Persistent infections in immunocompromised hosts are rarely sources of new pathogen variants

Supplementary Material

John-Sebastian Eden^{1,2}, Rebecca H. Chisholm^{3,4}, Rowena A. Bull⁵, Peter A. White³, Edward C. Holmes¹, Mark M. Tanaka^{3,4}

In this supplementary material we provide

- A. Single-outbreak (SIR) model for Norovirus;
- B. Extended numerical results of the SIRS model for Norovirus;
- C. Taylor series approximation of the population-level relative substitution rate K_c for $c \ll 1$;
- D. Extended numerical results of the SIRS model for Norovirus.
- E. Extended results of the sensitivity analysis of the SIRS model and SIR model for Norovirus.

A Single-outbreak model for Norovirus

In this model we assume that the outbreak occurs on a time scale much faster than the loss of immunity so that $\theta = \theta_c = 0$. In this case the dynamics are governed by the following system of equations,

$$\frac{dI}{dt} = \frac{\beta S}{N} \left(I + I_c (1 - q) \right) - \gamma I,$$

$$\frac{dR}{dt} = \gamma I,$$

$$\frac{dI_c}{dt} = \frac{\beta_c S_c}{N} (1 - q) \left(I + I_c (1 - q) \right) - \gamma_c I_c,$$

$$\frac{dR_c}{dt} = \gamma_c I_c.$$
(A.1)

This model can be rescaled to,

$$\frac{di}{d\tau} = \frac{\beta(1-c)}{\gamma} (1-i-r) \left(i + i_c \frac{(1-q)c}{1-c} \right) - i,$$

$$\frac{dr}{d\tau} = i,$$

$$\frac{di_c}{d\tau} = \frac{\gamma_c}{\gamma} \left(\frac{\beta_c c}{\gamma_c} (1-q)^2 (1-i_c - r_c) \left(i \frac{1-c}{c(1-q)} + i_c \right) - i_c \right),$$

$$\frac{dr_c}{d\tau} = \frac{\gamma_c}{\gamma} i_c.$$
(A.2)

Here, I = i(1-c)N, R = r(1-c)N, S = (1-i-r)(1-c)N, $I_c = i_c c N$, $R_c = r_c c N$, $S_c = (1-i_c-r_c)c N$, $t = \tau/\gamma$.

¹ Marie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, School of Biological Sciences and Sydney Medical School, The University of Sydney, Sydney 2006, Australia

² Centre for Virus Research, Westmead Millennium Institute, Westmead 2145, Australia

³ School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney 2052, Australia

⁴ Evolution & Ecology Research Centre, University of New South Wales, Sydney 2052, Australia

⁵ Systems Medicine, Inflammation and Infection Research Centre, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney 2052, Australia

B Calculation of R_0 of the SIRS model for Norovirus

Basic reproductive number. Consider the SIRS model for Norovirus

$$\frac{dI}{dt} = \frac{\beta S}{N} \left(I + I_c (1 - q) \right) - \gamma I,$$

$$\frac{dR}{dt} = \gamma I - \theta R,$$

$$\frac{dI_c}{dt} = \frac{\beta_c S_c}{N} (1 - q) \left(I + I_c (1 - q) \right) - \gamma_c I_c,$$

$$\frac{dR_c}{dt} = \gamma_c I_c - \theta_c R_c.$$
(B.1)

