7165	2.7084
Н	0.9593	-2.4373	2.5672
C	2.8493	-1.7624	3.3381
н	2.6915	-2.1299	4.3611
Н	3.9216	-1.8914	3.1580
C	2.4551	-0.2801	3.3920
н	2.9915	0.1965	4.2239
Н	1.3835	-0.1948	3.5871
C	2.3258	1.9842	2.5477
н	2.9287	2.3241	3.3969
н	1.2/19	1.9898	2.8239
Н	2.4803	2.0000	1./121
Ц	4.1009	0.0000	1.0400
	4./ 194	0.4006	2.0000
	4.4972	1 2270	1.7900
ц	4.5770	2 2017	0.5300
ц	5 6733	1 2/18	0.0104
C	4 0821	0.4836	-0.4923
й	4 5585	0.9000	-1 6003
н	4 3575	-0 5707	-0.6121
Ċ	2 1835	1 9048	-1.3654
й	2 7426	2 1792	-2 2667
н	2 3790	2 6450	-0 5895
н	1 1179	1 8909	-1 5875
C	2.2556	-0.4344	-2.0052
H	2.5833	-1.4317	-1.7163
Н	2.7659	-0.1374	-2.9283
Н	1.1774	-0.4359	-2.1583

Cu	-1.7382	-0.4633	0.5213
Cu	1 7673	0 1740	0 4 8 1 5
ou	0.0457	0.1740	0.4013
0	0.0157	-0.2012	-0.2647
0	0.0280	-0.1728	1.2390
Ν	-2 2881	3 8269	-0 1556
N	2.2001	0.0200	1 0522
IN	-2.9304	-0.0632	-1.0552
Ν	-2.8430	-0.7897	2.1402
С	-2.6659	4.8719	-1.1240
н	-2 9324	5 7840	-0 5813
	2.0024	4 5610	1 7045
	-3.5363	4.5610	-1.7045
н	-1.8466	5.1142	-1.8271
С	-1.1939	4.3069	0.7059
н	-0 2734	4 5440	0 1389
ü	0.0520	2 5 4 4 1	1 4526
	-0.9520	5.5441	1.4550
н	-1.5131	5.2134	1.2296
С	-1.9059	2.5661	-0.8171
Н	-1.0926	2.7226	-1.5551
н	_1 4902	1 0174	-0.0385
	2.0044	1.0714	4 5000
C	-3.0944	1.8/14	-1.5060
Н	-3.9438	1.8627	-0.8135
Н	-3.4142	2.4673	-2.3679
С	-2.7903	0.4598	-2.0426
Ĥ	-3 4573	0 2204	-2 8835
Ц	1 7625	0.2204	2.0000
П	-1.7035	0.4170	-2.4195
С	-2.4127	-1.9272	-1.7185
Н	-2.5538	-2.7859	-1.0609
Н	-2.9503	-2.1055	-2.6568
н	-1 3/80	_1 8100	1 0260
	4 2024	-1.0100	-1.3203
	-4.3931	-0.0079	-0.7177
н	-4.8584	0.0950	-0.6213
Н	-4.8641	-1.3909	-1.5720
С	-4.6450	-1.6802	0.5713
H	-4 1335	-2 6497	0 5526
	-4.1000	1 0140	0.5520
н	-5./150	-1.9149	0.5982
С	-4.3163	-0.9007	1.8505
Н	-4.7971	-1.3667	2.7201
н	-4 7065	0 1185	1 7644
C	-2 3320	-2.0630	2 7466
ň	2.0020	2.0009	2.1400
п	-2.4905	-2.9003	2.0005
Н	-2.8506	-2.2628	3.6916
Н	-1.2611	-1.9671	2.9344
С	-2.6117	0.3320	3.1076
-		•	

^SP^{MeAN} with axial N uncoordinated

н	-3.1761	0.1555	4.0307
Н	-1.5479	0.3944	3.3417
Н	-2.9387	1.2730	2.6605
н	5.6400	1.8759	0.4467
C	4,5901	1.5603	0.4446
C	4.3871	0.6860	-0.7993
н	4.0061	2.4863	0.3845
С	4.3304	0.8240	1.7647
Ν	2.9454	0.3671	-1.1128
Н	4.9176	-0.2575	-0.6556
н	4.8198	1.1732	-1.6823
Ν	2.8703	0.6221	2.0736
н	4.7819	1.3674	2.6045
Н	4.7954	-0.1657	1.7257
С	2.8728	-0.8528	-2.0149
С	2.3468	1.5244	-1.8654
С	2.2839	1.8806	2.6432
С	2.7186	-0.4829	3.0761
С	3.2498	-2.1970	-1.3638
н	3.5339	-0.6495	-2.8674
н	1.8490	-0.8970	-2.3995
Н	2.4532	2.4404	-1.2820
Н	2.8606	1.6528	-2.8249
Н	1.2868	1.3357	-2.0438
Н	2.4064	2.7038	1.9372
Н	2.7873	2.1368	3.5826
Н	1.2197	1.7288	2.8313
Н	3.2824	-0.2468	3.9860
Н	1.6631	-0.6006	3.3262
Н	3.0946	-1.4158	2.6506
С	2.0839	-2.9054	-0.6501
н	4.0746	-2.0781	-0.6518
Н	3.6335	-2.8383	-2.1648
Ν	2.5304	-4.0141	0.2130
Н	1.3438	-3.2447	-1.4035
Н	1.5551	-2.1984	-0.0025
С	3.1118	-5.1245	-0.5623
С	1.4125	-4.5021	1.0389
Н	3.4195	-5.9188	0.1247
н	3.9984	-4.7890	-1.1064
Н	2.3969	-5.5538	-1.2896
Н	0.5852	-4.9228	0.4365
Н	1.0156	-3.6793	1.6428
Н	1.7728	-5.2839	1.7149

	with	avial	N	uncoordinated
0	with	axiai	N	uncoordinated

Cu	-1.3783	-0.3677	0.4027
Cu	1.4350	0.1266	0.4058
0	0.0342	-0.1482	-0.7166
0	0.0219	-0.0905	1.5149
Ν	-2.1195	3.9086	0.0565
Ν	-2.6231	-0.5757	-1.1458
Ν	-2.5847	-0.6841	1,9583
C	-2.7740	4.9643	-0.7373
Ĥ	-3 0566	5 7881	-0 0748
н	-3 6851	4 5838	-1 2060
н	-2 1156	5 3680	-1.5298
C	-0.9690	4 4668	0 7876
й	-0 1883	4 8706	0 1154
н	_0 5180	3 6802	1 4125
н	-1 3004	5 2777	1 4392
C	-1 6020	2 7683	-0 7757
й	-1 0175	3 0915	-1 5936
н	-1 1040	2 1062	-0 1332
C	-2.8837	1.9956	-1.3738
Ĥ	-3.6346	1.8572	-0.5866
н	-3.3663	2.6074	-2.1432
С	-2.5084	0.6543	-2.0361
Ĥ	-3.1605	0.4603	-2.8964
H	-1.4782	0.6791	-2.3972
С	-2.0701	-1.7524	-1.9076
H	-2.2311	-2.6666	-1.3344
н	-2.5870	-1.8374	-2.8690
н	-1.0041	-1.6046	-2.0704
С	-4.0820	-0.8470	-0.8619
н	-4.5973	0.1103	-0.7689
Н	-4.4925	-1.3543	-1.7423
С	-4.3342	-1.6684	0.4001
н	-3.7756	-2.6113	0.3895
Н	-5.3939	-1.9470	0.4080
С	-4.0503	-0.8617	1.6647
Н	-4.5024	-1.3379	2.5428
Н	-4.4887	0.1359	1.5687
С	-2.0454	-1.9302	2.6059
Н	-2.1733	-2.7852	1.9398
Н	-2.5863	-2.1180	3.5394
Н	-0.9864	-1.7870	2.8149
С	-2.4267	0.4678	2.9087
Н	-3.0183	0.2772	3.8106

Н	-1.3749	0.5721	3.1694
Н	-2.7795	1.3831	2.4292
Н	5.4347	1.7250	0.3815
С	4.3794	1.4300	0.3771
С	4.1498	0.5543	-0.8527
Н	3.8069	2.3634	0.3260
С	4.0970	0.6695	1.6703
Ν	2.6968	0.2506	-1.1358
Н	4.6782	-0.3904	-0.7160
Н	4.5606	1.0311	-1.7496
Ν	2.6305	0.4891	1.9607
Н	4.5383	1.1838	2.5321
Н	4.5468	-0.3259	1.6156
С	2.5977	-1.0319	-1.9519
С	2.1441	1.3765	-1.9716
С	2.0840	1.7470	2.5779
С	2.4724	-0.6437	2.9346
С	2.9864	-2.3295	-1.2173
Н	3.2505	-0.8832	-2.8208
н	1.5684	-1.0888	-2.3122
н	2.2867	2.3230	-1.4473
н	2.6757	1.4128	-2.9280
Н	1.0824	1.2085	-2.1420
Н	2.2221	2.5872	1.8952
н	2.6144	1.9530	3.5135
Н	1.0223	1.6095	2.7764
н	3.0605	-0.4321	3.8340
н	1.4201	-0.7435	3.1951
Н	2.8289	-1.5691	2.4770
C	1.8327	-3.0274	-0.4711
н	3.8019	-2.1558	-0.5055
н	3.3914	-3.0080	-1.9759
N	2.3100	-4.0649	0.4626
н	1.1150	-3.4403	-1.2086
Н	1.2728	-2.2999	0.1256
C	2.9529	-5.1921	-0.2372
C	1.1977	-4.5552	1.2947
н	3.2764	-5.9333	0.5000
н	3.8376	-4.8521	-0.7813
н	2.2719	-5.6903	-0.9529
н	0.3985	-5.0385	0.7015
н	0.7588	-3.7207	1.8507
н	1.5767	-5.2869	2.0149

