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1 Experimental protocol1

Participants were asked to sit in a circle on plastic chairs (Supplementary Fig. 1a) and move their2

preferred hand as smoothly as possible back and forth (that is, away from and back to their torso) on a3

plane parallel to the floor, along a direction required to be straight.4

Supplementary Figure 1: Experimental platform used for the experiments. (a) Plastic chairs
with position markers. (b) Shut goggles: players are deprived of their own sight. (c) Open goggles: by
appropriately sliding the mobile cardboard on the fixed one, players can modify their own field of view.
(d) Eight cameras are employed to track the position of the hand of each player.

Different interaction patterns (also referred to in the text as interaction structure or topology) were5

implemented by asking each of the players to take into consideration the motion of only a designated6

subset of the other players. In order to physically implement these different interconnections, the field7

of view (FOV) of some players was reduced by means of ad hoc goggles. In particular, black duct tape8

was wrapped around such goggles in order to mask the peripheral FOV of the players on both sides.9

In addition, two cardboards, one of which was mobile, were appropriately glued on the goggles so as to10

restrict the FOV angle of each player by adjusting the position of the sliding cardboard (Supplementary11

Figs 1b and 1c). In such a way it was possible to implement different visual pairings among the players.12

• Complete graph (Figs 2a,e in the main text): participants sat in a circle facing each other without13

wearing the goggles. They were asked to keep their gaze focused on the middle of the circle in14

order to see the movements of all the others.15

• Ring graph (Figs 2b,f in the main text): participants sat in a circle facing each other while wearing16

the goggles. Each player was asked to see the hand motion of only two others, called partners.17

The goggles allowed participants to focus their gaze on the motion of their only two designated18

partners.19

• Path graph (Figs 2c,f in the main text): similar to the Ring graph configuration, but two partic-20

ipants, defined as external, were asked to see the hand motion of only one partner (not the same).21

This was realised by removing the visual coupling between any pair of participants in the Ring22

graph configuration.23

• Star graph (Figs 2d,g in the main text): all participants but one sat side by side facing the24

remaining participant while wearing the goggles. The former, defined as peripheral players, were25

asked to focus their gaze on the motion of the latter, defined as central player, who in turn was26

asked to see the hand motion of all the others.27

2 Data analysis28

In order to detect and analyse the three-dimensional position of the participants’ hands, eight infrared29

cameras (Nexus MX13 Vicon System ©) were located around the experimental room (Supplementary30

Fig. 1d). Despite each of them achieving full frame synchronisation up to 350Hz, data was recorded31

with a sampling frequency of 100Hz, with an estimated error of 0.01mm for each coordinate.32
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In order for the cameras to detect the position of each player’s hand, circular markers were attached33

on top of their index fingers; such positions were provided as triplets of (x, y, z) coordinates in a Cartesian34

frame of reference (Supplementary Fig. 2, black axes). In rare occasions (0.54% of the total number of35

data points for Group 1, never for Group 2) it was necessary to deprive these trajectories of possible36

undesired spikes caused by the cameras not being able to appropriately detect the position of the markers37

for the whole duration of the trial. As for Group 1, spikes were found in:38

• 1 trajectory of Player 2 in the Ring graph topology;39

• 2 trajectories of Player 2 in the Path graph topology;40

• 4 trajectories of Player 2 and 8 trajectories of Player 7 in the Star graph topology.41

After removing possible spikes, classical interpolation techniques were used to fill the gap previously42

occupied by the spikes themselves. Besides, since the players’ positions were provided as triplets of43

(x, y, z) coordinates but essentially the motion of each player could be described as a one-dimensional44

movement, it was necessary to perform principal component analysis (PCA) on the collected trajectories45

to find such direction, which turns out to correspond to the xPCA axis (Supplementary Fig. 2, in red).46

x
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Supplementary Figure 2: Cartesian frame of reference (x, y, z) and principal components
(xPCA, yPCA, zPCA). The axes x and y lie on a plane which is parallel to the ground, while the z axis
is orthogonal to it. The axes xPCA, yPCA and zPCA individuate the principal components: xPCA is the
direction where most of the movement takes place.

