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I. THE DICTIONARY TRAINING ALGORITHM 

We utilized Zeyde’s algorithm [1] to train the HR and LR 
dictionary pairs in this paper. To this end, we first trained the 
LR dictionary using K-SVD (K-Singular Value 
Decomposition) [2] algorithm based on LR training examples, 
and obtained the sparse representation. Then the HR dictionary 
was learned based on the sparse representation and HR 
training examples. 

1) Low resolution dictionary training 
LR dictionary training is formulated as: 
 

min
஽ೊ

‖்ܻ − ௒‖ଶߙ௒ܦ s. t. ฮߙ௣
௒ฮ

଴
≤ ,ݏ ݌ ∀ = 1,2, … , ܲ   (S1) 

 

where Y் = ,ଵݕ] ,ଶݕ … ,  ௉] is the training LR feature vectorsݕ
of small patches; ߙ௒ = ଵߙ]

௒, ଶߙ
௒, … , ௉ߙ

௒] , ฮߙ௣
௒ฮ

଴
≤ ݏ   means 

the number of non-zeros in vector ߙ௣
௒ is smaller than s, and P 

is the total number of training patch vectors. 
We solve this optimization problem by iteratively updating 

the dictionary DY and sparse coefficient ߙ௒. In the dictionary 
update stage, we use the K-SVD algorithm, which generalized 
from K-means clustering; and use the OMP (orthogonal 
matching pursuit) algorithm in the sparse representation stage 
[3], [4]. The dictionary training algorithm is performed by the 
following pseudo-code: 

 
Initialize the dictionary: 

௒ܦ
଴ ← Randomly select W feature vectors from training set; 

t ← 1; 
T← The maximum iterations; 

WHILE t < ܶ 
 Sparse coding stage: 

FOR each patch ݕ௣ 

௣ߙ
௒ ←Compute the sparse representation by OMP algorithm based on 

dictionary ܦ௒
௧ିଵ. 

ENDFOR 

 Dictionary updating stage: 

FOR each atom መ݀
௪of ܦ௒

௧ିଵ,ݓ = 1,2, … , ܹ; 

௪ܧ ← ܻ − ∑ ௝்݀ߙ
௝

௝ஷ௪ ்ߙ ,
௝
 is the jth row of ߙ௒; 

߱௠ ←The group of indices pointing to examples {ݕ௣} that use the 

atom መ݀
௠. 

௠ߙ
ோ ← Restrict ்ߙ

௠  by choosing only the columns corresponding 

to߱௠; 

௠ܧ
ோ ← Restrict ܧ௠  by choosing only the columns corresponding 

to߱௠; 

ܷ, ∆, ܸ ← Appling SVD (Singular Value Decomposition) to ܧ௠
ோ; 

መ݀
௠ ← Choose the first column of ܷ; 

௠ߙ
ோ ← Multiply the first column of ܸ by∆(1,1); 

ENDFOR 

t ← t + 1; 
ENDWHILE 

2) High resolution dictionary training 
After LR dictionary training stage, a corresponding HR 

dictionary is constructed, such that HR and LR dictionaries 
share the same sparse coefficient, and connect the HR and LR 
patches. Recall that our intention is to recover the HR patches 
by approximating it as being ݔ௣ = ௣ߙ௑ܦ

௑, ߙ௣
௑ ≈ ௣ߙ

௒. Thus, the 
corresponding HR dictionary is defined to be the one that 
minimizes the mean approximation error: 

 

௑ܦ = ݃ݎܽ min
஽೉

෍ฮݔ௣ − ௣ߙ௑ܦ
௑ฮ

ଶ

ଶ

௣

= ݃ݎܽ min
஽೉

‖்ܺ − ௑‖ଶߙ௑ܦ
ଶ 

(S2) 
 

where ்ܺ = ,ଵݔ] ,ଶݔ … . ,  ௉] is the training HR feature vectorݔ
set corresponding to the LR training examples YT. The solution 
of (S2) is given by the following Pseudo-Inverse expression [1] 
(given that ߙ௑ has full row rank): 

 

௑ܦ = ߙ)்ܺ ௑)ା = ߙ)்ܺ ௑)்[ߙ௑(ߙ௑)்]ିଵ           (S3) 
 

So based on the sparse representation vector ߙ ௑  and the 
corresponding HR training examples, the HR dictionary is 
obtained. 
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II. EVALUATION METRICS 

To quantitatively and qualitatively evaluate the 
performance of the proposed method over different MR data 
sets, we introduce 4 different methods in this section for two 
scenarios: 
1) Image with ground truth 