O^{MeAN}-2H⁺

Cu	-1.3502	-0.3729	0.7801
Cu	1.4545	0.1698	0.7529
0	0.0498	-0.1457	-0.3539
0	0.0558	-0.0636	1.8666
Ν	-2.3901	3.9505	-1.0042
Ν	-2.6095	-0.7545	-0.7371
Ν	-2.5441	-0.6708	2.3538
С	-1.5802	4.5144	-2.1499
Н	-1.8249	5.5706	-2.2551
Н	-1.8291	3.9894	-3.0697
Н	-0.5225	4.3917	-1.9163
С	-2.1304	4.7248	0.2707
н	-1.0947	4.5634	0.5696
н	-2.8092	4.3666	1.0436
Н	-2.3070	5.7821	0.0781
C	-2.1700	2.4556	-0.7861
н	-1.0913	2.3047	-0.7064
Н	-2.0310	2.2448	1 9004
L L	-2.1010	1.0014	1 0654
	-3.0790	1.0724	2 9791
C	-2.4900	0 1360	-2.0701
н	-2.3172	-0.3425	-1.9352
н	-1 2351	0.1013	-2.0010
C	-2 1894	-2 1467	-1 1411
н	-2 3137	-2 8424	-0.3116
н	-2.8020	-2.4867	-1.9820
н	-1.1431	-2.1226	-1.4417
С	-4.0869	-0.7505	-0.4404
H	-4.4203	0.2877	-0.3970
Н	-4.5904	-1.2251	-1.2914
С	-4.4758	-1.4418	0.8646
Н	-4.1428	-2.4841	0.8964
Н	-5.5705	-1.4866	0.8892
С	-4.0289	-0.6603	2.0970
Н	-4.5141	-1.0563	2.9972
Н	-4.3255	0.3878	1.9952
С	-2.1153	-2.0028	2.9040
Н	-2.3617	-2.8013	2.2034
Н	-2.6329	-2.1919	3.8500
Н	-1.0387	-1.9839	3.0726
С	-2.2538	0.3863	3.3823
Н	-2.8308	0.1732	4.2885

ы	1 1000	0 2052	2 6005
	-1.1090	0.3655	3.0095
н	-2.5425	1.3632	2.9913
н	-3.3814	4.0836	-1.2351
Н	5.6550	1.3479	0.7582
С	4.5612	1.2809	0.7451
С	4.1771	0.4634	-0.4862
н	4.2071	2.3149	0.6843
C	4 1355	0.6037	2 0440
Ň	2 7000	0.0007	_0 7001
	4 5042	0.5667	0.7001
	4.0043	-0.0007	4 2702
	4.0004	0.0479	-1.3/03
N	2.6500	0.5941	2.2974
н	4.6062	1.0923	2.9055
Н	4.4648	-0.4393	2.0350
С	2.4240	-0.5426	-1.9168
С	2.2799	1.7956	-1.3049
С	2.1923	1.9509	2.7594
Ċ	2 3820	-0 4000	3 3924
Ĉ	2 8627	-2 0079	-1 7398
й	2 9367	-0 1470	-2 8018
н	1 3/80		-2.0010
ц Ц	2 4025	2 5526	0 5207
	2.4025	2.0020	-0.0307
н	2.8956	2.0694	-2.16/3
н	1.2336	1./51/	-1.6045
н	2.4256	2.7071	2.0086
Н	2.7037	2.2095	3.6922
Н	1.1160	1.9216	2.9271
Н	2.9598	-0.1198	4.2793
Н	1.3192	-0.4023	3.6253
н	2.6860	-1.3950	3.0617
С	2 0804	-2 7869	-0 6771
й	3 9390	-2 0844	-1 5530
н	2 6010	-2 /550	-2 7245
N	2.0313	4 2520	0 5010
	2.4932	-4.2000	-0.0919
	1.0070	-2.7003	-0.0//0
н	2.2438	-2.3849	0.3240
C	2.2468	-5.0227	-1.8/12
С	1.8164	-4.9310	0.5800
Н	3.5025	-4.2790	-0.4102
Н	2.5238	-6.0624	-1.7026
Н	2.8567	-4.6092	-2.6711
Н	1.1877	-4.9503	-2.1192
н	0.7433	-4.9523	0.3916
н	2 0331	-4 3678	1 4868
н	2 2020	-5 0455	0.6666
	2.2030	-5.5455	0.0000

O^{MeAN}-2H⁺ (O-protonated)

Cu	-1.4305	-0.4204	0.9383
Cu	1.5476	0.4809	0.7337
0	-0.0950	0.2699	-0.3261
0	0.2057	-0.1985	1.9881
Ν	2.1336	-3.9251	1.3602
Ν	2.9878	0.6407	2.2349
Ν	2.6328	1.1636	-0.8821
Ν	-2.4410	3.9292	-0.3568
Ν	-2.8068	-0.8206	-0.5679
Ν	-2.5505	-0.9387	2.5936
С	-3.1404	5.0525	-0.9612
н	-4.2036	5.0018	-0.6819
н	-3.0526	5.0127	-2.0456
Н	-2.7345	5.9895	-0.5/15
C	-2.0673	4.0034	1.0486
н	-1.1990	4.0/14	1.1422
	-1.0014	3.0142	1.4210
	2 1665	4.4000	1 1 1 0 2 0
С Ц	2.1005	2.7133	2 16/9
н	-2.0337	2.9723	-2.1040
C	-3 3110	1 6650	-0.7304
н	-3 5274	1 5531	0.1352
н	-4 2223	2 0475	-1 3996
С	-2 9091	0.3112	-1 5653
Ĥ	-3.6456	0.0189	-2.3231
Н	-1.9486	0.3944	-2.0749
С	-2.2083	-2.0120	-1.2684
Н	-2.1981	-2.8713	-0.5967
Н	-2.7973	-2.2651	-2.1568
н	-1.1849	-1.7970	-1.5729
С	-4.2183	-1.1836	-0.1626
Н	-4.7755	-0.2541	-0.0206
Н	-4.6773	-1.7094	-1.0095
С	-4.3289	-2.0163	1.1117
Н	-3.7269	-2.9302	1.0583
Н	-5.3692	-2.3543	1.1864
С	-4.0180	-1.2025	2.3649
Н	-4.4063	-1.7045	3.2601
Н	-4.5184	-0.2314	2.2959
C	-1.9318	-2.1/13	3.1861
Н	-1.9954	-2.9982	2.4/68
Н	-2.45//	-2.4488	4.1067
Н	-0.8853	-1.9801	3.4142

С	-2.4654	0.1781	3.5936
Н	-3.1128	-0.0366	4.4512
Н	-1.4463	0.2897	3.9606
Н	-2.7861	1.1112	3.1270
С	2.9936	-5.0760	1.5893
Н	3.3139	-5.1099	2.6292
Н	3.8728	-5.0017	0.9343
Н	2.4546	-5.9905	1.3225
С	1.3714	-3.8478	0.1216
Н	1.0107	-2.8313	-0.0351
Н	1.9865	-4.1831	-0.7178
Н	0.5088	-4.5256	0.2006
С	2.0508	-2.8481	2.3381
Н	1.9987	-3.2945	3.3359
Н	1.1461	-2.2694	2.1392
С	3.2923	-1.9023	2.2554
Н	4.1719	-2.4329	2.6287
н	3.4958	-1.6603	1.2074
С	3.0500	-0.6144	3.0787
Н	3.8542	-0.4791	3.8119
Н	2.1184	-0.6835	3.6414
С	2.5117	1.7687	3.1096
Н	3.1488	1.8539	3.9968
Н	1.4841	1.5966	3.4273
Н	2.5519	2.7080	2.5572
С	4.4029	0.9576	1.8072
Н	4.9378	1.3249	2.6922
Н	4.8811	0.0211	1.5075
С	4.5150	1.9552	0.6578
Н	3.9643	2.8798	0.8633
Н	5.5683	2.2506	0.5854
С	4.1175	1.3454	-0.6830
Н	4.4857	1.9618	-1.5130
Н	4.5820	0.3594	-0.7824
С	2.0263	2.4827	-1.2616
Н	2.4829	2.8558	-2.1855
Н	2.1899	3.2112	-0.4664
Н	0.9555	2.3543	-1.4126
С	2.4748	0.2071	-2.0296
Н	2.7240	-0.8041	-1.7005
Н	3.1436	0.4954	-2.8483
Н	1.4554	0.2310	-2.4113
Н	0.1844	0.0531	2.9167
Н	-0.0462	-0.0314	-1.2390

^SP^{MeAN}-2H⁺

Cu	-1.6671 -0.5332 0.790	00
Cu	1.7930 0.2844 0.750)9
0	0.0711 -0.1977 -0.002	7
0	0.0802 -0.1561 1.497	4
Ν	-2.5652 3.7880 -1.021	5
Ν	-2.8614 -0.9166 -0.768	0
Ν	-2.7924 -0.8054 2.414	0
С	-1.7241 4.3275 -2.156	6
Н	-1.9280 5.3928 -2.257	2
Н	-1.9849 3.8183 -3.082	0
Н	-0.6739 4.1630 -1.914	5
С	-2.3079 4.5616 0.254	2
н	-1.2812 4.3773 0.570	0
Н	-3.0076 4.2237 1.017	5
н	-2.4559 5.6218 0.054	0
С	-2.3834 2.2887 -0.794	6
Н	-1.3074 2.1198 -0.698	9
н	-2.8654 2.0910 0.164	7
С	-3.0041 1.4470 -1.915	7
Н	-4.0952 1.5287 -1.884	7
Н	-2.6987 1.8425 -2.890	6
С	-2.5580 -0.0264 -1.959	3
Н	-3.0358 -0.4842 -2.834	6
Н	-1.4758 -0.0782 -2.109	4
С	-2.4456 -2.3067 -1.177	7
Н	-2.6099 -3.0131 -0.364	3
Н	-3.0270 -2.6297 -2.048	2
Н	-1.3860 -2.3009 -1.438	0
С	-4.3343 -0.9111 -0.447	3
Н	-4.6683 0.1281 -0.418	5
Н	-4.8614 -1.4053 -1.273	6
С	-4.6966 -1.5763 0.887	4
н	-4.3390 -2.6105 0.935	3
Н	-5.7901 -1.6491 0.914	3
С	-4.2717 -0.7791 2.126	5
н	-4.7929 -1.1557 3.015	7
Н	-4.5525 0.2713 2.000	5
С	-2.3991 -2.1230 3.017	3
н	-2.6562 -2.9416 2.344	0
н	-2.9231 -2.2692 3.968	7
Н	-1.3218 -2.1295 3.193	4
С	-2.4732 0.2782 3.403	1
Н	-3.0484 0.1249 4.323	2
Н	-1.4080 0.2548 3.636	2

