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Supplementary Information A: Models 

1. Prevalence-intensity model 

The prevalence-intensity model links mean oocyst counts to the prevalence of oocysts in the 

mosquito population for each batch of mosquitoes. This provides a measure of the degree of 

parasite aggregation and explains the relationship between TBA and TRA 1,2. 

Let 𝑖 indicates the intervention group under investigation (be it 0=control mosquitoes, 1=anti-

Pfs 25 or 2=anti-Pfs 230-C test antibodies) and 𝑗 be the batch of mosquitoes fed on the same 

parasite-source and maintained together. The mean number of oocysts in a mosquito 

population (the intensity) in batch 𝑗 given intervention 𝑖 is denoted 𝑀𝑖𝑗 and is described by a 

negative binomial distribution with parameters ∝𝑖𝑗 (constant success probability) and 𝑘𝑖𝑗 (a 

function describing the over-dispersion parameter, 

𝑀𝑖𝑗 =  
(1−∝𝑖𝑗)𝑘𝑖𝑗

∝𝑖𝑗
.     [1] 

The number of blood-fed mosquitoes dissected is denoted 𝑁𝑖𝑗 and  𝑃𝑖𝑗 is the proportion of 

these with identifiable oocysts (the prevalence). The relationship between prevalence and 

intensity for data with a negative binomial distribution is given by the following equation, 

𝑃𝑖𝑗 = (1 −
𝑀𝑖𝑗

𝑘𝑖𝑗
)

−𝑘𝑖𝑗

.      [2] 

Allowing 𝑘𝑖𝑗 to vary (as a constant or dependent on mean parasite intensity) changes the 

shape of the relationship between oocyst prevalence and intensity. Here the full model uses 

a simple linear function, 



𝑘𝑖𝑗 = 𝛼𝑖 + 𝛽𝑖𝑀𝑖𝑗 .      [3] 

It is assumed that the number of mosquitoes infected, denoted 𝑌𝑖𝑗 is described by a binomial 

distribution then parameters 𝛼𝑖 and 𝛽𝑖 can be estimated for each treatment group using the 

following equation,  

𝑌𝑖𝑗 ~ 𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙 (𝑃𝑖𝑗, 𝑁𝑖𝑗).    [4] 

Data from all intervention groups are fit at the same time allowing models with and without 

antibody specific 𝛼𝑖 and 𝛽𝑖 parameters to be directly compared. Models setting  𝛽𝑖 = 0 were 

also run to determine whether the degree of overdispersion changed with parasite intensity. 

2. Transmission-blocking activity model.  

The transmission blocking activity of intervention 𝑖 is defined by the percentage reduction in 

the prevalence of oocysts and is denoted 𝐸𝑖
𝑃.  For each treatment (𝑖) and blood-source (𝑗),  

𝑃𝑖𝑗 =  𝑃0𝑗(1 − 𝐸𝑖𝑗
𝑃 ).      [5] 

Transmission blockade is then decomposed into two functions capturing the impact of 

antibody titre (titre effect, 𝑇𝑖) and parasite exposure (exposure effect, 𝐶𝑗):  

𝐸𝑖
𝑃 = 𝑇𝑖 × 𝐶𝑗      [6] 

The relationship between titre and vaccine efficacy is typically described using the Hill 

equation,  

𝑇𝑖 =
(𝑡𝑖 𝜇𝑡⁄ )𝛾1

(𝑡𝑖 𝜇𝑡⁄ )𝛾1+𝛾2
     [7] 



where 𝑡𝑖 is the antibody specific titre used of intervention 𝑖, 𝜇𝑡 is the mean titre on the 

experiment (a constant used to center the data and help the fitting process), and 𝛾1−3  are 

parameters to be fitted. Equation [7] is compared to four simpler functions, a constant model 

where efficacy is independent of titre (𝑇𝑖 = 𝛾1) and a linear model (𝑇𝑖 = 𝛾2 + 𝛾1𝑀𝑖𝑗), a simple 

exponential function (𝑇𝑖 = 1 − exp(−𝛾1𝑀𝑖𝑗)), and a sigmoid function (𝑇𝑖 = 1/(1 +

exp(−𝛾1𝑀𝑖𝑗 + 𝛾2)). To determine whether functions varied between antibodies models 

using common or discrete parameter between antibodies were compared.  