PCA was applied to the collected players’ trajectories defined by x and y, since the hand motion47

took place mostly in the (x, y) plane so that the z-coordinate could be neglected, obtaining the principal48

components xPCA and yPCA. Since the motion along the component yPCA turns out to be negligible49

compared to that along xPCA, it is possible to further assume that the motion of each player is one-50

dimensional (Supplementary Fig. 3). For this reason, after removing possible spikes, all the data51

collected in the experiments underwent PCA and then only the first principal component, namely xPCA,52

was considered for further analysis.53

3 Parameterisation and initialisation of the mathematical model54

Given the oscillatory nature of the task participants were required to perform, we used a network of het-55

erogeneous nonlinearly coupled Kuramoto oscillators as mathematical model to capture the experimental56

observations57

θ̇k = ωk +
c

N

N∑
h=1

akh sin (θh − θk) , k = 1, 2, . . . , N (1)

The values of the players’ natural oscillation frequencies ωk were estimated by considering the M58

eyes-closed trials (M = 16 for Group 1, and M = 10 for Group 2). Specifically, we evaluated the59
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Supplementary Figure 3: Pre-analysis for the hand motion of a given participant. (a) Original
trajectories defined by (x, y, z), respectively represented in blue, black and red, after recording the hand
motion of each participant. (b) Trajectories (x, y, z), respectively represented in blue, black and red,
after removing the spikes. (c) Trajectories (xPCA, yPCA), respectively represented in red and black, after
PCA analysis applied onto x and y. (d) One-dimensional trajectory, defined by xPCA (in red), used for
further analysis.

fundamental harmonic of each player’s motion from the Fourier transform of their position trajectory, thus60

obtaining M values for each participant. For our simulations, we assumed that each oscillation frequency61

ωk of Supplementary equation (1) was a time-varying quantity, randomly extracted from a Gaussian62

distribution whose mean µ(ωk) and standard deviation σ(ωk) are evaluated from the M aforementioned63

values collected for each human participant (see Supplementary Fig. 4 and Supplementary Tables 164

and 2 for more details). Indeed, the Kolmogorov-Smirnov test decision for the null hypothesis that the65

experimental data comes from a normal distribution was performed, and such test always failed to reject66

the null hypothesis at the 5% significance level.67

Supplementary Table 1: Mean value and standard deviation, over the total number of
eyes-closed trials, of the players’ natural oscillation frequencies – Group 1.

Player µ (ωk) σ (ωk)
1 4.2568 0.3941
2 4.3143 0.3492
3 4.6691 0.3999
4 4.2951 0.3543
5 4.3623 0.3406
6 2.9433 0.6609
7 4.2184 0.3314

The mean value of the frequencies is indicated with µ (ωk), while their standard deviation is indicated
with σ (ωk), ∀k ∈ [1, N ].
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Supplementary Figure 4: Probability distribution function of natural oscillation frequencies
ωk. The probability distribution functions evaluated from the M values of ωk obtained experimentally in
the eyes-closed trials are represented as black solid lines, whereas the fitted normal distributions used in
the numerical simulations are represented as red dashed lines. The null hypothesis that the experimental
data comes from a normal distribution was tested. Such hypothesis could never be rejected, as specified
by a p-value always greater than 5%. The top row refers to players of Group 1, while the bottom row to
those of Group 2, whereas each column refers to a different player in the group.

Supplementary Table 2: Mean value and standard deviation, over the total number of
eyes-closed trials, of the players’ natural oscillation frequencies – Group 2.

Player µ (ωk) σ (ωk)
1 2.7151 0.0741
2 2.9299 0.1525
3 4.0344 0.1035
4 2.1476 0.1023
5 3.9117 0.1085
6 3.7429 0.2309
7 3.2827 0.2911

The mean value of the frequencies is indicated with µ (ωk), while their standard deviation is indicated
with σ (ωk), ∀k ∈ [1, N ].