The next generation method [1] is used to derive the basic reproductive number \mathcal{R}_0 . This technique is suitable for models where there are more than one class of infectives. Following the method outlined in [1], we define F to be the rate of appearance of new infections in the general population, and F_c to be the rate of appearance of new infections in the immunocompromised population when the population is wholly susceptible so that

$$F = \beta(1 - c)(I + (1 - q)I_c)$$

$$F_c = \beta_c c(1 - q)(I + (1 - q)I_c).$$

We also define

$$V := V^- - V^+,$$

where V^+ is the rate of transfer of infections into the general population by all other means and V^- is the rate of transfer of infections out of the general population. Similarly, we define

$$V_c := V_c^- - V_c^+,$$

where V_c^+ is the rate of transfer of infections into the immunocompromised population by all other means and V_c^- is the rate of transfer of infections out of the immunocompromised population so that

$$V = \gamma I$$
$$V_c = \gamma_c I_c.$$

We form the next generation matrix operator \mathcal{FV}^{-1} from the matrices of partial derivatives of F, F_c , V and V_c :

$$\mathcal{F} = \begin{bmatrix} \partial_I F & \partial_{I_c} F \\ \partial_I F_c & \partial_{I_c} F_c \end{bmatrix} = \begin{bmatrix} \beta(1-c) & \beta(1-q)(1-c) \\ c\beta_c(1-q) & c\beta_c(1-q)^2 \end{bmatrix},$$

$$\mathcal{V} = \begin{bmatrix} \partial_I V & \partial_{I_c} V \\ \partial_I V_c & \partial_{I_c} V_c \end{bmatrix} = \begin{bmatrix} \gamma & 0 \\ 0 & \gamma_c \end{bmatrix},$$

and then calculate \mathcal{R}_0 as the largest eigenvalue of the matrix \mathcal{FV}^{-1} . We find that

$$\mathcal{R}_0 = \frac{(1-c)\beta}{\gamma} + \frac{c(1-q)^2 \beta_c}{\gamma_c}.$$
 (B.2)

For $c \ll 1$, $\mathcal{R}_0 \approx \frac{\beta}{\gamma}$.

C Taylor series approximation of the population-level relative substitution rate at endemic equilibrium K_c

Consider the system of equations (B.1). We set each equation in (B.1) to zero to solve for the endemic equilibrium solutions $(\hat{I}, \hat{R}, \hat{I}_c, \hat{R}_c)$ such that $\hat{I} > 0$ and $\hat{I}_c > 0$. We do not reproduce the analytical expressions of these solutions here due to their size. However, they can be easily obtained using Mathematica.

We are interested in the population-level relative substitution rate at endemic equilibrium K_c which depends on these equilibrium solution according to

$$K_c = \left(\frac{k_c}{k}\right) \left(\frac{\hat{I}_c}{\hat{I}}\right). \tag{C.1}$$

The proportion of immunocompromised hosts c is assumed to be small. Therefore we seek a Taylor series expansion of K_c around the point c = 0 to approximate the solution for $c \ll 1$. Using Mathematica it can be shown that

$$K_{c} = \left(\frac{k_{c}}{k}\right) \left(\frac{\hat{I}_{c}}{\hat{I}}\right) = \left(\frac{k_{c}}{k}\right) \left\{\frac{c\beta\beta_{c}\theta_{c}(1-q)(\gamma+\theta)}{(\theta_{c}+\gamma_{c})\beta_{c}(1-q)\theta(\beta-\gamma)+\beta\gamma_{c}\theta_{c}(\gamma+\theta)} + O(c^{2})\right\}$$

$$= c\left(\frac{k_{c}}{k}\right) \left(\left(1-\frac{\gamma}{\beta}\right) \left(\frac{\frac{\gamma_{c}}{\theta_{c}}+1}{\frac{\gamma}{\theta}+1} + \frac{\gamma_{c}}{\beta_{c}(1-q)}\right)\right)^{-1} + O(c^{2}). \tag{C.2}$$

Therefore, the linear approximation for K_c around c=0 is

$$K_c \approx c \left(\frac{k_c}{k}\right) \left(\left(1 - \frac{\gamma}{\beta}\right) \left(\frac{\frac{\gamma_c}{\theta_c} + 1}{\frac{\gamma}{\theta} + 1} + \frac{\gamma_c}{\beta_c(1 - q)}\right)\right)^{-1}$$
 (C.3)

This approximation and the full numerical solution of K_c as a function of c are shown in Figure C.1 for one set of parameter values. The linear approximation is clearly close to the full solution for values of the proportion of immunocompromised hosts c up to around 0.03.