Following visual inspection of data TBA appears to decline at an approximate exponential rate 

with increasing parasite exposure (as defined as the mean oocyst intensity in the control 

group of mosquitoes from the same blood-source, 𝑀0𝑗). A variety of different functional 

forms were tested for the relationship and the full equation is given below,   

𝐶𝑗 = 𝛿1 + (1 − 𝛿1) exp(− (𝑀0𝑗 + 𝛿2) 𝛿3).   [8] 

Parameters 𝛿1−3 are estimated from the fitting process. Setting these parameters to zero or 

one reduces Equation 8 to simpler (nested) functions which were fit and compared to ensure 

the most parsimonious model. The different titre effect and exposure effect models were 

compared against one another (a full list of the models tested is given in Supplementary 

information B). Equations [1] to [8] were fit to the full dataset simultaneously to enable the 

uncertainty in prevalence estimates (both control and intervention) and intensity estimates 

(in the control group only) to be accounted for in the best fit model and propagated in the 

uncertainty around the best fit line. 

3. Transmission reduction activity model.  



The transmission reducing efficacy (𝐸𝑖
𝐼) is defined as the ability to reduce the mean oocyst 

intensity in the mosquito population. It is estimated using the same set of mathematical 

functions used to estimate TBA (i.e. Equation [6]-[8], though substituting 𝐸𝑖
𝐼 for 𝐸𝑖

𝑃 in Equation 

[6]) though operates on the mean oocyst intensity,  

𝑀𝑖𝑗 =  𝑀0𝑗(1 − 𝐸𝑖𝑗
𝐼 ).      [9] 

The model is fit to the individual oocyst data assuming a negative binomial distribution (using 

the same 𝑘𝑖𝑗 as described in Equation [3]). Models with separate intensity and titre effects 

for each antibody (with all different functional forms) are compared to those where a 

universal relationship is assumed. Fitting showed that adding an exposure effect did not 

improve the accuracy of the model. As for the transmission blockade model, Hill’s function 

(eq. [7]) was best to describe the effect of titre on efficacy, 

𝑇𝑖 =
(𝑡𝑖 𝜇𝑡⁄ )𝛾′1

(𝑡𝑖 𝜇𝑡⁄ )𝛾′1+𝛾′2
     [10] 

Full details of all models tested are shown in Supplementary information B.  

4. Predicting TBA from TRA and parasite exposure 

Transmission reduction efficacy can provide prediction of transmission blockade efficacy for 

each antibody according to the level of parasite exposure. Rearranging the best fit functions 

(see Supplementary information B for DIC) provides the following relationship,  

𝑇𝐵𝐴 =  
(

𝑇𝑅𝐴 𝛾′2
(1−𝑇𝑅𝐴)⁄ )

𝛾1
𝛾′1

⁄

(
𝑇𝑅𝐴 𝛾′2

(1−𝑇𝑅𝐴)⁄ )

𝛾1
𝛾′1

⁄
+𝛾2 

×  𝐶𝑗.   [11] 



which generates TBA from TRA and intensity, where 𝐶𝑗 is the exposure effect described in 

equation [8] and parameters 𝛾′1, 𝛾′2 and 𝛾1, 𝛾2 are obtained by fitting respectively TRA and 

TBA titre effect functions (see equation[7]). In the best fit models, these parameters are 

distinct for anti-Pfs 25 and anti-Pfs 230-C antibodies, which indicate that the shape of the 

relationship between TRA and TBA is specific to each antibody.  