Н	-2.7300	1.2512	2.9808
Н	-3.5489	3.9437	-1.2695
н	5.8627	1.5696	0.7864
С	4.7726	1.4544	0.7678
С	4.4378	0.6564	-0.4992
Н	4.3762	2.4744	0.7222
С	4.3764	0.7556	2.0731
Ν	2.9685	0.5936	-0.8327
Н	4.7941	-0.3679	-0.3682
н	4.9602	1.0825	-1.3655
Ν	2.8951	0.7311	2.3483
Н	4.8691	1.2375	2.9272
н	4.7112	-0.2860	2.0436
С	2.7218	-0.3940	-1.9581
С	2.5164	1.9329	-1.3546
С	2.4259	2.0702	2.8390
С	2.6209	-0.2863	3.4171
С	3.1365	-1.8628	-1.7529
Н	3.2645	-0.0187	-2.8351
Н	1.6533	-0.3421	-2.1865
н	2.6566	2.7051	-0.5987
н	3.0946	2.2026	-2.2453
н	1.4584	1.8788	-1.6176
Н	2.6404	2.8438	2.1001
н	2.9344	2.3237	3.7760
Н	1.3488	2.0293	3.0127
н	3.1841	-0.0354	4.3231
н	1.5548	-0.2951	3.6462
н	2.9252	-1.2758	3.0699
С	2.3231	-2.6168	-0.6961
Н	4.2068	-1.9451	-1.5372
Н	2.9860	-2.3225	-2.7351
Ν	2.6557	-4.1051	-0.6391
Н	1.2485	-2.5440	-0.8787
н	2.5296	-2.2457	0.3091
С	2.3296	-4.8487	-1.9159
С	1.9808	-4.7570	0.5487
Ĥ	3.6673	-4.1869	-0.4891
Н	2.5571	-5.9029	-1.7631
н	2.9368	-4.4611	-2.7309
Н	1.2690	-4.7192	-2.1310
н	0.9021	-4.7115	0.4002
н	2.2643	-4.2196	1.4529
Н	2.3083	-5.7939	0.6103

O^{MeAN}-2BMe₃

Cu	-1 3872	-0 4370	0 5621
Cu	1 3 9 1 5	0.7602	0.6262
Cu	1.3013	0.2002	0.0202
0	0.0342	-0.1323	-0.5248
0	-0.0480	-0.0110	1.6934
Ν	-2.4226	3.9115	-1.0259
Ν	-2.5570	-0.8864	-0.9937
Ν	-2.5920	-0.8488	2.1051
C	-2 2840	4 5182	-2 3888
ŭ	2.2040	5 5 9 5 0	2.0000
	-2.4930	5.5659	-2.3102
н	-2.9978	4.0707	-3.0768
Н	-1.2655	4.3721	-2.7663
С	-1.3932	4.5576	-0.1414
Н	-0.3865	4.3157	-0.5003
н	-1.5145	4.1937	0.8797
н	-1 5283	5 6368	-0 1548
Ĉ	2 0470	2 1122	1 0705
L L	-2.0479	2.4432	-1.0705
н	-1.0088	2.3860	-1.4162
Н	-2.0645	2.1072	-0.0329
С	-2.9163	1.5403	-1.9546
Н	-3.9468	1.5356	-1.6005
Н	-2.9523	1.9500	-2.9700
C	-2 3719	0 1103	-2 1345
ŭ	2 9701	0.1100	3 0012
	-2.0/01	-0.3421	-3.0012
Н	-1.2993	0.1383	-2.3377
С	-1.9812	-2.1945	-1.4759
Н	-2.0871	-2.9637	-0.7103
Н	-2.5126	-2.5186	-2.3766
н	-0.9260	-2.0522	-1.7041
C	-4 0277	-1 0713	-0 7228
й	_/ /820	-0.0820	-0.6509
	-4.4023	-0.0023	-0.0503
Н	-4.4569	-1.5/19	-1.5994
C	-4.3517	-1.8474	0.5520
Н	-3.8660	-2.8287	0.5747
Н	-5.4282	-2.0530	0.5401
С	-4.0573	-1.0350	1.8097
Ĥ	-4 5076	-1 5076	2 6911
н	_1 /0/2	-0.0371	1 7087
	-4.4342	-0.0371	1.7007
C .	-2.0189	-2.1122	2.6860
н	-2.1405	-2.9403	1.9865
Н	-2.5419	-2.3556	3.6168
Н	-0.9596	-1.9578	2.8888
С	-2.4638	0.2497	3.1224
н	-3.0281	-0.0251	4.0200
н	-1 4133	0 3874	3 3707
н	-2 8682	1 1753	2 7005
	-2.0002	1.1700	2.7035
П	5.5306	1.0120	0.7633
C	4.4411	1.5086	0.7042
С	4.1407	0.6243	-0.5046
Н	4.0571	2.5263	0.5796
С	3.9782	0.8794	2.0152
Ň	2 6837	0 5292	-0.8703
н	4 5003	-0 3843	-0 2949
н Ц	4 6744	0.0040	1 2007
	4.0/41	0.9903	-1.3907
N	2.4839	0.8252	2.2010
Н	4.3906	1.4285	2.8704
Н	4.3452	-0.1499	2.0745

-			
С	2.4918	-0.5231	-1.9561
C	2 2235	1 8385	1 4658
5	2.2335	1.0305	-1.4050
С	1.9465	2.1882	2.5397
C	2 2027	0 0072	3 3537
C	2.2021	-0.0972	5.5557
С	3.0267	-1.9423	-1.6971
Ū.	2 0886	0 1202	2 9519
п	2.9000	-0.1293	-2.0010
Н	1.4172	-0.5557	-2.1484
н	2 3026	2 6401	-0 7303
	2.5020	2.0401	-0.7505
н	2.8672	2.0900	-2.3226
н	1 2001	1 7381	_1 7045
	1.2001	1.7501	-1.7545
н	2.1630	2.8939	1.7369
н	2 4 1 3 3	2 5476	3 4628
	0.0070	0.4450	0.1020
н	0.8679	2.1153	2.6783
н	2 7079	0 2823	4 2482
ii.	4 4000	0.4.400	2 5 2 2 2
п	1.1209	-0.1430	3.5229
Н	2.5788	-1.0950	3.1213
C	2 2562	2 6602	0 5250
C	2.3502	-2.0095	-0.5256
н	4.1109	-1.9404	-1.5787
н	2 8207	-2 /771	-2 6328
	2.0231	-2.4///	-2.0320
Ν	2.5927	-4.1631	-0.4238
н	1 2706	-2 5180	-0 5793
	0.7000	2.0100	0.0100
н	2.7039	-2.2590	0.4249
С	1.9958	-4.8567	-1.6095
Ĉ	1 02/2	4 6064	0 7001
C	1.0242	-4.0004	0.7691
Н	2.1252	-5.9322	-1.4869
н	2 5017	-1 5108	-2 5222
	2.5017	-4.5450	-2.5222
н	0.9270	-4.6251	-1.6846
н	0 7864	-4 2613	0 7217
	0.0000	1.4000	4.0004
н	2.2892	-4.1903	1.6834
н	1.8379	-5.6923	0.8513
 П	4.0705	4 0470	0.2447
в	-4.0725	4.2470	-0.3447
С	-4.0570	5.7987	0.1642
н	-3 7512	6 5257	-0 6050
	-5.7512	0.5257	-0.0050
н	-5.0906	6.0633	0.4372
н	-3 4432	5 9832	1 0578
~	5.4702	4.0002	1.0070
C	-5.1798	4.0630	-1.5285
н	-5.0902	4.8088	-2.3325
	E 0070	2.0746	2 0040
п	-5.2275	3.0740	-2.0040
Н	-6.1671	4.2279	-1.0681
C	-4 2716	3 2100	0 8975
	-4.2710	5.2103	0.0375
н	-4.3603	2.1532	0.6036
н	-3 4841	3 2802	1 6651
	5 04 4 4	0.4004	4 4000
н	-5.2144	3.4684	1.4038
В	4.3347	-4.6377	-0.2139
C	1 0800	3 5111	0 8020
	4.9090	-3.5444	0.0029
н	5.9953	-3.9005	1.0731
н	5 1288	-2 5410	0 3723
	4 4 4 4 5	2.0410	4 7 5 2 0
н	4.4445	-3.4244	1.7532
С	5.0470	-4.6658	-1.6809
Ū.	5 0220	2 7044	2 2460
	5.0320	-3.1244	-2.2403
Н	6.1093	-4.9064	-1.5147
н	4 6568	-5 4527	-2 3438
	4.0000	0.4000	2.0400
С	4.3279	-6.1363	0.4337
н	5 3670	-6 5010	0 4221
	2 00 4 5	6 1004	1 4000
	3.9945	-0.1831	1.4800
Н	3.7412	-6.8751	-0.1353

^SP^{MeAN}-2BMe₃

Cu	-1.6359	-0.6574	0.5507
O	0.0620	-0.1831	-0.2698
O N	0.0738	-0.1077	1.2279
N	-2.8325	-1.1361	-0.9722
N	-2.6566	-1.0470	2.2225
Н	-2.3770	5.2817	-2.2500
Н	-2.9960	3.8226	-2.9784
п С	-1.5161	3.9365 4.1589	-2.5666
Н	-0.5256	3.7982	-0.2590
н Н	-1.5256	3.8245 5.2462	0.0128
С	-2.3519	2.1220	-0.9165
н Н	-1.3097	1.9480	-1.2142 0.1223
С	-3.2770	1.3050	-1.8264
н Н	-4.2951	1.3014	-1.4345 -2.8138
С	-2.7789	-0.1246	-2.1056
H H	-3.3751	-0.5452	-2.9266 -2 4385
С	-2.2376	-2.4089	-1.5155
н н	-2.2970	-3.2067	-0.7747 -2 4122
н	-1.1916	-2.2369	-1.7755
С Н	-4.2647	-1.3920 -0.4271	-0.5755 -0.5053
н	-4.7402	-1.9539	-1.3898
С н	-4.4393	-2.1358	0.7548
н	-5.4953	-2.4234	0.8205
С ц	-4.1260	-1.2836	1.9904
Н	-4.5985	-0.3024	1.8819
С	-2.0254	-2.2575	2.8490
Н	-2.4713	-2.4408	3.8334
Н	-0.9542	-2.0824	2.9642
Н	-3.0024	-0.1046	4.1108
Н	-1.4290	0.2692	3.3580
Н	5.5453	2.3403	0.4836
C	4.5001	2.0096	0.4690
Н	4.3395	2.9268	0.3779
С	4.2344	1.3035	1.8035
N H	4.8713	0.7003	-0.5805
Н	4.7946	1.5802	-1.6410
N H	2.7803 4.6250	1.9024	2.0780 2.6362
Н	4.7589	0.3432	1.8153