Furthermore, as confirmation of the fact that players in both groups exhibited time-varying natural68

oscillation frequencies ωk, we also computed the Hilbert transform of each position trajectory xk(t)69

collected in the M eyes-closed trials, then we evaluated its first time derivative, and finally observed that70

such derivative is a time-varying signal (Supplementary Figs 5 and 6). Note that the Hilbert and the71

Fourier transform methods lead to consistent results for the mean values and the standard deviations of72

the M average values of ωk over time, respectively for each kth player.73

By defining ω̃ := [µ (ω1) µ (ω2) ... µ (ω7)]T ∈ R7, it is possible to obtain the coefficient of variation:74

cv :=
σ (ω̃)

µ (ω̃)
(2)

which is equal to cv1 ' 0.13 for Group 1 and cv2 ' 0.21 for Group 2. Such coefficient of variations75
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quantify the overall dispersions of the natural oscillation frequencies of the players, respectively for the76

two groups. Analogously, it is possible to define the individual coefficient of variation:77

cv(ωk) :=
σ(ωk)

µ(ωk)
(3)

as a measure of the individual variability of the natural oscillation frequency of each kth player.78

As for the coupling strength c, we found that setting the same constant value for all the topologies79

under investigation captures well the experimental observations (see Supplementary Section 4 below).80

As for the initial values of the phases, since before starting any trial all the human players were asked to81

completely extend their arm so that the first movement would be pulling their arm back towards their82

torso from the same initial conditions, we set θk(0) = π
2 for all the nodes, trials and topologies.83
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Supplementary Figure 5: Natural oscillation frequencies ωk – Group 1. For all the M = 16
eyes-closed trials, the angular velocity ωk(t) of each kth player, estimated through the Hilbert transform
method, is a time-varying signal (a). Mean values (colour-coded bars) and standard deviations (black
vertical bars) of the M average values of ωk over time are represented for the Hilbert transform method
(b) and the Fourier transform method (c), respectively. Different colours refer to different players.
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Supplementary Figure 6: Natural oscillation frequencies ωk – Group 2. For all the M = 10
eyes-closed trials, the angular velocity ωk(t) of each kth player, estimated through the Hilbert transform
method, is a time-varying signal (a). Mean values (colour-coded bars) and standard deviations (black
vertical bars) of the M average values of ωk over time are represented for the Hilbert transform method
(b) and the Fourier transform method (c), respectively. Different colours refer to different players.
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4 Group synchronisation indices84

For each of the two groups we show the group synchronisation indices obtained experimentally and85

numerically by simulating the model proposed in Supplementary equation (1), with two different values86

of coupling strength c set as described in Methods of the main text (Supplementary Table 3 for Group87

1, and Supplementary Table 4 for Group 2).88

Supplementary Table 3: Mean value µ (ρg) and standard deviation σ (ρg) over time of the
group synchronisation index, averaged over the total number of eyes-open trials – Group
1, cv1 = 13%.

Topology Experiments Simulations, c = 1.25 Simulations, c = 4.40
Complete graph 0.9556± 0.0414 0.9462± 0.0772 0.9999± 0.0003
Ring graph 0.7952± 0.1532 0.8193± 0.1048 0.9575± 0.0740
Path graph 0.8661± 0.1173 0.7446± 0.1309 0.8302± 0.1630
Star graph 0.9285± 0.0753 0.8730± 0.0993 0.8255± 0.1663

This table shows µ (ρg)± σ (ρg) for both experimental and simulation results.

Supplementary Table 4: Mean value µ (ρg) and standard deviation σ (ρg) over time of the
group synchronisation index, averaged over the total number of eyes-open trials – Group
2, cv2 = 21%.