  



Supplementary information B. Model selection (DIC tables) 

1. Transmission-blocking activity model 

TBA Model 

Titre effect 

𝛾1 𝛾2

+ 𝛾1𝑀𝑖𝑗 
1 − 

exp(−𝛾1𝑀𝑖𝑗) 

1

1 + exp (
−𝛾1𝑀𝑖𝑗

+𝛾2
)
 Hill’s 

(equ. [7]) 

Exposure 
effect 

𝛿1 10420* 9576* 8485* 8429 8449* 

exp(− 𝑀0𝑗 𝛿3) 9215* 8159* 8272* 8144* 8112* 

exp(− (𝑀0𝑗 + 𝛿2) 𝛿3) 8273* NC NC 8047 7905* 

𝛿1 + (1 − 𝛿1) exp(− (𝑀0𝑗

+ 𝛿2) 𝛿3) 
8273* NC NC NC 7869† 

Supplementary table 1. Deviance Information Criteria (DIC) table for the transmission 

blocking activity model for the main functions tested for both the impact of parasite exposure 

(exposure effect) and titre concentration (titre effect). Superscripts indicate the best fit model 

for each functional relationship with the lowest DIC, be it one with separate titre and 

exposure effect functions for each antibody (*), separate titre and intensity functions apart 

from at least one parameter (𝛿1  in best fit model) (†), constant titre and intensity functions 

when no sign are given. NC indicate that convergence could not be obtain with that 

combination of functions. Bold number represent the best fit functions for the model. For the 

best model the fit was better with separate exposure covariates (with common exposure 

covariate for anti-Pfs25 and anti-Pfs230-C DIC=8142 with distinct exposures covariates 

DIC=7869) and separates titre covariates apart for 𝛿1 parameter (common titer covariate for 

anti-Pfs25 and anti-Pfs230-C DIC=7900, with distinct titer covariates DIC=7869) 

  



2. Transmission reduction activity model 

TRA Model 
Titre effect 

𝛾′1 1 − exp(−𝛾′1𝑀𝑖𝑗) Hill’s  
(equ. [10]) 

Intensity 
effect 

𝛿′1 12670* 12590* 12570* 

exp(− 𝑀0𝑗  𝛿′3) 12680† 12590† 12570† 

Supplementary table 2. Deviance Information Criteria (DIC) table for the transmission 

blocking activity model for the main functions tested for both the impact of parasite exposure 

(exposure effect) and titre concentration (titre effect). Superscript indicates the model which 

gave the lowest DIC, be it one with separate titre and exposure effect functions for each 

antibody (*) or constant exposure effect but separate titre effects (†).  Bold number represent 

the best fit functions for the model. The most parsimonious model had separate titre 

covariates (with common exposure covariate for anti-Pfs25 and anti-Pfs230-C DIC=12580 with 

distinct exposures covariates DIC= 12570). 

3. Prevalence-intensity model 

PI model 

Group 

All 
together 

Treated vs. 
untreated 

Antibodies 
separated 

Overdispersion 
parameter 

𝛼𝑖 12470 12450 12430 

𝛼𝑖 + 𝛽𝑖𝑀𝑖𝑗 12460 12450 12450 

Pfs 230-C: 𝛼𝑖 
Pfs 25 : 𝛼𝑖 + 𝛽𝑖𝑀𝑖𝑗  

/ 12450 12410 

Supplementary table 3. Deviance Information Criteria (DIC) table for the prevalence-intensity 

model for the main functions tested for both the impact of parasite exposure (exposure 

effect) and titre concentration (titre effect). Bold number represent the best fit functions for 

the model in this case a distinct, constant overdispersion parameter for control and anti-Pfs 

25 and a linear overdispersion parameter for anti-Pfs 230-C.  



Supplementary information C. Experiments tables 

 
Titers 

(µg/ml) 
Nb. of blood 

sources 
Nb. of mosquitoes 

dissected 
Parasite prevalence 

in control groups 
Parasite 

exposure 

P
fs

 2
3

0
-C

 e
xp

er
im

en
ts

 31.25 5 223 73.77±19.33 20.40±17.60 

62.50 11 512 77.73±13.65 18.15±9.25 

125 10 473 77.14±14.46 15.87±9.00 

250 5 219 79.14±5.98 35.54±41.57 

500 2 83 87.21±0.93 73.01±107.10 

Total Pfs 230-C 20 1720 77.18±12.90 25.54±11.02 

P
fs

 2
5

 e
xp

er
im

en
ts

 

