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ABSTRACT

In this supplementary material, additional experimental results on gyrocardiography (GCG) are presented. An automated
heartbeat detection and cardiac cycle extraction algorithm for the GCG is presented. Furthermore, a method for automated
determination of cardiac time intervals using GCG is described. The presented methods can be used for example in continuous
wearable monitoring applications of GCG.

Supplementary Materials

Automated heartbeat detection using GCG
A group consisting of 29 healthy subjects was used for concurrent GCG and ECG measurements for automated heartbeat
detection and cardiac cycle extraction. ECG was used here only for reference and validation; the presented automated heartbeat
detection method operates solely on the GCG signal, and does not need ECG for extracting fiducial points. Demographic
information of test subjects has been provided in Table 1.

Based on our previously published method for SCG1, we developed an algorithm that automatically detects gJ points from
the y-axis signal of the GCG. Our method is based on applying adaptive thresholds on GCG signal that has been processed using
the Hilbert transform; this Hilbert adaptive beat identification technique (HABIT) is described in detail in1. For comparison,
we measured simultaneously ECG Lead II from the test subjects, and applied the Pan-Tompkins2 method for extracting the
heart beats from the ECG signal. The performance of our GCG heart beat estimation algorithm was tested against ECG in
three different positions, i.e. left recumbent, right recumbent, and supine. Concurrently with the SCG measurements presented
in1, we also performed GCG measurements with MAX21000 gyroscope, and the heartbeat detection algorithm was applied to
this data. All the data acquisitions were made up to 5 minutes for each subject per position. Fig. 1a shows heartbeat detection
using our method. Fig. 1b shows the correlation (r2 > 0.99) and agreement between GCG and ECG interbeat intervals for all
measured positions (left n=6, right n=6, and supine n=29) — where n is the number of test subjects. Potential applications
for beat-by-beat estimation using GCG include heart rhythm assessment, heart rate variability (HRV) analysis3, and medical
imaging4.

The performance of the cardiac cycle estimation using HABIT was assessed and computed separately for each subject
using different statistical parameters such as Pearson’s correlation, Bland-Altman plot, and root mean square error (RMSE).
Additionally, we calculated the heartbeat detection ability of the method by evaluating precision or positive predictive value

Table 1. Demographic information of the study subjects as reported in1

Demographic information
(n=29) Min Max Average SD

Age (years) 23 41 29 4
Height (cm) 170 190 178 5
Weight (kg) 60 98 76 11
BMI (kg/mˆ2) 17.5 29.4 23.9 3



(a) Adaptive heartbeat detection in GCG y−axis. (b) Correlation and agreement between the ECG and GCG in three
different positions.

Figure 1. Heartbeat detection using GCG and reference ECG.

(PPV) and sensitivity or true positive rate (TPR). Sensitivity and precision evaluate the capability of the detector to find valid
heart beats and to reject incorrectly detected beats as follows:

Sensitivity or TPR (%) =
TP

TP+FN
×100, (1)

Precision or PPV (%) =
TP

TP+FP
×100, (2)

where TP represents the total number of true positives, FN the total number of false negatives, and FP the total number of false
positives. Detected heart peaks within a window of ±150 ms around each R peak were considered true positive. Conversely, if
no valid R peak was found to be associated to the detected pulse, the unassigned GCG pulse peak was considered false positive,
while for any valid R peak to which no pulse peak was assigned, one false negative is counted.

The average true positive rate (TPR), positive prediction rate (PPR) and detection error rate (DER) for different positions
were as follows (TPR, PPR, and DER): supine (99.4%, 99.5% and ' 0.038% ), left (99.66%, 99.7% and ' 0.034%) and right
(98.9%, 96.6%, and ' 0.049%). The average beat-to-beat interval and root mean square error (RMSE) between ECG (R-R) and
GCG (gJ-gJ) interbeats were as follows: 961± 12 ms and 3.2 ms in supine, 938± 117 ms and 2.9 ms in right recumbent, and
963±99 ms and 2.5 ms in left recumbent positions, respectively.

Time Interval Measurements in Doppler Pulse Wave and GCG
Cardiac time intervals were measured using mitral inflow and LV outflow velocity timings using Doppler pulse wave technique
and according to5 guidelines. The mitral inflow velocity waves were obtained with a sample volume positioned between the
tips of the mitral leaflets. The LV outflow patterns were achieved by positioning sample volume (cursor) below the aortic valve.
Fig. 2a shows the situation of mitral inflow and LV outflow. The interval ’a’ was measured from the termination to the onset of
mitral inflow, while the interval ’b’, the duration of left ventricular velocity profile or LVET, was measured from the onset to
the cessation of LV outflow. The interval ’c’ was measured from the ECG R-peak (reference point) to the cessation of the LV
outflow or AVC, while the interval ’d’ was measured from the R-peak to the onset of the mitral inflow (MVO). The interval
’e’ was measured from the ECG Q point to the end of the LV outflow, representing QS2 distance. IVRT was measured by
subtracting ’d’ from ’c’. PEP was calculated by subtracting ’b’ from ’e’ and IVCT by subtracting IVRT and ’b’ from ’a’.

Automated Waveform Annotation and CTI Estimation in GCG
As described in the main manuscript, by identifying from the GCG signal the fiducial points gI , gJ , gK , and gL, we can estimate
systolic and diastolic time intervals such as IVCT, QS2, LVET, PEP, and IVRT. We developed an automated method – based on
the algorithms described in6, 7 – for identifying the four fiducial GCG points gI-gL from the x- and y-axis signals.

The gJ peak in GCG y-axis and diastolic ∧-wave peak (nominated as the local maxima in early diastolic phase visible in
GCG x-axis) serve as the reference points in every GCG cardiac cycle. Therefore, the first task is to detect these points as
described above for the automated heartbeat detection – as labeled by diamond signs in Fig. 2b) – from the GCG x- and y-axis.
Then, two search windows W1 and W2 are defined with the help of gJ peaks. W1 starts from the onset of gJ-peak in GCG
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(a) Doppler and GCG time intervals measurements. (b) GCG waveform delineation according to PW
Doppler and observational interpretation.

Figure 2. Estimation of cardiac events in reference Doppler images and in GCG x- and y-axis

y-axis to the onset of the following gJ . Within this window, we define W2 (a 200 ms long search window starting from 250 ms
after the previously detected gJ) and search for the local maxima, also called ∧-wave, in the GCG x-axis. Subsequently, we
define sub-windows W2-1 and W2-2 (each of length 100 ms) to search for the neighboring minima located in the right and left
side of the A-wave. The local minimum points identified within W2-1 and W2-2 refer to gk and gL, respectively. Similarly, we
define a 200 ms long search window W3 backwards from gJ to the left (-100 ms) to find local minimum neighbour, known as
gI , and forwards to the right (+100 ms) to localize Max-velocity point. Likewise, we identify fiducial points using a primary
windowing technique and afterward estimate the cardiac time intervals. Fig. 3 shows automated waveform annotation in GCG
x- and y-axis using the explained method.

Figure 3. Automated heartbeat detection using HABIT and correspondingly delineated cardiac events in GCG x- and y-axis
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