Topology Experiments Simulations, c = 4.40 Simulations, c = 1.25
Complete graph 0.9559± 0.0508 0.9999± 0.0005 0.9339± 0.0862
Ring graph 0.8358± 0.1130 0.8633± 0.1460 0.4799± 0.2155
Path graph 0.7534± 0.1766 0.7265± 0.2293 0.4756± 0.2061
Star graph 0.9759± 0.0274 0.8624± 0.1158 0.5450± 0.1749

This table shows µ (ρg)± σ (ρg) for both experimental and simulation results.

5 Dyadic synchronisation indices89

For both Group 1 and Group 2, we show mean values and standard deviations of ρdh,k
over the 10 eyes-90

open trials of each topology. In particular, if we denote with ρ
(l)
dh,k

the value of the dyadic synchronisation91

index ρdh,k
in the l-th trial of a certain topology, the mean value over the total number of trials is given92

by93

ρµ,hk =
1

10

10∑
l=1

ρ
(l)
dh,k

(4)

Similarly, the standard deviation is given by94

ρσ,hk =

√√√√ 1

10

10∑
l=1

(
ρ
(l)
dh,k
− ρµ,hk

)2
(5)

For both Group 1 and Group 2, mean values and standard deviations of the dyadic synchronisation95

index are shown for all the pairs in the four implemented topologies (Supplementary Fig. 7). For the96

sake of clarity, all values of ρµ,hk and ρσ,hk are expressed as percentiles (multiplied by 100). In most97

cases (99% for Group 1 and 94% for Group 2) the highest mean values of the dyadic synchronisation98

indices are observed for the visually connected dyads (represented in bold in Supplementary Fig. 7),99

meaning that players managed to maximise synchronisation with those they were visually coupled with.100

In particular:101

• Complete graph: all means ρµ,hk are higher than 0.82 for Group 1 and 0.86 for Group 2.102
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• Ring graph: for each player of Group 1 the highest values of ρµ,hk are obtained with respect to103

the two agents that player was asked to be topologically connected with, whereas for each player104

of Group 2 at least either of the two values of ρµ,hk related to her/his partners turns out to be the105

highest, and that related to the other partner is either the second highest (nodes 2, 4 and 7), the106

third highest (nodes 1, 3 and 6) or the fourth highest (node 5).107

• Path graph: remarks analogous to those of the Ring graph configuration can be made. The only108

exception is node 4 for Group 1, where ρµ,43 < ρµ,46 (however the two values are still close to109

each other, as ρµ,43 = ρµ,34 = 0.82 and ρµ,46 = ρµ,64 = 0.84), and node 3 for Group 2, where110

ρµ,34 = ρµ,43 = 0.78 is lower than ρµ,31 = ρµ,13 = 0.89. It is also worth pointing out how, for both111

groups, consistently with the implemented network of interactions, the mean values ρµ,17 = ρµ,71112

are lower than those corresponding to the Ring graph configuration, which is a consequence of113

removing the visual coupling between the external agents 1 and 7.114

• Star graph: for each peripheral player of both the groups, the highest values of ρµ,hk are obtained115

with respect to Player 3 (central player).116

As for the standard deviations ρσ,hk, in most cases (86% for Group 1 and 89% for Group 2) the117

lowest values are observed for the topologically connected dyads (represented in bold in Supplementary118

Fig. 7), which confirms the robustness of the interactions between visually coupled pairs.119
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Supplementary Figure 7: Mean values and standard deviations, over the total number of
eyes-open trials, of the dyadic synchronisation index obtained experimentally. Each row
corresponds to one of the four implemented interaction patterns: topology representation (left column),
indices for Group 1 (central column) and Group 2 (right column). Mean values and standard deviations
(as subscripts) of ρdh,k

are represented as percentiles for all the pairs of each topology and for both the
groups, with bold values referring to pairs who were visually coupled in the experiments (i.e., there exists
a link between the two agents in the respective topology representation).
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6 ANOVA tables120

Supplementary Table 5: 2(Group) X 4(Topology) Mixed ANOVA – individual synchroni-
sation indices ρk in the experiments