31.25 1 35 75.11 25.91±50.36 

62.5 3 127 77.50±7.32 18.81±24.09 

109 6 659 80.37±6.14 37.10±36.08 

125 10 536 82.42±8.69 21.60±11.14 

250 9 475 82.02±6.08 31.77±27.80 

500 3 98 84.96±4.01 63.97±75.32 

Total Pfs 25 19 2102 80.57±7.25 31.96±13.19 

Controls 21 1604 78.89±10.77 28.65±7.44 

Total  21 5426 78.89±10.77 28.65±7.44 

Supplementary table 4. Table of DMFA experiments. Titers are in total IgG – the antibodies 

specific titer used in the paper represent 7.4% of total IgG for anti-Pfs230-C and 8.2% of total 

IgG for anti-Pfs-25. Parasite exposure is the average oocyst count in mosquitoes fed on the 

corresponding blood sources without treatment, as defined in the paper.  

 



Blood 

source 

Nb. 

Gametocytemia 

(gametocytes/µl 

of blood) 

Parasite exposure 

(Nb. of oocysts/ 

mosquito) 

Blood 

source 

Nb. 

Gametocytemia 

(gametocytes/µl 

of blood) 

Parasite exposure 

(Nb. of oocysts/ 

mosquito) 

1 240 46.76±51.50 11 200 68.06±44.84 

2 120 42.79±55.97 12 80 5.46±6.80 

3 1752 96.68±203.06 13 192 12.84±21.46 

4 80 25.91±50.36 14 80 4.29±5.25 

5 144 12.16±12.05 15 168 23.21±19.34 

6 32 0.78±1.12 16 48 2.18±2.74 

7 120 15.45±15.48 17 48 5.21±5.58 

8 136 11.81±14.34 18 120 22.46±21.66 

9 168 17.40±12.52 19 136 8.20±9.16 

10 224 112.90±74.05 20 112 10.07±7.79 

   21 120 10.40±14.97 

Supplementary table 5. Table of blood sources for DMFA experiments. Gametocytemia (in 

gametocytes per µl of blood) and parasite exposure (average oocyst count in mosquitoes fed 

on the blood source without treatment ± standard deviation) for each of the 21 blood sources 

used for the DMFA experiments. 

 

 

 

 



Supplementary information D. Parameter table 

A. (A) Transmission Blocking Activity Model 

 Description Value 
Code 

notation 

𝜇𝑡 Average titre in realised  experiments 154  

𝛾1 Hills’ coefficient in titre effect function (equ. [7]) 
Pfs 230: 0.71 (0.60-0.91) 
Pfs 25: 1.17 (0.91-1.4) 

k[2] 
k[8] 

𝛾2 
Apparent dissociation constant from titre effect 
Hill’s function (equ. [7]) 

Pfs 230: 6.30 (5.79-7.5) k[9] 

𝛿3 
Exponential function parameter for exposure 
effect function (equ. [8]) 

Pfs 230: 0.04 (0.03-0.05) 
Pfs 25: 0.10 (0.07-0.15) 

k[1] 
k[3] 

𝛿2 
Exponential function parameter for intensity 
effect function (equ. [8]) 

Pfs 230: 4.52 (4.17-4.85) 
Pfs 25: 2.33 (1.84-2.96) 

k[11] 
k[10] 

𝛿1 
Distribution parameter for intensity effect 
function (equ. [8]) 

0.82 (0.77-0.86) k[12] 

 

(B) Transmission Reduction Activity Model 

 
Description Value 

Code 
notation 

𝛾′1 Hills coefficient (equ. [10]) Pfs 230: 0.31 (0 - 0.75) 
Pfs 25: 2.50 (2.08-2.97) 

k[10] 
k[6] 

𝛾′2 Apparent dissociation constant from Hill’s 
function (equ. [10]) 

Pfs 230: 0.27 (0.18-0.39)  
Pfs 25: 0.06 (0.04-0.09) 

k[1] 
k[9] 

 