C C	2.8811	-0.3554	-2.1387
c.	2 0934	2 2575	2 5805
c.	2.0004	-0.0373	3 1389
č	3 3980	-1 7431	-1 7162
н	3 4778	-0.0062	-2 9918
н	1 8429	-0 4334	-2 4757
н	2 3083	2 8262	-1 1203
H	2.8024	2.1954	-2.7062
Н	1.2310	1.7266	-2.0064
Н	2.1865	3.0677	1.8557
Н	2.5450	2.5744	3.5275
Н	1.0361	2.0395	2,7393
Н	3.1833	0.3004	4.0517
Н	1.6277	-0.2301	3.3588
Н	3.1513	-0.9570	2.7885
С	2.4162	-2.5438	-0.8508
Н	4.3701	-1.6726	-1.2263
Н	3.5749	-2.2735	-2.6573
Ν	2.7048	-4.0240	-0.6910
Н	1.4081	-2.4586	-1.2769
Н	2.3761	-2.1428	0.1639
С	2.5946	-4.7114	-2.0180
С	1.6000	-4.5565	0.1774
Н	2.7458	-5.7808	-1.8698
Н	3.3588	-4.3462	-2.7003
Н	1.6021	-4.5407	-2.4499
Н	0.6269	-4.2880	-0.2487
Н	1.6906	-4.1338	1.1785
Н	1.6768	-5.6398	0.2382
В	-4.1982	4.1495	-0.3073
С	-4.0385	5.7036	0.1659
Н	-3.6178	6.3722	-0.6021
Н	-5.0492	6.0854	0.3792
Н	-3.4530	5.8460	1.0859
С	-5.2551	4.0440	-1.5446
Н	-5.0464	4.7484	-2.3638
н	-5.3796	3.0487	-1.9914
Н	-6.2423	4.3254	-1.1446
С	-4.5709	3.1740	0.9439
н	-4.7837	2.1303	0.6659
н	-3.8141	3.1607	1.7448
Н	-5.4927	3.5599	1.4061
В	4.2988	-4.4021	0.0912
	4.4900	-3.3030	1.2013
	0.0000	-3.3904	1.0010
п	2 6617	2 2700	0.9315
	5.0017	-3.2700	2.0000
й	5 5805	-3 3820	-1.0403
н	6 4220	-0.0029	-0.53133
н	5 3773	-5 1262	-1 8105
C	4 1752	-5 9183	0.683/
н	5 1794	-6 2196	1 0208
н	3.5124	-6.0182	1.5552
H	3.8655	-6.6725	-0.0576

O^{MeAN}-Sc(OTf)₂

Cu	-1.3534	-0.2854	0.4712
Cu	1.4108	0.3264	0.7356
0	0.0806	0.2574	-0.4972
N	-0.0837	0.0303	1./155
IN N	2 4250	4.0021	1 1 2 7 2
N	-2.4230	-0.0240	1 8580
C	-2.0052	4 1208	-0 7658
й	-4 5173	5 1609	-0.5754
н	-4 5703	3 4905	0.0430
н	-4.6594	3.8035	-1.7112
С	-2.2424	4.8303	-2.0306
Н	-2.6435	4.4017	-2.9532
н	-1.1523	4.8203	-2.0726
Н	-2.5965	5.8595	-1.9693
С	-2.2477	2.6205	-0.8915
н	-1.1542	2.6324	-0.8888
Н	-2.5864	2.1624	0.0441
С	-2.7436	1.8134	-2.1069
н	-3.8354	1.7577	-2.1167
Н	-2.4599	2.3292	-3.0308
	-2.1233	0.4142	-2.25/3
	-2.4//0	-0.0120	-3.2030
C	-1.8/18	-1 02/1	-2.3044
й	-2 0038	-2 7203	-0.9576
н	-2 3203	-2 2066	-2 6266
н	-0 7720	-1 7928	-1 8423
С	-3.9161	-0.7678	-1.0328
Н	-4.3328	0.2286	-0.8766
н	-4.3061	-1.1465	-1.9857
С	-4.3588	-1.6628	0.1217
Н	-3.9632	-2.6795	0.0358
Н	-5.4473	-1.7667	0.0457
С	-4.0611	-1.0434	1.4839
н	-4.5803	-1.5950	2.2770
Н	-4.4236	-0.0106	1.5018
С Ц	-2.0910	-2.3/14	2.1/89
	2.1700	2 70201	2 0086
п	-2.0793	-2.7900	2.9900
C	-2 4849	-0.1477	3 0933
й	-3 1098	-0.5766	3 8840
н	-1 4453	-0 1236	3 4 1 3 6
H	-2.8182	0.8638	2.8665
н	5.7198	0.1672	1.1439
С	4.6373	0.0324	1.0402
С	3.9829	0.6481	2.2758
Н	4.4783	-1.0503	0.9893
С	4.2095	0.7277	-0.2498
Ν	2.5081	0.3553	2 4 1 2 4

н	4.1164	1.7311	2.2438
н	4 4683	0 2857	3 1895
	4.4000	0.2007	0.1000
N	2.8032	0.4140	-0.6902
н	4 8762	0 4536	-10760
	4.0702	0.4000	-1.0700
н	4.2746	1.8116	-0.1201
С	1 8947	1 3242	3 4159
õ	0.0400	4 0200	0.0007
C	2.3490	-1.0306	2.9867
С	2.7619	-0.9392	-1.3473
ĉ	2 2004	1 4 4 5 7	1 6006
C	2.3004	1.4457	-1.0900
С	1.8225	2.8024	2.9728
Ū.	2 5010	1 2277	1 32/3
	2.5015	1.2377	4.5245
н	0.8985	0.9408	3.6436
н	2 8511	-1 7604	2 3515
	0.7070	4 0 0 0 4	2.0010
н	2.7978	-1.0634	3.9847
н	1.2886	-1.2677	3.0496
ы	2 0045	1 7000	0 6510
п	3.0945	-1.7090	-0.0516
н	3.4224	-0.9386	-2.2206
н	1 7305	-1 1460	-1 6597
	1.7555	-1.1400	-1.0007
н	3.0792	1.4227	-2.5483
н	1 3767	1 2292	-2 0373
	2 4 4 0 0	0 4007	1 0070
п	2.4199	2.4337	-1.23/9
С	0.4156	3.2144	2.4818
н	2 5720	3 0056	2 2036
	2.5720	5.0050	2.2050
н	2.1011	3.4184	3.8327
N	0 3261	4 5853	1 8477
Ц	0.2701	2 1072	2 2226
п	-0.2701	3.1972	3.3330
н	0.0481	2.4939	1.7476
C	0 7297	5 6592	2 8181
č	4 0 4 0 4	4.0540	0.0000
C	1.2134	4.0510	0.6383
н	0.5828	6.6333	2.3504
н	1 7854	5 5505	3 0885
	1.7004	5.5555	5.0005
н	0.1122	5.5890	3.7144
н	1.0049	3.7957	-0.0087
ы	2 2600	1 6391	0 0221
п	2.2099	4.0304	0.9221
н	1.0190	5.5781	0.0959
Sc	-1 8571	5 0414	1 1062
0	2 4 4 9 5	0 4055	1 2644
0	-2.4100	0.4000	-1.3041
S	-2.0880	7.8172	0.0643
0	-0 7687	6 7400	0 1502
č	0.7007	0.7400	0.1002
0	-3.2204	6.7374	0.7320
С	-1.7992	9.2547	1.4551
Ē	2 0217	0.6105	1 0005
Г	-3.0217	9.0195	1.9065
F	-1.0468	8.6986	2.4380
F	-1 1571	10 2758	0 8427
	-1.10/1	0.2700	4.0055
0	-2.6912	3.0792	4.8055
S	-3.1670	3.9225	3.5176
õ	2 9 4 0 4	3 2450	1 0010
0	-2.0494	5.2400	1.3012
0	-2.4158	5.4118	3.1959
C	-5 1578	4 3216	3 6162
F	E 2000	F E 400	4 4005
F	-ɔ.∠ၓၓU	5.5488	4.1695
F	-5.6174	4.2935	2.3409
F	-5 7150	3 3545	4 3786
	0.1100	0.0040	-T.0700

^SP^{MeAN}-Sc(OTf)₂

<u> </u>	1 6096	0.2600	0 2220
Cu	-1.0000	-0.3090	0.3336
Cu	1.8165	0.2887	0.7600
0	0.1585	0.1424	-0.1931
0	-0.0173	0.1284	1.2684
Ν	-2.8153	4.0079	-0.8233
Ν	-2.5573	-0.6532	-1.3956
Ν	-2.8366	-1.0382	1,7488
C	-4 3185	4 0433	-0 7648
й	-4 6438	5.0566	-0 5302
ц	4 6650	2 2710	0.0100
п	4.0000	3.3710	1 7076
	-4.7400	3.7492	-1.7270
C	-2.3667	4.8341	-1.9953
Н	-2.8342	4.4840	-2.9203
Н	-1.2820	4.7830	-2.1047
Н	-2.6645	5.8725	-1.8455
С	-2.3236	2.5768	-0.9391
Н	-1.2276	2.6004	-0.9127
н	-2 6793	2 0740	-0 0341
C	-2 7935	1 8288	-2 2031
й	-3 8851	1 7050	-2 2437
н	-2 4746	2 3855	-2.2407
0	-2.4/40	2.3033	-3.0908
	-2.2110	0.4200	-2.4103
н	-2.55//	0.0603	-3.3886
Н	-1.1190	0.4686	-2.4475
С	-1.9743	-1.9384	-1.9174
Н	-2.1769	-2.7571	-1.2265
Н	-2.4125	-2.1822	-2.8920
Н	-0.8943	-1.8259	-2.0266
С	-4.0498	-0.7961	-1.2538
Ĥ	-4.4696	0.2015	-1.1086
н	-4 4430	-1 1872	-2 2016
C	-4 5018	-1 6840	-0.0867
ŭ	4 0777	2 6011	0.1550
	-4.0///	1 0 1 0 0	-0.1550
П	-0.0042	-1.0109	-0.1966
C .	-4.2/3/	-1.0707	1.3006
н	-4.8485	-1.6233	2.0557
н	-4.6309	-0.0358	1.3039
С	-2.3605	-2.4145	2.1064
Н	-2.4253	-3.0797	1.2444
Н	-2.9731	-2.8243	2.9182
Н	-1.3209	-2.3587	2.4350
С	-2.7289	-0.1685	2.9638
н	-3 3550	-0 5695	3 7698
н	-1 6906	-0 1378	3 2981
н	-3.0646	0.8402	2 7258
н	5 0817	_0.0372	1 / 376
0	1 2006	0.0072	1 2022
Č	4.0990	0.1209	1.2023
C	4.2248	0./04/	2.3863
Н	4.6728	-1.1882	1.3859
С	4.6114	0.3764	-0.1398
N	2 7391	0 4784	2 5155