Independent variables Degrees of freedom F -value p-value η2

Group (1, 12) 0.053 0.821 0.004
Topology (1.648, 19.779) 29.447 ' 0 0.710
Group * Topology (1.648, 19.779) 3.908 0.044 0.246

Supplementary Table 6: Post-hoc pairwise comparisons – individual synchronisation indices
ρk in the experiments – Group 1

Topologies Complete graph Ring graph Path graph Star graph
Complete graph − ' 0 0.146 0.929
Ring graph ' 0 − 0.852 ' 0
Path graph 0.146 0.852 − 0.564
Star graph 0.929 ' 0 0.564 −

Supplementary Table 7: Post-hoc pairwise comparisons – individual synchronisation indices
ρk in the experiments – Group 2

Topologies Complete graph Ring graph Path graph Star graph
Complete graph − ' 0 0.002 1
Ring graph ' 0 − 0.792 ' 0
Path graph 0.002 0.792 − 0.001
Star graph 1 ' 0 0.001 −

Supplementary Table 8: 2(Group) X 4(Topology) Mixed ANOVA – individual synchroni-
sation indices ρk in the numerical simulations

Independent variables Degrees of freedom F -value p-value η2

Group (1, 12) 0.031 0.862 0.003
Topology (3, 36) 5.946 ' 0 0.331
Group * Topology (3, 36) 0.163 0.920 0.013
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Supplementary Table 9: Post-hoc pairwise comparisons – individual synchronisation indices
ρk in the numerical simulations

Topology (A) Topology (B) Mean Difference (A-B) p-value

Complete graph Ring graph 0.149 0.010
Path graph 0.254 0.017
Star graph 0.112 0.370

Ring graph Complete graph -0.149 0.010
Path graph 0.104 0.795
Star graph -0.038 1

Path graph Complete graph -0.254 0.017
Ring graph -0.104 0.795
Star graph -0.142 0.706

Star graph Complete graph -0.112 0.370
Ring graph 0.038 1
Path graph 0.142 0.706

Supplementary Table 10: 2(Data origin) X 4(Topology) Mixed ANOVA – individual syn-
chronisation indices ρk in experiments and numerical simulations – Group 1

Independent variables Degrees of freedom F -value p-value η2

Data origin (1, 12) 0.206 0.658 0.017
Topology (1.523, 18.272) 5.419 0.020 0.311
Data origin * Topology (1.523, 18.272) 0.893 0.400 0.069

Supplementary Table 11: Main effects of Topology on individual synchronisation indices ρk
in experiments and numerical simulations – Group 1

Topologies Complete graph Ring graph Path graph Star graph
Complete graph − 0.001 0.174 1.000
Ring graph 0.001 − 1.000 0.003
Path graph 0.174 1.000 − 0.636
Star graph 1.000 0.003 0.636 −

Supplementary Table 12: 2(Data origin) X 4(Topology) Mixed ANOVA – individual syn-
chronisation indices ρk in experiments and numerical simulations – Group 2

Independent variables Degrees of freedom F -value p-value η2

Data origin (1, 12) 0.619 0.447 0.049
Topology (1.875, 22.504) 12.406 ' 0 0.508
Data origin * Topology (1.875, 22.504) 1.606 0.223 0.118

Supplementary Table 13: Main effects of Topology on individual synchronisation indices ρk
in experiments and numerical simulations – Group 2

Topologies Complete graph Ring graph Path graph Star graph
Complete graph − ' 0 ' 0 0.926
Ring graph ' 0 − 0.390 0.352
Path graph ' 0 0.390 − 0.069
Star graph 0.926 0.352 0.069 −
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7 Group synchronisation trend over time121

Supplementary Fig. 8 shows the trend over time of the group synchronisation index ρg(t) observed in122

the experiments, as well as in the numerical simulations, for all the eyes-open trials and topologies of123

Group 1, whereas Supplementary Fig. 9 shows that of Group 2.124

It is possible to appreciate that the proposed mathematical model succeeds in replicating the feature125

observed experimentally that there is no clear shift between transient (low time-varying) and steady state126