From Equation (C.3), it is clear that for small c, K_c increases when either $\beta_c(1-q)/\gamma_c$ or θ_c/γ_c increase, and K_c decreases when either β/γ or θ/γ increase. Hence, the population-level relative substitution rate at endemic equilibrium will increase if the mean number of secondary infections caused by an infective immunocompromised host $(\beta_c(1-q)/\gamma_c)$ increases, the infection duration of infective immunocompromised hosts $(1/\gamma_c)$ increases, the duration of immunity for immunocompromised hosts $(1/\theta_c)$ decreases, the mean number of secondary infections caused by an infective general host (β/γ) decreases, the infection duration of infective general hosts $(1/\gamma)$ decreases, or the duration of immunity for general hosts $(1/\theta)$ increases.

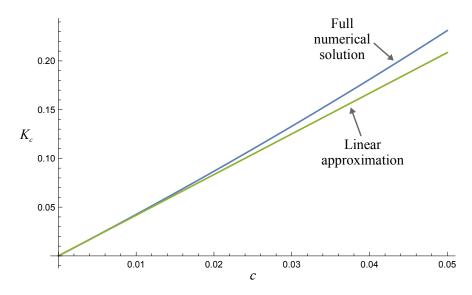


Figure C.1: The population-level relative substitution rate at endemic equilibrium K_c as a function of the proportion of immunocompromised hosts c. The blue line indicates the full numerical solution for K_c , and the green line is the linear approximation of K_c for $c \ll 1$. Here, $k_c/k = 1$, $\beta = 1.64/7$, $\beta_c = 1.2\beta$, q = 0.5, N = 1000, $\gamma = 1/7$, $\gamma_c = 1/31$, $\theta = 1/(5 \times 365)$, $\theta_c = 1/(0.5 \times 365)$.

D Extended numerical results of the SIRS model for Norovirus.

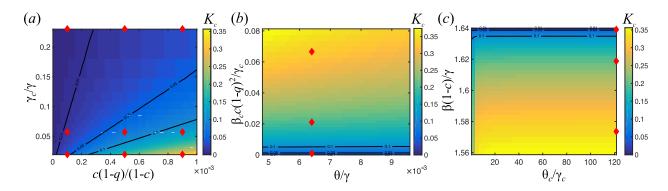


Figure D.1: Extended numerical results for SIRS model for norovirus. The relative substitution rate (at the population level) in the immunocompromised population versus the general population K_c when $k_c/k = 5$ and $N = 10^6$. (a) $R_0 = 1.64$, $1/\theta_c = 3$ days, $1/\gamma = 7$ days, c = 0.001, $1/\theta = 3$ years, k = 0.003, $1/\gamma_c \in [1/12, 1]$ years, $q \in [0, 1]$; (b) $R_0 = 1.64$, $1/\gamma_c = 12$ months, $1/\gamma = 7$ days, c = 0.001, $1/\theta_c = 3$ days, k = 0.003, $1/\theta_c \in [2, 4]$ years, $q \in [0, 1]$; (c) $R_0 = 1.64$, $1/\gamma_c = 12$ months, $1/\gamma = 7$ days, c = 0.001, $1/\theta = 3$ years, k = 0.003, $1/\theta_c \in [3$ days, 3 years], $q \in [0, 1]$. Pink diamonds represent the best estimates of the parameters in the parameter space considered. The black lines correspond to the contours $K_c = 0.1, 0.05, 0.01$.

Extended results of the sensitivity analysis of the SIRS and SIR model for Norovirus.