Н	4.3867	1.7674	2.1864
Н	4.6815	0.4828	3.3595
Ν	3.2179	0.0867	-0.6363
Н	5.3202	-0.0691	-0.8494
Н	4.7492	1.4616	-0.1780
С	2.1099	1.6124	3.2926
C	2,4901	-0.7978	3.2682
Ĉ	3 1224	-1 3314	-1 1177
č	2 9036	1 0050	-1 7770
č	2 0594	2 9535	2 5174
й	2.6681	1 7255	4 2200
н	1 1004	1 2834	3 5567
н	2 0818	-1 6307	2 7637
Ц	2.3010	-0.7150	1 2871
ü	1 / 169	0.0010	3 3000
н Ц	2 2720	2 0220	0.2127
	2 0120	-2.0239	1 0526
	0.0109	1 5000	-1.9000
н	2.1022	-1.5299	-1.4508
н	3.6471	0.8868	-2.5741
н	1.9153	0.7658	-2.1/26
Н	2.9164	2.0385	-1.4241
С	0.5984	3.3957	2.2862
н	2.5742	2.8510	1.5571
н	2.6036	3.7179	3.0786
Ν	0.3963	4.7021	1.5519
н	0.0967	3.5043	3.2509
Н	0.0780	2.6081	1.7251
С	0.8444	5.8589	2.3987
С	1.1535	4.7263	0.2546
Н	0.6425	6.7869	1.8639
Н	1.9177	5.7958	2.6050
Н	0.2922	5.8513	3.3401
Н	0.9195	3.8304	-0.3262
Н	2.2329	4.7688	0.4299
Н	0.8616	5.6150	-0.3100
Sc	-1.9130	4.9210	1.1503
0	-3.3690	8.5019	-0.6275
S	-2.7145	7.7209	0.6188
0	-1.2643	6.8617	0.3425
0	-3.5492	6.3829	1.2694
С	-2.3863	8.9956	2.1671
F	-3.4433	8.8710	3.0038
F	-1.2296	8.6080	2.7574
F	-2.2976	10.2362	1.6381
0	-3.1241	2.7539	4.6559
S	-3.2557	3.9769	3.6146
0	-3.4868	3.6021	1.9683
0	-1.8877	4.9578	3.3722
С	-4.8031	5.1899	4.1716
F	-4.3032	6.4396	4.3080
F	-5.7362	5.1189	3.1939
F	-5.2611	4.6968	5.3457

C	2 8310	-0.6530	2 5500
č	2.0310	-0.0000	2.0000
C	0.6806	-2.2029	3.3295
н	2.1394	-3.7218	3.8317
С	1.5488	-0.0479	2.4032
F	3 9401	0 1027	2 1122
Ċ	0.5106	_0 9209	2 8304
ň	0.01076	0.0200	2.0007
П	-0.1670	-2.1111	3.0337
0	1.3566	1.1408	1.91/5
F	-0.8117	-0.4313	2.6917
Н	-1.8802	-4.1975	0.3975
С	-2.0313	-3.1427	0.6616
N	-1 8651	-2 3272	-0.6018
C	3 3645	2 0800	1 2014
H H	-3.3043	-2.9009	1.0914
П	-1.2130	-2.0404	1.3243
C	-0.4835	-2.6332	-1.1056
С	-2.8673	-2.8021	-1.6329
С	-3.5551	-1.6107	2.0363
Н	-3.3657	-3.7162	2.2052
н	-4 2124	-3 2510	0 7550
н	-0.4188	-3 6071	_1 3617
Ľ.	0.2200	2 2062	0.2205
	0.2360	-2.3003	-0.3295
н	-0.2561	-2.0241	-1.9753
н	-2.6864	-3.8789	-1.7553
Н	-3.8637	-2.6960	-1.2079
С	-2.8430	-2.1310	-3.0154
Ν	-3.6540	-0.4585	1.0697
н	-4.4679	-1.6112	2.6471
н	-2 7102	-1 3973	2 6901
н	-1 8210	-2 0377	-3 3933
н	-3 3427	_2 8201	-3 6087
\hat{c}	3 5015	0 7020	3 1150
č	-3.5915	-0.7939	-3.1109
C	-4.9324	-0.5460	0.3057
С	-3.7039	0.7981	1.8873
Ν	-2.9565	0.2988	-2.3439
н	-3.6874	-0.5127	-4.1802
н	-4.6085	-0.9279	-2.7294
н	-4.9236	-1.3897	-0.3775
н	-5 0614	0 3683	-0 2647
н	-5 7751	-0 6574	0.0083
ц Ц	2 7002	0.0014	0.0000
	-2.7002	0.0014	2.4070
н	-3.7685	1.6545	1.2183
н	-4.5785	0.7679	2.5485
С	-1.6986	0.7330	-2.9896
С	-3.8429	1.4838	-2.2754
Н	-1.8757	1.1146	-4.0084
Н	-0.9816	-0.0851	-3.0254
Н	-1 2597	1 5155	-2 3732
н	-4 8537	1 1012	-1 986/
ц	2 0100	2 0040	2 2464
П	-3.8100	2.0019	1 5260
	-3.4407	2.1/11	-1.5200

O ^{MeAN} -2.	6-F ₂ PhO	(axial)

C	0 1/1/	1 5923	0.0012
Cu	1 0607	0.2601	-0.0012
ou	0.0207	0.0031	0.5720
0	1 6407	1 2710	-0.5730
N	-1.0497	1.0710	1 9402
IN N	2.2090	-1.0002	-1.0493
IN NI	1.9422	1.0000	-0.9805
N O	0.0556	3.4619	0.6334
C	5.2968	-2.3108	-3.2242
н	6.2366	-2.6049	-3.7025
н	4.8589	-1.5014	-3.8143
Н	4.6065	-3.1763	-3.2554
С	6.2484	-2.9254	-1.0935
н	5.6318	-3.8399	-0.9967
н	6.4918	-2.5678	-0.0876
н	7.1815	-3.1956	-1.5988
С	4.3369	-1.4452	-1.1515
н	3.5660	-2.2432	-1.1952
Н	4.5863	-1.3022	-0.0927
С	3.7493	-0.1234	-1.6780
Н	4.5148	0.6525	-1.5696
Н	3.5087	-0.2000	-2.7436
С	2.4857	0.2014	-0.8650
н	1.6714	-0.4723	-1.1430
Н	2.6822	0.0613	0.1919
С	1.6369	1.9158	-2.4059
Н	1.0903	2.8560	-2.4811
Н	2.5562	1.9992	-2.9947
Н	1.0191	1.1147	-2.8092
С	2.9359	2.5610	-0.3997
Н	3.2302	2.1396	0.5638
Н	3.8120	2.5885	-1.0581
С	2.4096	3.9817	-0.2011
Н	2.0297	4.4082	-1.1360
Н	3.2657	4.6063	0.0811
С	1.3876	4.0847	0.9280
Н	1.2086	5.1368	1.1880
Н	1.7730	3.5655	1.8078
С	-0.7079	4.2392	-0.3883
Н	-0.1516	4.2839	-1.3247
н	-0.8884	5.2599	-0.0320
Н	-1.6583	3.7330	-0.5618
С	-0.7261	3.4342	1.9130
Н	-0.8074	4.4512	2.3135
Н	-1.7128	3.0234	1.7110
Н	-0.2023	2.7807	2.6097
Н	4.0850	-2.2951	3.0988
С	3.0654	-1.9313	3.0407
С	1.9792	-2.7233	3.4438

С	-3 6526	0 5510	-3 1245
й	-4 6372	0.5913	-2 6539
ü	3 5463	0.0010	3 6077
	-3.3403	1 2265	2 0007
П	-3.0143	1.3200	-3.9007
C	-1.2652	0.6393	-2.7851
н	-0.4907	0.7661	-2.0307
н	-1.1467	-0.3467	-3.2390
Н	-1.1382	1.4097	-3.5637
С	-2.6785	2.0813	-1.4917
Н	-2.7364	2.8537	-2.2794
Н	-1.7508	2.2333	-0.9394
С	-3.8419	2.2565	-0.5126
Н	-3.8888	3.3245	-0.2625
Н	-4.8051	2.0269	-0.9800
С	-3.6647	1.5346	0.8270
Н	-4.4333	1.8799	1.5329
Н	-2.6819	1.7793	1.2347
С	-3.5426	-0.4156	2.2380
Н	-4.3575	-0.0401	2.8675
Н	-2.5932	-0.0153	2.5872
Н	-3.5186	-1.5024	2.3086
С	-5.0883	-0.4103	0.3294
Ĥ	-5 8379	-0 0173	1 0296
н	-5 2565	0.0666	-0 6359
C	-5 2630	-1 9190	0 1612
й	-5 0737	-2 4595	1 0936
н	-6 3188	-2 0967	-0.0737
Ċ	-4 4422	-2 4835	_0.0707
й	-4 7520	-3 5128	-1 2182
н	-4 6206	-1.8810	-1.2102
C	-2 5800	-3 5204	0.2550
й	-2.0000	-1 51/5	-0.0665
LI LI	2.0000	2 2 2 2 7 7	1 2120
	1 4061	2 5015	0.2661
	2 2044	-3.5015	2 0627
Ц	-2.2944	-2.0099	2.0021
	-2.0040	-2.1203	-2.0202
	-2.0200	-3.0342	-2.3010
н	-1.2101	-2.8423	-1.9144
0	1.4680	1.3843	0.7790
C	0.7414	2.4887	0.6596
C	0.7226	3.2507	-0.5270
С	-0.0685	2.9946	1.6962
c	-0.0128	4.4134	-0.6933
F	1.4666	2.7479	-1.6054
С	-0.8309	4.1493	1.5823
F	-0.1029	2.2768	2.8946
С	-0.7997	4.8665	0.3774
н	0.0192	4.9404	-1.6385
н	-1.4353	4.4748	2.4199
н	-1.3879	5.7697	0.2707