(high constant) values for the group synchronisation index ρg(t), and that more noticeable oscillations127

are observed in the Ring and Path graphs. Furthermore, note how both in the experiments and in the128

simulations:129

• for Group 1 (Supplementary Fig. 8), ρg(t) never achieves a constant value at steady state but130

exhibits persistent oscillations (less noticeable in the Complete graph);131

• for Group 2 (Supplementary Fig. 9), ρg(t) exhibits higher oscillations in Ring and Path graphs,132

whereas lower peaks are observed in the Star graph and almost constant steady state values in the133

Complete graph.134
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Supplementary Figure 8: Trend over time of group synchronisation index ρg(t) for each
trial and topology, both for experiments and numerical simulations – Group 1. (a) Complete
graph, (b) Ring graph, (c) Path graph, (d) Start Graph. For each topology, the ten panels on the left
show the trend of ρg(t) observed experimentally in the ten eyes-open trials, respectively, whereas the
panel on the right shows a typical trend of ρg(t) obtained numerically for that topology.
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Supplementary Figure 9: Trend over time of group synchronisation index ρg(t) for each
trial and topology, both for experiments and numerical simulations – Group 2. (a) Complete
graph, (b) Ring graph, (c) Path graph, (d) Start Graph. For each topology, the ten panels on the left
show the trend of ρg(t) observed experimentally in the ten eyes-open trials, respectively, whereas the
panel on the right shows a typical trend of ρg(t) obtained numerically for that topology.
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8 Additional model predictions135

In order to address the issues raised in Remark 1 of the main text, in this section we show further results136

obtained numerically by simulating a network of heterogeneous Kuramoto oscillators. Specifically, the137

proposed model predicts that:138

1. unlike the intra-individual variability of oscillation frequencies σ(ωk), the overall dispersion cv has139

a significant effect on the coordination levels of the group members;140

2. the location of the link getting removed from a Ring graph to form a Path graph does not have a141

significant effect on the coordination levels of its members;142

3. different selections of the central node in a Star graph do not have a significant effect on the143

coordination levels of its members.144

8.1 Effects of overall dispersion and intra-individual variability of the natural145

oscillation frequencies146

Firstly, we considered four different groups of N = 7 heterogeneous Kuramoto oscillators. In order to147

isolate the effects of the overall dispersion cv, the individual standard deviations of the natural oscillation148

frequencies were not varied across nodes and groups (σ(ωk) = 0.25 ∀k ∈ [1, N ]), and all the agents in each149

of the four groups were connected over a Complete graph topology (so that every node is connected to all150

the others, and no effects of particular topological structures or symmetries are expected). Therefore, the151

groups differed only for the value of their overall dispersion, respectively equal to cv1 = 8%, cv2 = 17%,152

cv3 = 41% and cv4 = 62%. For each group, 10 trials of duration T = 30s were run, with c = 1 and initial153

conditions equal to θk(0) = π
2 ∀k ∈ [1, N ].154
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Supplementary Figure 10: Individual synchronisation indices ρk as a function of overall
dispersion cv and intra-individual variability σ(ωk) of the natural oscillation frequencies.
Individual synchronisation indices are shown for the four groups with equal σ(ωk) = 0.25 and different
cv (a), as well as for those with equal cv = 17% and different σ(ωk) (b). Mean values over the total
number of nodes are represented by circles, and standard deviations by error bars.

Supplementary Fig. 10a shows the values of the individual synchronisation indices ρk as a function155

of the overall dispersion cv. A One-way ANOVA using the Welch’s test revealed a statistically signif-156

icant effect of cv (F (3, 10) = 109.345, p < 0.001, η2 = 0.896). A post-hoc multiple comparison using157

the Games-Howell test is detailed in Supplementary Table 14, showing that the differences in ρk are158

statistically significant between all the groups (p < 0.05).159

Secondly, we considered four other different groups of N = 7 heterogeneous Kuramoto oscillators. In160

order to isolate the effects of the intra-individual variability of the natural oscillation frequencies, the161