(C) Prevalence-Intensity Model 

 Description Value 
Code 

notation 

𝛼 Overdispersion parameter (equ. [3]) 
Control: 0.56 (0.57-0.52) 
Pfs 25: 0.34 (0.30-0.35) 
Pfs 230: 0.28 (0.22-0.29) 

k[6] 
k[8] 
k[7] 

𝛽 
Overdispersion parameter (equ. [3]) Pfs 230: 0.0036 (0.0016-

0.0039) 
k[1] 

Supplementary table 6. Tables of parameters with brief description and best fit estimates for 

transmission blockade activity model (A) the transmission reduction activity model (B) and 

the prevalence-intensity model (C). The code notation indicates the different parameters in 

the OPENBUGS code used to fit the model (as presented in Supplementary information D). 



Supplementary information E. Openbugs code 

1. TBA model 

model{ 
    for (j in 1:n_code) ##Number of hosts 
 { 
 no_pos_c[j]~dbin(my_pc[j],no_diss_c[j]) 
 my_pc[j]~dunif(0,1)    
           for (i in code_offset[j]:code_offset[j+1]-1)  
##Number of experiments (one titre and antibody per experiment) 
 {  
 no_pos_e[i]~dbin(my_pe[i],no_diss_e[i])  
 my_pe[i]<-min(1,(my_pc[j])*(1-my_eff[i]))   
## Prevalence after treatment fitted to prevalence before treatment and efficacy 
 my_eff[i]<- is_treat[i]*min(1,my_eff_fun[i]*my_exp[i]) ## TBA 

my_eff_fun[i]<- (AB[i]-1)*(pow(my_titre[i]/mean(my_titre[]),k[8]) 
/(pow(my_titre[i]/mean(my_titre[]), k[8])+k[7]))+(2-
AB[i])*(pow(my_titre[i]/mean(my_titre[]) ,k[2])/(pow(my_titre[i]/mean(my_titre[]), 
k[2])+k[9])) ##Titre effect 
my_exp[i]<-(AB[i]-1)*(k[12]+(1-k[12])*exp(-mean_rand[j]*k[3]+k[10]))+(2-
AB[i])*(k[12]+(1-k[12])*exp(-mean_rand[j]*k[1]+k[11])) ##Intensity effect 
} 

 for (l in code_offset2[j]:code_offset2[j+1]-1) 
 { 

my_rand[l]~dnegbin(a[j],b[j]) ###negative binomial distribution describes data 
 } 

a[j]~dbeta(k[4],k[5]) 
b[j]<- k[6] ###overdispersion parameter 
mean_rand[j]<-(1-a[j])*b[j]/a[j]   

} 
k[1]~dgamma(0.1,0.0001) 
k[2]~dnorm(0.1,0.0001) 
k[3]~dgamma(0.01,0.001) 
k[4]~dgamma(0.1,0.001) 
k[5]~dgamma(0.1,0.001) 
k[6]~dgamma(0.1,0.001)I(0.00001,) 
k[7]~dnorm(0.1,0.0001) 
k[8]~dnorm(0.1,0.001) 
k[9]~dnorm(0.1,0.001) 
k[10]~dnorm(0.1,0.0001) 
k[11]~dnorm(0.1,0.0001) 
k[12]~dgamma(0.1,0.0001)I(,1) 
} 
  



2. TRA model 
 

model{   
for (j in 1:n_code) 
 {  
  for (l in code_offset2[j]:code_offset2[j+1]-1) 
  { 
  my_rand[l]~dnegbin(a[j],overdis[j]) 
  } 
 a[j]~dbeta(k[4],k[5])    
 mean_rand[j]<-(1-a[j])*overdis[j]/a[j]  
 no_pos_c[j]~dbin(my_plc[j],no_diss_c[j]) 
 my_plc[j]<-min(1, max(0,1-pow((1+mean_rand[j]/overdis[j]),-overdis[j]))) 
    overdis[j]<-max(0.0001,k[2]+my_random[j]) 
            for (i in code_offset[j]:code_offset[j+1]-1)    
  {    