OMean	2,6-F	₂PhO ⁻	(equa	atoria	ıI)
0	2,6-F	2 PhO	(equa	atoria	II)

Cu	0.6141	-0.1903	0.2319
Cu	-2.1301	-0.7921	-0.1100
0	-0.4825	-1.4856	-0.4231
0	-1.0420	0.4684	0.5843
N	-2.5840	0.7347	-2.1194
N	-3.7380	0.0217	0.8164
N	-2.9584	-2.4951	-0.7702
IN N	1.1/84	-1.2/89	2.2999
IN N	2.2439	-0.9323	1 0005
	2 1501	0.5625	-1.0900
ц	1 8706	0.3023	3 1831
н	3 1587	-0.6255	2 7001
н	2 1996	-0.0200	4 1627
C	-0 1354	-1 2476	2 9727
Ĥ	-0 1239	-1 7861	3 9351
H	-0.8762	-1.6992	2.3114
Н	-0.4139	-0.2052	3.1341
С	1.5799	-2.6802	2.0381
H	1.8602	-3.1851	2.9801
Н	0.6980	-3.1946	1.6401
С	2.7167	-2.8163	1.0159
Н	3.6153	-2.2900	1.3548
Н	2.9946	-3.8774	0.9756
С	2.3423	-2.4104	-0.4167
Н	3.0724	-2.8287	-1.1210
Н	1.3601	-2.8214	-0.6693
С	1.9342	-0.7348	-2.1367
Н	1.8437	0.3353	-2.3317
Н	2.7232	-1.1557	-2.7683
Н	0.9880	-1.2285	-2.3567
С	3.4835	-0.1697	-0.3157
н	3.3077	0.8577	-0.6380
Н	3.5320	-0.1372	0.7721
	4.7997	-0.7079	-0.8900
	4.7099	1 7226	-1.9910
	4.9/42	-1./320	-0.3337
ц	5.9043 6.0458	0.1904	-0.4090
ц	5 7361	1 2205	-0.7511
C	7 7500	-1 4644	-0.6105
н	7.0557	-2 2655	-0.8748
н	7 9012	-1 4813	0.4865
н	8 7103	-1 6809	-1 0911
C	8.2513	0.8858	-0.8391
Ĥ	8.4691	1.0209	0.2379
Н	9.1867	0.6278	-1.3463
Н	7.8942	1.8404	-1.2394

Cu	0.8072	1.6606	-0.7711
Cu	-1.9823	-0.3854	-0.6580
0	-0.1388	0.0703	-1.2209
0	-1.0688	1.2167	-1.3164
N	5.0996	-3.2509	0.1838
Ν	2.7314	1.0881	-1.0811
Ν	0.9513	3.6355	-0.7200
C	5 7230	-3 6139	-1 1001
Ĥ	6 6391	-4 1827	-0.9108
н	5 9950	-2 7157	-1 6606
н	5 0571	-4 2313	-1 7344
C	4 8392	-4 4628	0 9793
й	4 1324	-5 1568	0.0700
н	4 4200	-4 1830	1 0515
н	5 7788	-4 0085	1 1500
C	3 8505	-2 /88/	-0.0068
й	3 1/32	-2.4004	-0.0000
Ľ.	3 3677	2 20/6	0.0022
\hat{c}	4 0760	1 0727	0.97.34
Ц	4.0700	0 5631	0.0000
	4.0047	1 1 2 2 0	1 5776
	4.4909	-1.1220	-1.5770
	2.1320	-0.3290	-0.5/06
н	2.0138	-0.8/31	-1.1900
Н	2.3325	-0.2839	0.4347
C	3.0498	1.1312	-2.5338
н	2.9455	2.14/2	-2.9130
н	4.0715	0.7881	-2.7336
Н	2.3403	0.4903	-3.0626
C	3.6556	1.9417	-0.2690
н	3.4413	1.7018	0.7759
Н	4.6933	1.6594	-0.4900
С	3.4893	3.4544	-0.4849
н	3.6531	3.7247	-1.5338
Н	4.2994	3.9421	0.0714
С	2.1748	4.0446	0.0445
Н	2.2296	5.1428	0.0468
Н	2.0140	3.6982	1.0686
С	0.9270	4.2134	-2.0932
н	1.8022	3.8951	-2.6577
Н	0.9090	5.3099	-2.0510
Н	0.0324	3.8542	-2.6064
С	-0.2663	4.0881	0.0197
н	-0.2585	5.1791	0.1390
н	-1.1498	3.7910	-0.5483
Н	-0.2903	3.5979	0.9913
Н	1.0033	-1.8003	4.5978
С	0.4991	-0.9208	4.2145
С	-0.6611	-0.4155	4.8210
С	1.0144	-0.2835	3.0962

С	-1.2711	0.7218	4.2711
Н	-1.0809	-0.8975	5.6950
С	0.4609	0.8740	2.4704
F	2.1742	-0.8328	2.5060
С	-0.7098	1.3154	3.1505
H	-2.1731	1.1452	4.6975
0	0.9671	1.4646	1.4306
F	-1 3830	2 4276	2 5887
Ĥ	-2 0082	-2 8772	2 3097
C	-2 1202	-1 9188	1 7825
Ň	-1 8211	-2 1451	0.3221
C	-3 4925	_1 3120	2 0060
й	-1 3/50	-1 2/6/	2.0000
C	0.3806	2 5/21	0.2212
č	-2 6001	-2.0401	-0.2213
ĉ	2 6726	-3.2433	1 6270
Ц	-3.0730	1 2045	2 1000
	-3.5790	1 0 4 9 9	3.1900
	-4.3095	-1.9402	1.7424
н	-0.2087	-3.4955	0.7384
н	0.2363	-1.7659	0.6726
н	-0.0924	-2.6355	-0.8231
н	-2.4791	-4.1521	0.3750
Н	-3.7334	-2.9698	0.0060
С	-2.5780	-3.5693	-1.7049
N	-3.7053	0.3375	0.1484
н	-4.6040	0.5465	2.0585
Н	-2.8500	0.7445	2.0109
Н	-1.5496	-3.8378	-1.9649
Н	-3.1662	-4.4820	-1.8627
С	-3.1294	-2.5073	-2.6703
С	-4.9615	-0.2382	-0.4097
С	-3.6887	1.8102	-0.1248
Ν	-2.3009	-1.2728	-2.7488
Н	-3.2351	-2.9495	-3.6756
Н	-4.1327	-2.2129	-2.3438
Н	-4.9736	-1.3193	-0.2856
Н	-5.0302	-0.0055	-1.4709
Н	-5.8341	0.1885	0.1008
Н	-2.7995	2.2419	0.3343
Н	-3.6431	1.9724	-1.2027
Н	-4.5878	2.2863	0.2855
С	-1.0154	-1.5545	-3.4395
С	-3.0032	-0.2221	-3.5277
Н	-1.1951	-1.9499	-4.4518
Н	-0.4249	-2.2774	-2.8772
Н	-0.4365	-0.6338	-3.4936
Н	-3.9898	-0.0339	-3.1024
Н	-3.1337	-0.5127	-4.5815
Н	-2.4167	0.6978	-3.4706

Cu	1.0488	-0.2402	0.5185
Cu	-2.5113	-0.7575	-0.3081
0	-0.0604	-0.0832	0.5663
Ň	-2.5180	0.9286	-1.8527
Ν	-4.0448	-0.0820	0.8246
Ν	-3.3073	-2.4290	-1.1085
Ν	1.1784	-1.5511	2.1726
N	2.6180	-0.9017	-0.5585
N	7.5953	-0.0229	-1.12//
н	1 8111	0.0648	3 3656
н	3.1387	-0.8886	2.6857
Н	2.2084	-1.5386	4.0551
С	-0.1516	-1.6314	2.8392
Н	-0.0980	-2.2731	3.7304
н	-0.8735	-2.0299	2.12/8
С	1 5890	-2 9285	1 7660
Ĥ	1.7374	-3.5394	2.6705
Н	0.7409	-3.3457	1.2128
С	2.8387	-3.0038	0.8786
Н	3.7141	-2.5812	1.3830
H C	3.0051	-4.0682	0.7409
н	3.4498	-2.7551	-1.1901
Н	1.7016	-2.7369	-0.9333
С	2.2494	-0.4580	-1.9397
н	2.1933	0.6313	-1.9501
Н	2.9760	-0.8074	-2.6810
П	3 8001	-0.8665	-2.1835
н	3 6981	0.8300	-0.1726
Н	4.0301	-0.4801	0.9442
С	5.1614	-0.6173	-0.8904
Н	5.0543	-0.3825	-1.9550
Н	5.3493	-1.6932	-0.8083
н	6 5234	-0.0941	0.3392
н	6.1213	1.2407	-0.3674
С	8.1231	-1.3921	-0.9954
Н	7.4042	-2.1192	-1.3819
н	8.3562	-1.6567	0.0544
Н	9.0419	-1.4836	-1.5836
н	8 9171	0.9555	0.3432
н	9.5136	0.8279	-1.3370
Н	8.2399	1.9703	-0.8626
С	-3.5147	0.9317	-2.9495
Н	-4.5290	0.8878	-2.5484
п	-3.3020	0.0004	-3.5903
С	-1.1491	0.8949	-2.4338
Ĥ	-0.4223	0.8744	-1.6232
Н	-1.0317	-0.0120	-3.0313
Н	-0.9594	1.7743	-3.0684
С ц	-2.6383	2.1/33	-1.0398
Н	-2.0076	2 1874	-0.3730
С	-3.9072	2.2896	-0.1886
Н	-3.9439	3.3230	0.1785
Н	-4.8143	2.1592	-0.7875
C	-3.9171	1.4004	1.0599
н	-4./342	1.7071	1.7301
C	-3.8453	-0.7489	2.1486
Ĥ	-4.5964	-0.4090	2.8733
Н	-2.8471	-0.5038	2.5140

