Science Advances

AAAS

advances.sciencemag.org/cgi/content/full/3/7/e1700022/DC1

Supplementary Materials for

ALMA detection and astrobiological potential of vinyl cyanide on Titan

Maureen Y. Palmer, Martin A. Cordiner, Conor A. Nixon, Steven B. Charnley, Nicholas A. Teanby, Zbigniew Kisiel, Patrick G. J. Irwin, Michael J. Mumma

> Published 28 July 2017, *Sci. Adv.* **3**, e1700022 (2017) DOI: 10.1126/sciadv.1700022

This PDF file includes:

- fig. S1. Integrated flux contour map for C₂H₃CN, summed over the three detected transitions.
- table S1. Observational parameters.

fig. S1. Integrated flux contour map for C₂H₃CN, summed over the three detected transitions. Contours are spaced at intervals of 2σ , where σ is the RMS noise level (7.2 mJy km s⁻¹ bm⁻¹). Negative contours are dashed. The coordinate scale is in Titan-projected distances (white cross denotes the position of the phase center). Axes are aligned in the equatorial coordinate system. The blue circle represents Titan's 0.77"-diameter disk (dashed white curve is the equator), and the dot-dashed blue line is the polar axis, oriented 1.3° clockwise from vertical, with the north pole tilted toward the observer by 22°. The FWHM of the Gaussian restoring beam (1.1" × 0.7") and its orientation are shown as a hatched ellipse.

ID	Date	Frequency	Obs. time	Distance	# Antennas	Baselines	Spect. Res.	$ heta_{min}$	PWV	RMS
		(GHz)	(s)	(AU)		(m)	(kHz)	(")	(mm)	(mJy/bm)
Spectral Region 1										
2012.1.00437.S	2014-03-10	230-231	151	9.4	26	15.2-422	488	0.99 imes 0.65	1.53	7.1
2012.1.00437.S	2014-03-10	230-231	151	9.4	28	15.2-423	488	1.11 imes 0.62	1.40	6.7
2012.1.00336.S	2014-03-24	230-231	151	9.2	33	15.1-438	488	1.09 imes 0.69	1.42	7.8
2012.1.00336.S	2014-03-24	230-231	151	9.2	33	15.1-438	488	1.38×0.69	1.37	7.9
2012.1.00336.S	2014-03-25	230-231	151	9.2	32	15.1-438	488	1.29×0.69	0.58	5.7
2012.1.00198.S	2014-03-26	230-232	151	9.2	32	15.2-438	976	1.08 imes 0.68	0.64	5.0
2012.1.00261.S	2014-04-04	229-231	152	9.1	34	15.1-443	976	0.89 imes 0.70	2.06	4.6
Combined								1.12 imes 0.68		2.3
Spectral Region 2										
2012.1.00635.S	2014-02-22	231-233	311	9.7	27	15.1-399	976	1.67 imes 0.89	0.69	5.8
2012.1.00635.S	2014-03-21	231-233	311	9.3	36	15.1-438	976	1.02 imes 0.66	0.64	4.1
2012.1.00635.S	2014-04-25	231-233	156	8.9	35	19.6-558	976	0.73 imes 0.58	1.22	4.7
2012.1.00635.S	2014-05-27	231-233	156	8.9	31	17.8-641	976	0.73 imes 0.50	0.68	5.2
Combined								0.92 imes 0.69		2.4