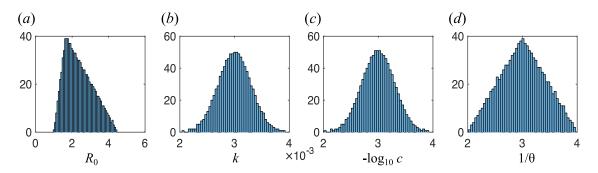


Figure E.1: Parameter sample distributions used in the sensitivity analysis using the Latin Hypercubic Sampling method. (a) The basic reproduction number (R_0) was sampled from a triangular distribution with mode 1.64, lower bound 1 and upper bound 4.5; (b) the general population substitution rate (k) was sampled from a normal distribution with mean 0.003 and standard deviation 0.0003; (c) the proportion of the population immunocompromised (c) was sampled from a log normal distribution of base 10 such that $-\log_{10} c \sim \mathcal{N}(3,0.3)$; (d) the duration of immunity for the general population $(1/\theta)$ was sampled from a triangular distribution with mode 3, lower bound 2 and upper bound 4.

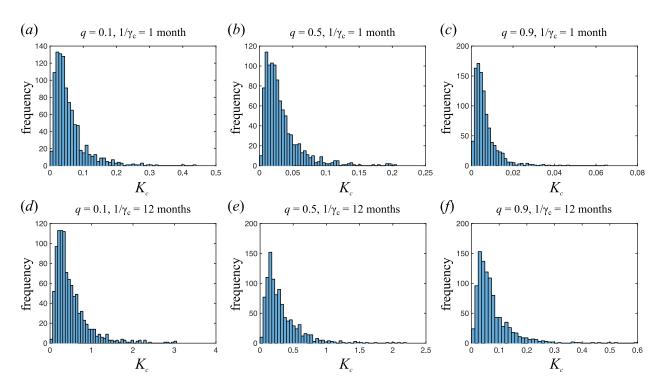


Figure E.2: Frequency distribution of the relative substitution rate (at the population level) in the immunocompromised population versus the general population K_c from Latin Hypercubic Sampling of the parameters space. (a)–(c) $1/\gamma_c = 1$ month; (d)–(f) $1/\gamma_c = 12$ months. (a),(d) q = 0.1; (b),(e) q = 0.5; (c),(f) q = 0.9. In all cases $1/\gamma = 7$ days, $N = 10^6$, $1/\theta_c = 3$ days, $k_c/k = 5$.

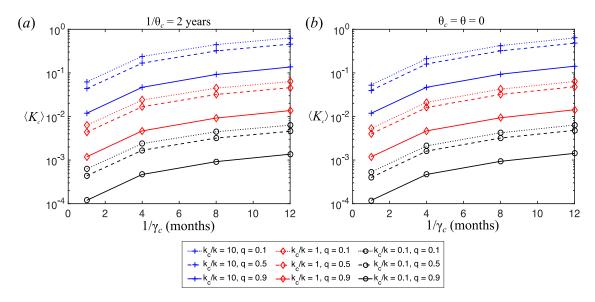


Figure E.3: The mean relative substitution rate (at the population level) in the immunocompromised population versus the general population $\langle K_c \rangle$ from Latin Hypercubic Sampling of 1000 points in the parameters space $(R_0, k, c, 1/\theta)$ as a function of the duration of infection in immunocompromised hosts $1/\gamma_c$, for a range of values of the quarantine parameter q, and the ratio of substitution rates (at the individual host level) k_c/k . (a) SIRS model with $1/\theta_c = 2$ years and $N = 10^6$; (b) SIR model $(\theta_c = \theta = 0)$ with $N = 10^4$. Blue lines with square markers indicate $k_c/k = 10$, red lines with diamond markers $k_c/k = 1$, and black lines with circle markers $k_c/k = 0.1$. Dotted lines indicate q = 0.1, dashed lines q = 0.5 and solid lines q = 0.9. Here, $1/\gamma = 7$ days.

Figure E.3 reveals that the SIRS model and SIR model behave similarly when the duration of immunity for the immunocompromised population is large.

References

[1] Heffernan J, Smith R, Wahl L (2005) Perspectives on the basic reproductive ratio. *J R Soc Interface*. 2:281–293.