	2 0400	4 0004	0.0474
н	-3.9190	-1.8304	2.0474
	-5.3998	-0.4078	0.2727
н	-6.1553	-0.1307	1.0227
Н	-5.5572	0.2283	-0.6008
C	-5.6042	-1.8714	-0.1467
н	-5.4633	-2.5504	0.6999
н	-6.6599	-1.9707	-0.4267
С	-4.7794	-2.3234	-1.3601
н	-5.1458	-3.2963	-1.7185
н	-4.9087	-1.6009	-2.1724
С	-2.9830	-3.5571	-0.1867
н	-3.2895	-4.5154	-0.6251
н	-3.4909	-3.4279	0.7679
н	-1.9064	-3.5544	-0.0088
С	-2.5882	-2.6601	-2.3955
н	-2.7928	-1.8375	-3.0797
н	-2.9114	-3.6009	-2.8587
Н	-1.5160	-2.6955	-2.1975
0	1.5388	1.6132	0.2156
С	0.7017	2.6017	0.4621
С	0.4638	3.6364	-0.4717
С	-0.0364	2.7399	1.6603
С	-0.3988	4.7011	-0.2555
F	1.1206	3.5344	-1.7053
С	-0.9247	3.7724	1.9221
F	0.1387	1.7363	2.6339
С	-1.1063	4.7718	0.9539
Ĥ	-0.5258	5.4472	-1.0306
H	-1.4560	3.7922	2.8660
H	-1.7904	5.5908	1.1387

O^{MeAN}-2,4-F₂PhO⁻ (axial)

Cu	-0.2688	1.5821	-0.5742
Ou O	0.0865	-0.0646	0.4230
õ	1 5382	1 3487	-0 6324
Ň	-5.6343	-1.3483	2.0613
Ν	-2.1413	1.8613	0.1932
Ν	-0.1666	3.1128	-1.8363
С	-5.8133	-0.8114	3.4210
Н	-6.8300	-1.0266	3.7651
н	-5.6805	0.2737	3.4245
Н	-5.1017	-1.2514	4.1470
C	-5.9286	-2.7917	2.0456
п	-5.24/4	-3.3740	2.0900
н	-6.9545	-2 9607	2 3891
С	-4.2737	-1.1017	1.5466
Ĥ	-3.5053	-1.5023	2.2412
Н	-4.1703	-1.6539	0.6044
С	-3.9865	0.3845	1.2639
Н	-4.7848	0.7687	0.6194
Н	-4.0029	0.9621	2.1945
С	-2.6136	0.4861	0.5830
н	-1.8406	0.0744	1.2362
Н	-2.0092	-0.0907	-0.3374
н	-1.9952	3 6462	1 1 1 5 2 1
н	-2 9702	2 9806	1.1021
н	-1 4110	2 1783	2 1436
C	-3.1008	2.4530	-0.7926
Н	-3.2615	1.6824	-1.5496
Н	-4.0470	2.6493	-0.2746
С	-2.6137	3.7370	-1.4637
Н	-2.3576	4.5069	-0.7277
Н	-3.4571	4.1436	-2.0344
C	-1.4//9	3.4962	-2.4548
	1 7/95	4.3934	-3.0045
C	0.4609	2.0090	-1 1013
н	-0 1918	4 5909	-0 2972
н	0.6496	5.0877	-1.7841
н	1.4017	3.9032	-0.6731
С	0.7472	2.6844	-2.9444
Н	0.8431	3.4961	-3.6748
н	1.7186	2.4369	-2.5213
н	0.3164	1.7958	-3.4039
Н	-2.3954	-4.0309	-2.1060
č	-0.3611	-3.2049	-2.3133
c	-1 9197	-1 9336	-2.1882
č	0.6065	-2.6825	-3.0238
F	-0.0518	-5.0038	-2.8891
С	-0.9896	-0.8750	-2.4225
F	-3.2260	-1.5849	-1.7779
С	0.2940	-1.3284	-2.8573
Н	1.5825	-2.9974	-3.3759
0	-1.2899	0.3849	-2.2640
н	1.0359	-0.5051	-3.0629
C.	1 9226	-2 0371	0 5718
Ň	1.6928	-1.7813	1.5208
С	3.2908	-2.9904	-0.1101
Н	1.1435	-2.8611	-0.1935
С	0.2780	-1.9258	2.0047
С	2.6143	-1.9010	2.7132
С	3.5565	-1.8427	-1.0839
Н	3.3024	-3.9134	-0.7022
H	4.1032	-3.0994	0.6146
н	0.1841	-2.8577	2.5742

н	-0.3914	-1.9378	1.1475
Н	0.0047	-1.0794	2.6279
Н	2.3872	-2.8677	3.1835
Н	3.6364	-1.9642	2.3467
С	2.5286	-0.7956	3.7784
Ν	3.6848	-0.4849	-0.4482
Н	4.4759	-2.0417	-1.6506
Н	2.7317	-1.7739	-1.7941
Н	1.4923	-0.6258	4.0842
Н	3.0316	-1.1968	4.6672
С	3.2225	0.5321	3.4348
С	4.9028	-0.4435	0.4153
С	3.9000	0.5110	-1.5482
Ν	2.5736	1.2784	2.3291
Н	3.2686	1.1576	4.3440
Н	4.2566	0.3278	3.1378
Н	4.7989	-1.0906	1.2789
Н	5.0646	0.5748	0.7557
Н	5.7762	-0.7666	-0.1637
Н	3.0717	0.4593	-2.2505
Н	3.9232	1.5130	-1.1223
Н	4.8456	0.2941	-2.0590
С	1.2759	1.8406	2.7670
С	3.4144	2.4173	1.8902
Н	1.4012	2.5326	3.6153
Н	0.5830	1.0475	3.0425
Н	0.8374	2.3691	1.9224
Н	4.4363	2.0898	1.6948
Н	3.4567	3.2129	2.6514
Н	2.9897	2.8187	0.9664

O ^{MeAN} -2,4-F ₂ PhO ⁻ (equatorial)

Cu	0.7178	-0.1390	0.1105
Cu	-1.9832	-0.9760	-0.0477
0	-0.2971	0 4534	0.3905
Ň	-2.5906	0.0875	-2.3097
Ν	-3.6187	-0.0980	0.7581
Ν	-2.7094	-2.8214	-0.3531
Ν	1.3537	-0.9638	2.3196
N	2.3963	-0.9095	-0.6916
N C	7.3005	0.0490	-1.1300
н	2.2990	0.1125	2 9979
н	3.3019	-0.1819	2.6456
Н	2.3589	-0.4103	4.1334
С	0.0429	-0.9381	2.9994
н	0.0852	-1.3981	4.0011
Н	-0.6788	-1.4/56	2.3830
С	1 8270	-2 3635	2 2156
H	2.1338	-2.7416	3.2078
Н	0.9722	-2.9640	1.8865
С	2.9661	-2.5621	1.2083
Н	3.8403	-1.9602	1.4781
Н	3.2934	-3.6069	1.2866
Ц	2.00/0	-2.3410	-0.2570
н	1 6056	-2.8250	-0.9139
С	2.0919	-0.8997	-2.1561
Н	1.9273	0.1314	-2.4766
Н	2.9149	-1.3301	-2.7356
Н	1.1857	-1.4819	-2.3226
С Ц	3.5937	-0.0519	-0.4022
н	3.5704	0.9250	0.6758
С	4.9418	-0.5849	-0.9111
H	4.9287	-0.7212	-1.9982
Н	5.1583	-1.5594	-0.4624
С	6.0575	0.4136	-0.5593
Н	6.1229	0.5230	0.5433
п С	5.707Z 7 9191	-1 1693	-0.9001
н	7.2652	-2.0250	-0.7061
Н	8.0529	-1.0660	0.5756
Н	8.8947	-1.3893	-0.9638
С	8.3163	1.1655	-0.9858
н	8.5116	1.4217	0.0733
п	9.2700	2.0558	-1.4037
С	-3.6721	-0.3378	-3.2239
Ĥ	-4.6459	-0.2534	-2.7369
Н	-3.5263	-1.3820	-3.5133
Н	-3.6938	0.2718	-4.1437
С	-1.2849	-0.0684	-2.9890
н	-0.5010	-1 1115	-2.2001
н	-1.2097	0.5622	-3.8906
С	-2.7437	1.5229	-1.9457
Н	-2.8652	2.1261	-2.8636
Н	-1.8116	1.8255	-1.4655
С Ц	-3.8943	1.8219	-0.9807
Н	-4 8500	2.9141	-0.9410
С	-3.6483	1.3886	0.4680
Ĥ	-4.4272	1.8171	1.1146
Н	-2.6788	1.7709	0.7911
С	-3.3591	-0.2286	2.2302
Н	-4.1814	0.2162	2.8023
н	-2.4292	0.2898	∠.4554

н	-3.2609	-1.2760	2.5138
С	-4.9475	-0.7008	0.4153
н	-5.7041	-0.2286	1.0563
н	-5.1737	-0.4307	-0.6162
С	-5.0205	-2.2216	0.5453
Н	-4.7655	-2.5577	1.5549
н	-6.0675	-2.5084	0.3940
С	-4.1960	-2.9452	-0.5170
н	-4.4417	-4.0152	-0.5286
н	-4.4407	-2.5376	-1.5016
С	-2.2340	-3.6082	0.8297
Н	-2.5142	-4.6619	0.7208
н	-2.6738	-3.2192	1.7478
Н	-1.1502	-3.5121	0.8831
С	-2.0576	-3.3812	-1.5797
н	-2.4016	-2.8236	-2.4487
н	-2.3261	-4.4377	-1.6930
н	-0.9796	-3.2640	-1.4820
0	1.4580	1.5651	0.3517
С	0.5972	2.5838	0.2817
С	0.3889	3.2994	-0.9197
С	-0.1537	3.0074	1.4004
С	-0.5184	4.3580	-0.9984
н	0.9467	2.9827	-1.7935
С	-1.0703	4.0479	1.3610
F	0.0266	2.3444	2.6165
С	-1.2366	4.7028	0.1439
Н	-0.6803	4.8978	-1.9227
Н	-1.6339	4.3314	2.2393
F	-2.1660	5.7440	0.0726