In the experiments, if we have an original HR image, 
considered as the ground truth, comparing the reconstruction 
with the original image is a good way to evaluate the results. 
The following two performance metrics are calculated when 
the ground truth is available: 
Peak Signal-to-Noise Ratio (PSNR) is defined as: 

 

PSNR( ௢ܺ , ܺ௛) = 10 ∙ logଵ଴( ௗ

୑ୗ୉(௑೚,௑೓)
)        (S4) 

 

where ܧܵܯ(ܺ௢ , ܺ௛) stands for means square error, quantifies 
the pixel intensity difference between the original HR image 

௢ܺ  and the corresponding SR reconstruction ܺ௛ , using 

௢ܺ)ܧܵܯ , ܺ௛) =
ଵ

|ఆ|
∑ หݔ௢

௞ − ௛ݔ
௞ห

ଶ
௞∈ఆ ௢ݔ ,

௞ and ݔ௛
௞ are the image 

intensity at location k, ݀ is the dynamic range of the intensity 
value, i.e. ݀ = (௢ܺ)ݔܽ݉ − ݉݅݊ (ܺ௢) . Typically, the PSNR 
values are between 20 dB and 50 dB. A higher value of PSNR 
indicates a better performance of the reconstruction method. 
Structural Similarity Image Metric (SSIM) [5]: It measures 
the similarity between two images, with a definition that is 
more consistent with the human visual perception of image 
quality. Under the assumption that human visual perception is 
highly adapted to extracting structural information from a 
scene, SSIM is formulated as: 

 

SSIM( ௢ܺ , ܺ௛) =
(ଶఓ೚ఓ೓ା஼భ)(ଶఙ೚೓ା஼మ)

(ఓ೚
మାఓ೓

మା஼భ)(ఙ೚
మାఙ೓

మା஼మ)
      (S5) 

 

where ߤ௢ and ߤ௛ are the mean intensity of images ܺ௢ and ܺ௛, 
respectively; ߪ௢ and ߪ௛  are the standard deviation of images 

௢ܺ and ܺ௛, which are estimates of the signal contrast; ߪ௢௛  is 
the covariance of ܺ௢  and ܺ௛ ଵܥ , = ଶܥ ଶ and(ܮଵܭ) = ଶ(ܮଶܭ) , 
ଵܭ ≪ 1 and ܭଶ ≪ 1 are small constants and L is the dynamic 
range of the intensity values. In this paper, we use ܭଵ = 0.01 
and ܭଶ = 0.03. SSIM values are between 0 and 1, where a 
higher value indicates the better reconstruction results. 
2) Images without ground truth 

 In reality, for example in clinical data, no original HR 
reference image is available, so no ground truth image is 
available for the evaluation of results. Alternative methods to 
evaluate the results are as follows: 
Visual inspection: visual assessment of images is also a 
precious method to compare and judge the benefit of proposed 
methods; however, it is obviously a subjective method, and 
also may not be easy when large datasets should be evaluated 
and compared. In this paper, we display several slices selected 
from the reconstructed 3D MR image and evaluate the slices 
by viewing the image details. 
Intensity profile: the intensity profile of an image is the set of 
intensity values taken from regularly spaced points along a line 
segment or multiline path in an image. The fundamental 

problem of SR reconstruction can be stated as restoring some 
high-frequency information (like edges) that has been lost 
during the acquisition process. An effective SR reconstruction 
technique should be able to recover these high-frequencies. 
Intensity profile can show intensity value changes at the 
interfaces between different tissues, thus may be used as a 
surrogate measure of how edge features appear and are 
distinguished in the image. We also evaluate the 
reconstruction results of our clinical MR experiments based on 
image intensity profiles in this paper. 

III. EXPERIMENTS ON KNEE MR SCANS 

1) Influence of slice thickness 
To study the effect of slice thickness on the proposed 

method, we respectively produced three orthogonal LR 
down-sampled MR images with slice thickness of 2-7mm 
from C001 clinical T2w knee MR image. Then we 
reconstructed T2w knee HR volume with voxel size 
0.625mm×0.625mm×0.625mm  from three simulated LR 
orthogonal knee MR images. Table SI shows the PSNR and 
SSIM values of the reconstruction results. The proposed 
algorithm generated the best results in terms of both PSNR and 
SSIM values. For example, the PSNR/SSIM values obtained 
from the proposed method were 47.26dB/0.996 in 2 mm, while 
the results of the other two algorithms are 37.09dB/0.974 and 
43.56dB/0.994 respectively. The PSNR/SSIM values dropped 
as the slice thickness increased. For example, the PSNR/SSIM 
value of the reconstructed C001 knee MR image was 
47.26dB/0.996 when the slice thickness was 2mm, while the 
PSNR/SSIM value dropped to 40.78dB/0.986 when slice 
thickness was 3mm. 