overall frequency dispersion was not varied over the groups (cv = 17%), whereas σ(ωk) was varied across162

them (σ(ωk) = 0.15 for each kth node of the first group, σ(ωk) = 0.25 for the second group, σ(ωk) = 0.35163

for the third group, σ(ωk) = 0.45 for the fourth group). The other parameters were set as in previous164

case.165
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Supplementary Table 14: Post-hoc multiple comparisons – individual synchronisation in-
dices ρk – effects of cv

cv 8% 17% 41% 62%
8% − 0.014 ' 0 ' 0
17% 0.014 − 0.001 ' 0
41% ' 0 0.001 − 0.031
62% ' 0 ' 0 0.031 −

Supplementary Fig. 10b shows the values of the individual synchronisation indices ρk as a function of166

the intra-individual variability σ(ωk) of the natural oscillation frequencies. A One-way ANOVA revealed167

no statistically significant effect of σ(ωk) (F (3, 24) = 0.170, p = 0.916, η2 = 0.019).168

Overall, these results suggest that, unlike the intra-individual variability of oscillation frequencies169

σ(ωk), the overall dispersion cv has a significant effect on the coordination levels of the group members.170

8.2 Location of the link getting removed from a Ring graph171

We then considered a network of N = 7 heterogeneous Kuramoto oscillators connected over a Path graph172

topology (Fig. 2c in the main text). Seven scenarios were considered, where each scenario differs from173

the others in the Ring graph connection (Fig. 2b in the main text) getting removed to form the Path174

graph itself. Specifically, in the first scenario the connection between nodes 1 and 2 was removed, in the175

second scenario that between nodes 2 and 3, up to the seventh scenario where the connection between176

nodes 7 and 1 was removed. In order to isolate the effects of such choice on the coordination levels177

ρk, the group dispersion was not varied over the different scenarios (cv = 17%), and neither were the178

individual variabilities across all the nodes (σ(ωk) = 0.25 ∀k ∈ [1, N ]). The other parameters were set179

as in the previous cases.180

A One-way ANOVA revealed that the location of the link getting removed from a Ring graph to181

form a Path graph, and hence the difference between the frequencies of the nodes getting disconnected,182

does not have a significant effect on the coordination levels of its members (F (6, 42) = 0.535, p = 0.778,183

η2 = 0.071). Mean values and standard deviations of the individual synchronisation index ρk obtained184

in the seven different scenarios here considered are shown in Supplementary Fig. 11.185
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Supplementary Figure 11: Individual synchronisation indices ρk as a function of the link
getting removed in a Ring graph topology to form a Path Graph. Mean values over the total
number of nodes are represented by circles, and standard deviations by error bars.
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8.3 Selection of the central node in a Star graph186

We finally considered a network of N = 7 heterogeneous Kuramoto oscillators connected over a Star187

graph topology (Fig. 2d in the main text). Seven scenarios were considered, where each scenario differs188

from the others in the selection of the central node. Specifically, in the first scenario the central node189

was set to be node 1, in the second scenario node 2, up to the seventh scenario where the central node190

was set to be node 7. In order to isolate the effects of such choice on the coordination levels ρk, the191

group dispersion was not varied over the different scenarios (cv = 17%), and neither were the individual192

variabilities across all the nodes (σ(ωk) = 0.25 ∀k ∈ [1, N ]). The other parameters were set as in the193

previous cases.194

A One-way ANOVA using the Welch’s test revealed that the differences in the coordination levels195

obtained for different choices of the central node in a Star graph topology are not statistically significant196

(F (6, 18.367) = 0.463, p = 0.827, η2 = 0.070). Mean values and standard deviations of the individual197

synchronisation index ρk obtained in the seven different scenarios here considered are shown in Supple-198

mentary Fig. 12.199
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Supplementary Figure 12: Individual synchronisation indices ρk as a function of the central
node selection in a Star graph topology. Mean values over the total number of nodes are represented
by circles, and standard deviations by error bars.
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