overdisp_treat[i]<-max(0.0001,(AB[i]-1)*(k[8])+(2-
AB[i])*(k[7]+k[3]*mean_rand_treated[i])) 
no_pos_e[i]~dbin(my_ple[i],no_diss_e[i]) 
my_ple[i]<-min(1, max(0,1-pow((1+mean_treated[i]/overdisp_treat[i]),-
overdisp_treat[i]))) 

       
   for (l in code_offset3[i]:code_offset3[i+1]-1) 
   {         
   my_rand_treated[l]~dnegbin(c[i],overdisp_treat[i]) 
   } 
  mean_rand_treated[i]<-
mean(my_rand_treated[code_offset3[i]:(code_offset3[i+1]-1)])  
  c[i]<-min(1,max(0.00001,1/(mean_treated[i]/overdisp_treat[i]+1))) 

mean_treated[i]<-(1-my_eff[i])*(mean_rand[j]) 
  my_eff[i]<- min(1, max(0, my_eff_fun[i]*my_exp[i]))  
  my_eff_fun[i]<- (AB[i]-1)*(pow(my_titre[i]/mean(my_titre[])   
  ,k[6])/(pow(my_titre[i]/mean(my_titre[]), k[6])+k[9]))+(2-AB[i])*1/(1+exp(-
my_titre[i]/mean(my_titre[])*k[10]+k[1])) 
  my_exp[i]<-1  
               } 
 } 
k[1]~dnorm(0.1,0.001) 
k[2]~dgamma(0.1,0.001) 
k[3]~dnorm(0.1,0.001) 
k[4]~dgamma(0.1,0.001) 
k[5]~dgamma(0.1,0.001) 
k[6]~dgamma(0,0.01) 
k[7]~dgamma(0.1,0.001)I(0.0001,) 
k[8]~dgamma(0.1,0.001)I(0.0001,) 
k[9]~dgamma(0.1,0.1) 
k[10]~dgamma(0.1,0.001)}   

  



3. PI model 
 
model{ 
    for (j in 1:n_code) 
 { 
 for (l in code_offset2[j]:code_offset2[j+1]-1) 
  { 
  my_rand[l]~dnegbin(a[j],overdis[j]) 
  } 
 mean_rand[j]<-mean(my_rand[code_offset2[j]:(code_offset2[j+1]-1)]) 
 a[j]~dbeta(k[4],k[5])I(0.0001,0.999999) 

intensity_control[j]<-(1-a[j])*overdis[j]/a[j] 
no_pos_c[j]~dbin(my_plc[j],no_diss_c[j]) 

 my_plc[j]<-min(1, max(0,1-pow((1+intensity_control[j]/overdis[j]),-overdis[j]))) 
overdis[j]<-max(0.000001,k[6]) 
 
for (i in code_offset[j]:code_offset[j+1]-1)    

  { 
overdisp_treat[i]<-max(0.000001,(AB[i]-1)*(k[8])+(2-

AB[i])*(k[7]+mean_rand_treated[i]*k[1])) 
  no_pos_e[i]~dbin(my_ple[i],no_diss_e[i]) 
  my_ple[i]<-min(1, max(0,1-pow((1+intensity_treated[i]/overdisp_treat[i]),-
overdisp_treat[i]))) 

for (l in code_offset3[i]:code_offset3[i+1]-1) 
   { 
   my_rand_treated[l]~dnegbin(c[i],overdis[j]) 
   } 

mean_rand_treated[i]<-
mean(my_rand_treated[code_offset3[i]:(code_offset3[i+1]-1)]) 

  c[i]~dbeta(k[2],k[3])I(0.0001,0.999999) 
  intensity_treated[i]<-(1-c[i])*overdisp_treat[i]/c[i] 
  } 
 } 
k[1]~dnorm(0.1,0.01) 
k[2]~dgamma(0.1,0.01) 
k[3]~dgamma(0.1,0.01)I(0.0001,) 
k[4]~dgamma(0.1,0.01)I(0.0001,) 
k[5]~dgamma(0.1,0.1)I(0.0001,) 
k[6]~dnorm(0.1,0.01)I(0.0001,) 
k[7]~dnorm(0.1,0.01) 
} 