2) Influence of noise power 
To evaluate the impact of the noise in the proposed 

algorithm, three orthogonal LR T2w knee MR scans of C004 
with 3mm slice thickness were respectively produced. 
Different percentage noise (1%, 3%, 5%, 7%, and 9%) levels 
were used to investigate the noise influence. Table SII presents 
the reconstruction accuracy values in terms of PSNR and 
SSIM on C004 T2w knee MR image. The proposed method 
obtained the best results in most cases. But when the noise 
power was 9%, the proposed method got worse SSIM value 
than Cub-Ave algorithm. In Table SII, the PSNR/SSIM values 
dropped as the noise level increased. For example, the 
PSNR/SSIM value was 41.52dB/0.968 when the noise power 
was 1%, while the PSNR/SSIM value was 36.85dB/0.902 
when the noise power was 3%. 

IV. THE COMPUTATIONAL TIME OF THE PROPOSED 

ALGORITHM BASED ON DIFFERENT NUMBER INPUTS 

In fact, the quality of the reconstructed image improves as a 
larger number of LR MR images are fused. But the 
computational time also increases proportional with the 
number of LR MR images. Table SIII shows the 
computational time of the different scenarios, including the 
proposed method based on single, two orthogonal and three 
orthogonal simulated T2w 3D-MR brain images with 2-7mm 
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slice thickness. When the slice thickness was 3mm, the 
average computational time of single-frame SR reconstruction 
was 3.59 min, the computational time of SR reconstruction 
using two scans was 7.28 min, and the computational time of 

SR reconstruction using three orthogonal scans was 10.79 min. 
As the slice thickness increased, the computational time 
decreased.

 
Table SI 

Accuracy of reconstructed images under the influence of slice thickness on C001 T2w knee MR image 
Slice thickness (mm) 2 3 4 5 6 7 

Cub-Ave PSNR (dB) 37.09 33.65 31.59 30.19 28.90 28.11 
SSIM 0.974 0.945 0.918 0.892 0.865 0.845 

Cub-Wav 
PSNR (dB) 43.56 35.03 32.64 30.92 29.48 28.58 

SSIM 0.994 0.962 0.939 0.912 0.886 0.865 
Proposed 
Method 

PSNR (dB) 47.26 40.78 37.81 35.76 34.15 33.04 
SSIM 0.996 0.986 0.976 0.963 0.950 0.938 

 
Table SII 

Accuracy of reconstructed images under the influence of noise power on clinical C004 T2w knee MR image 
Noise power 0% 1% 3% 5% 7% 9% 

Cub-Ave 
PSNR (dB) 39.76 38.69 35.89 34.41 33.46 32.71 

SSIM 0.953 0.947 0.888 0.848 0.817 0.788 

Cub-Wav 
PSNR (dB) 41.05 39.32 36.08 34.48 33.48 32.70 

SSIM 0.967 0.953 0.891 0.849 0.816 0.785 
Proposed 
Method 

PSNR (dB) 46.87 41.52 36.85 34.84 33.67 32.79 
SSIM 0.993 0.968 0.902 0.855 0.819 0.785 

 
Table SIII 

The computational time of the proposed algorithm based on single, two orthogonal and three orthogonal 3D-MR simulated brain images (in minutes).  
Slice thickness (mm)  2 3 4 5 6 7 

Single MR Image 

Training time 7.11 3.10 1.83 1.05 0.78 0.55 

Reconstruction time 0.90 0.49 0.39 0.30 0.26 0.22 

Total time 8.01 3.59 2.22 1.35 1.04 0.77 

Two orthogonal MR 

image 

Training time 14.32 6.29 3.81 2.21 1.47 1.06 

Reconstruction time 1.75 0.99 0.74 0.66 0.51 0.47 

Total time 16.07 7.28 4.55 2.87 1.98 1.53 

Three orthogonal 

MR image 

Training time 21.18 9.28 5.55 3.49 2.24 1.60 

Reconstruction time 2.15 1.51 1.17 0.93 0.77 0.70 

Total time 23.33 10.79 6.72 4.42 3.01 2.30 
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