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5 APPENDIX

5.1 Alternative constraint formulations

The advantage of the linear equality constraints (Eq 6) is that they provide strong optimality guarantees
while scaling as a function of rD but come with the disadvantage of requiring the choice of πk for each pair
U•,k and V•,k. There are several other possible equality constraints that satisfy rank(Jsym) = rank(J)
and do not require choosing πk but they each are accompanied by their own disadvantages. A few possible
alternatives are summarized below.

Two simple choices are the bilinear constraints UVT = VUT which enforce symmetry and the quadratic
constraints

UUT = VVT, (23)

the latter of which can be proven to satisfy rank(Jsym) = rank(J) by showing PN (U)V = 0 and
PN (V)U = 0 (Fazel et al., 2003). The trouble with the bilinear and quadratic equality constraints is
that they require optimizing D(D − 1)/2 and D(D + 1)/2 unique constraints making optimization with
interior-point methods only tenable when D is small. Since the number of constraints does not depend
on r, it means that block coordinate descent is not an option to decrease dimensionality in these cases.
Furthermore, Hessian approximation techniques like L-BFGS usually do not attempt to approximate the
Jacobian of the constraints and therefore will also not lead to a sufficient decrease in the dimensionality of
the problem (Nocedal and Wright, 2006; Wächter and Biegler, 2006). With present memory and speed
limitations, the best option in this case would be to use a constrained optimization technique that does
not require second-order information; for instance, optimizing an augmented Lagrangian with conjugate
gradient descent. In our experience, however, first-order methods may require more problem-specific
tweaking of the optimization parameters (e.g. update parameters for the barrier function in an augmented
Lagrangian method) to attain reasonable convergence speed compared to second-order methods. This may
make first-order methods less attractive for large datasets.

Another possible alternative to the linear constraints is to instead insist that each U•,k and V•,k pair is
parallel via the equality constraint (

UT
•,kV•,k

)2
=
∥∥U•,k∥∥22 ∥∥V•,k∥∥22 (24)

which comes from setting the square of the dot product of normalized U•,k and V•,k to 1. The advantages
of this form for the equality constraints is that it scales as r and is thus lower dimensional than the linear
equality constraints while not requiring a choice of πk. Compared to the other constraints, however, this
constraint is quite nonlinear as the Jacobians in the Hessian will depend explicitly on U and V. This
constraint may still behave well in practice, but it is not clear if convergence to a solution can be guaranteed.
Indeed, experiments with this formulation often got stuck at non-stationary points which would appear to
indicate that it does not behave well at least with interior-point methods. There are other variations one can
try, including discontinuous variations of Eq 24 where the power-2 is replaced by the absolute value, but
we will not explore these further.

Lastly, an alternative form of the constraints that may be attempted is a modification of the linear equality
constraints (Eq 6) where the discretization of the πk parameters is relaxed such that πk can take on any
real number. In this case, πk would ensure that U•,k and V•,k are equal up to a signed scaling factor.
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The downside of the relaxation is that one either needs to insert U•,k = −πkV•,k leading to a nonlinear
optimization over a third-order polynomial or use the Lagrangian method in which case the Hessian of f
(Eq 10) would be rank-deficient.

5.2 Optimality conditions

Here we show the conditions under which a stationary point of L (Eq 9) is a feasible local minimum of f
(Eq 10) and derive some useful quantities for the subsequent discussion. In order to certify that a weight
vector,

xT =
[
a, hT, QT

•,1, · · · , QT
•,r
]
, (25)

is a feasible local minimizer of f(x), the first-order necessary conditions, also known as the Karush-Kuhn-
Tucker (KKT) conditions, and the second-order sufficient conditions must be satisfied (Nocedal and Wright,
2006). The KKT conditions state that the gradient of L(x,Λ) with respect to x is zero and x must be a
feasible point in weight space. The second-order sufficient conditions require that the Hessian of f(x) is
positive semidefinite along feasible descent directions near x.