s	P ^{MeAN} .	.2 4	-F-F	PhO	r (a	vial)
		·	-1 21	- 110	, ia	AIGH

Cu	0.9312	1.8239	-0.0014
Ou O	-0.0556	0.0943	-0.0042
õ	-0.9273	1.7509	-0.7462
Ν	5.0978	-3.1884	-0.9970
N	2.8418	1.3612	-0.5196
N C	1.1352	3.6260	0.8051
н	6.6823	-3.6405	-2.3087
Н	6.0993	-1.9739	-2.4155
Н	5.1473	-3.2925	-3.1489
С	4.7851	-4.6113	-0.7804
н	4.1006	-5.0212	-1.5484
н	5.7098	-5.1975	-0.8007
С	3.8663	-2.3792	-0.9149
Н	3.1811	-2.6092	-1.7586
H C	3.3430 1 1207	-2.6678	0.0050
H	4.8634	-0.6666	-0.0774
Н	4.5622	-0.5201	-1.8137
С	2.8053	-0.1408	-0.5811
Н	2.0714	-0.3964	-1.3519
C	3.1529	1.9394	-1.8546
Ĥ	3.0742	3.0259	-1.8232
Н	4.1633	1.6734	-2.1858
Н	2.4219	1.5609	-2.5729
Н	3.7917	1.0230	1 4223
Н	4.8207	1.6181	0.2172
С	3.6681	3.3098	0.9111
Н	3.8311	3.9509	0.0379
Н	4.4956	3.5330	1.5956
H	2.4599	4.6981	2.0662
Н	2.2114	2.9788	2.4647
С	1.1158	4.6804	-0.2478
н ц	1.9793	4.5792	-0.9037
Н	0.2095	4.5587	-0.8449
С	-0.0612	3.7927	1.6829
Н	-0.0232	4.7533	2.2116
Н	-0.9590	3.7522	1.0643
н	0.3841	-3 4925	3 3489
С	0.0680	-2.4588	3.3980
С	-1.0010	-2.0573	4.1953
C	0.7084	-1.4837	2.6485
F	-1.6789	-0.7303	4.2465
C	0.3651	-0.0980	2.6310
F	1.7627	-1.9149	1.8125
С	-0.7388	0.2239	3.4805
	-2.2509	0 7907	4.0700
Ĥ	-1.0515	1.2614	3.5179
Н	-2.2896	-3.3792	0.8109
С	-2.3076	-2.2834	0.7223
IN C	-1.9525	-1.9160	-0.0951
Ĥ	-1.5044	-1.8899	1.3473
С	-0.5356	-2.3484	-0.9225
С	-2.8680	-2.6297	-1.6507
С Н	-3.08/5	-0.21/3	1.4075
Н	-4.4921	-2.1101	0.6678
Н	-0.4552	-3.4411	-0.8594

Н	0.1057	-1.8929	-0.1680
н	-0.1964	-2.0117	-1.8993
Н	-2.7319	-3.7102	-1.4942
Н	-3.8934	-2.3912	-1.3622
С	-2.6881	-2.3124	-3.1435
Ν	-3.6859	0.5528	0.1168
Н	-4.5804	0.0711	1.9809
Н	-2.8088	0.1083	1.9704
н	-1.6659	-2.5298	-3.4678
Н	-3.3228	-3.0274	-3.6818
С	-3.1191	-0.9058	-3.5905
С	-4.9561	0.3084	-0.6247
С	-3.6003	2.0119	0.4377
Ν	-2.2187	0.1838	-3.1217
Н	-3.1919	-0.8802	-4.6910
Н	-4.1208	-0.6979	-3.1995
Н	-5.0156	-0.7267	-0.9537
Н	-4.9980	0.9561	-1.4992
Н	-5.8189	0.5280	0.0169
н	-2.6949	2.1942	1.0155
Н	-3.5359	2.5784	-0.4923
Н	-4.4795	2.3336	1.0093
С	-0.9157	0.1272	-3.8339
С	-2.8223	1.5119	-3.3980
н	-1.0600	0.2279	-4.9211
Н	-0.4060	-0.8145	-3.6313
Н	-0.2789	0.9295	-3.4634
н	-3.8111	1.5777	-2.9417
Н	-2.9286	1.6958	-4.4782
Н	-2.1822	2.2792	-2.9566

^S P ^{MeAN} -2,4-F ₂ PhO ⁻ (equatorial)
--

Cu	1.1577	-0.1648	0.4756
Cu	-2.4025	-0.9449	-0.2714
0	-0.5527	-1.4133	-0.2349
0	-0.7634	-0.1054	0.4452
Ν	-2.5034	0.5001	-2.0440
Ν	-3.9395	-0.1464	0.7752
Ν	-3.1714	-2.7318	-0.8111
Ν	1.2872	-1.3099	2.2348
Ν	2.7691	-0.8885	-0.5116
Ν	7.6979	0.1969	-1.1596
С	2.2199	-0.5869	3.1443
Н	1.8433	0.4272	3.2891
Н	3.2141	-0.5261	2.7033
Н	2.2950	-1.0935	4.1167
С	-0.0511	-1.3715	2.8880
н	0.0078	-1.9313	3.8323
Н	-0.7485	-1.8518	2.2038
н	-0.3941	-0.3551	3.0749
С	1.7466	-2.7075	1.9723
Ĥ	1.8827	-3.2239	2.9355
н	0.9267	-3.1982	1.4378
С	3.0248	-2.8295	1.1334
H	3.8718	-2.3317	1.6174
Н	3.2866	-3.8945	1.1078
С	2.8667	-2.3716	-0.3212
Н	3.6929	-2.7588	-0.9306
н	1.9380	-2.7884	-0.7251
С	2.4045	-0.6106	-1.9360
Н	2.3281	0.4686	-2.0691
Н	3.1451	-1.0260	-2.6279
н	1.4318	-1.0640	-2.1398
С	4.0088	-0.1391	-0.1239
н	3.7610	0.9182	-0.2481
Н	4.1701	-0.3039	0.9441
С	5.2915	-0.4910	-0.8928
Н	5.1776	-0.2791	-1.9615
Н	5.5112	-1.5591	-0.7902
С	6.4676	0.3425	-0.3565
Н	6.6514	0.0848	0.7074
Н	6.1863	1.4033	-0.3817
С	8.2714	-1.1554	-1.0458
н	7.5730	-1.9017	-1.4333
н	8.5227	-1.4226	-0.0008
Н	9.1872	-1.2109	-1.6429
С	8.6937	1.2031	-0.7514
Н	9.0069	1.0921	0.3047
Н	9.5842	1.1133	-1.3822
н	8.2787	2.2079	-0.8824

С	-3.5347	0.3281	-3.0937
Н	-4.5349	0.3414	-2.6571
Н	-3.3945	-0.6306	-3.5981
Н	-3.4739	1.1266	-3.8505
С	-1.1541	0.3937	-2.6599
Н	-0.4030	0.5237	-1.8812
Н	-1.0319	-0.5993	-3.0981
Н	-1.0110	1.1538	-3.4438
С	-2.6161	1.8492	-1.4184
H	-2.5726	2.6196	-2.2061
Н	-1.7316	1.9688	-0.7932
С	-3.8593	2.0747	-0.5504
H	-3.8885	3.1474	-0.3184
Н	-4.7832	1.8691	-1.1006
С	-3.8332	1.3561	0.8037
H	-4.6433	1.7400	1.4419
Н	-2.8829	1.5801	1.2969
С	-3.7248	-0.6181	2.1782
H	-4.4807	-0.1951	2.8525
Н	-2.7313	-0.3048	2.5012
Н	-3.7770	-1.7041	2.2292
С	-5.2903	-0.5693	0.2827
H	-6.0488	-0.1961	0.9867
H	-5.4594	-0.0717	-0.6743
С	-5.4714	-2.0823	0.0864
H	-5.3115	-2.6261	1.0226
Н	-6.5272	-2.2401	-0.1650
С	-4.6482	-2.6953	-1.0550
H	-4.9968	-3.7184	-1.2580
Н	-4.8023	-2.1071	-1.9652
С	-2.8104	-3.7068	0.2594
Н	-3.1022	-4.7248	-0.0287
Н	-3.3066	-3.4489	1.1940
Н	-1.7315	-3.6580	0.4155
С	-2.4631	-3.1334	-2.0617
Н	-2.6932	-2.4222	-2.8543
Н	-2.7724	-4.1375	-2.3789
Н	-1.3881	-3.1189	-1.8771
0	1.5475	1.6585	-0.0782
С	0.6613	2.6303	0.0864
С	0.4197	3.6016	-0.9170
С	-0.1046	2.7774	1.2682
С	-0.5484	4.5992	-0.7667
Н	0.9949	3.5262	-1.8324
С	-1.0848	3.7400	1.4502
F	0.1204	1.8628	2.3148
С	-1.2947	4.6378	0.4065
Н	-0.7384	5.3205	-1.5520
н	-1.6606	3.7877	2.3647
F	-2.3094	5.5962	0.5462

5. References.

(1) Company, A.; Palavicini, S.; Garcia-Bosch, I.; Mas-Balleste, R.; Que, L.; Rybak-Akimova, E.

V.; Casella, L.; Ribas, X.; Costas, M. Chem. Eur. J. 2008, 14, 3535.

(2) Garcia-Bosch, I.; Ribas, X.; Costas, M. Chem.-Eur. J. 2012, 18, 2113.

(3) Palavicini, S.; Granata, A.; Monzani, E.; Casella, L. J. Am. Chem. Soc. 2005, 127, 18031.

(4) Mirica, L. M.; Vance, M.; Rudd, D. J.; Hedman, B.; Hodgson, K. O.; Solomon, E. I.; Stack, T. D. P. *Science* **2005**, *308*, 1890.

(5) T. Osako, K. Ohkubo, M. Taki, Y. Tachi, S. Fukuzumi, S. Itoh, *J. Am Chem. Soc.* **2003**, *125*, 11027. Note: Cu_2O_2 centers are considered to act as $1e^{-1}/1H^+$ acceptors in the oxidation of phenols, leading to the formation of 0.5 equiv. of C-C coupling product.

(6) Kieber-Emmons, M. T.; Ginsbach, J. W.; Wick, P. K.; Lucas, H. R.; Helton, M. E.; Lucchese, B.; Suzuki, M.; Zuberbuehler, A. D.; Karlin, K. D.; Solomon, E. I. *Angew. Chem. Int. Ed.*, **2014**, *53*, 4935.

(7) NIST Computational Chemistry Comparison and Benchmark Database, NIST Standard Reference Database Number 101. Release 17b, September 2015, Editor: Russell D. Johnson III. http://cccbdb.nist.gov/