The necessary conditions for x to be a feasible local minimizer of f appear in Prop 1 where∇a, ∇h, and
∇Q•,k are the gradient operators with respect to a, h, and Q•,k, respectively, and

Dt =

[
0, sts

T
t

sts
T
t , 0

]
(26)

is a quadratic feature matrix.

PROPOSITION 1. Karush-Kuhn-Tucker (KKT) conditions: the first-order necessary conditions for a
feasible local minimum of f(x) are

∇aL =
1

N

∑
t

(Pt − yt) = 0 (27)

∇hL =
1

N

∑
t

(Pt − yt)st = 0 (28)

∇Q•,kL =

[
1

N

∑
t

(Pt − yt)Dt + εkI

]
Q•,k −AT

k,kΛ•,k = 0 for all k (29)

where AT
k,k = ∇Q•,kw

T
k (Eq 7) is the Jacobian of the constraint vector with respect to Q•,k and

wk = 0 for all k (30)

are the feasibility conditions.

With the constraints being linear and the Jacobian being full row-rank, all wk satisfy the linear independence
constraint qualification regularity condition and therefore the KKT conditions are guaranteed to be satisfied
at a feasible stationary point of L (Nocedal and Wright, 2006). Notably, when the KKT conditions are
satisfied Q•,k is complementary to (i.e. is a null space component of) Eq 29 because QT

•,kA
T
k,k = wT

k = 0
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(Eq 8) and therefore

QT
•,k

[
1

N

∑
t

(Pt − yt)Dt + εkI

]
Q•,k = 0⇒

[
1

N

∑
t

(Pt − yt)Dt + εkI

]
Q•,k = 0 (31)

where the right-hand-side of the arrow follows from the fact that the bracketed term is a symmetric matrix.
In other words, Q•,k is complementary to the quadratic gradient found in the bracketed term. This also
implies that the Lagrange multipliers, Λ•,k, are components of the null column-space of the partial Jacobian
matrix, Ak,k, for each k. This result will become important in the following discussion of locally/globally
optimal regularization domains.

For nonconvex problems, the KKT conditions in Prop 1 are insufficient to guarantee that a stationary
point is a feasible local minimum of f . Instead, we turn to the second-order sufficient conditions.

PROPOSITION 2. Second-order sufficient conditions: if the KKT conditions in Prop 1 are satisfied at
point x∗ in weight space and

S = N (A)∇2
xxf |x∗N (A)T ≥ 0 (32)

where A is the full rD × (1 +D + 2rD) Jacobian matrix of the constraints and N (A) returns the null
space of A, then x∗ is a feasible local minimum of f .

Intuitively, the second-order sufficient conditions mean that the Hessian must be positive semidefinite along
feasible descent directions arbitrarily close to the stationary point x∗.

In terms of zt (Eq 1), the Hessian with respect to x may be written as

∇2
xxf =

1

N

∑
t

Pt(1− Pt)(∇xzt)(∇xzt)
T

︸ ︷︷ ︸
positive semidefinite, RRT

+
1

N

∑
t

(Pt − yt)∇2
xxzt︸ ︷︷ ︸

indefinite, M

+∇2
xx`∗ (33)

where the Hessian operator is defined as ∇2
xx = ∇x∇T

x ,

∇2
xxzt =


0, 0, · · · , 0

0, Dt,
. . . ,

...
..., . . . , . . . , 0
0, · · · , 0, Dt

 , (34)

is a symmetric block diagonal indefinite matrix and

∇2
xx`∗ =


0, 0, · · · , 0

0, ε1I,
. . . ,

...
..., . . . , . . . , 0
0, · · · , 0, εrI

 (35)

is a strictly positive semidefinite diagonal matrix. Due to the indefinite matrix, M (see definition in Eq 33),
f is a nonconvex function.
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5.3 Locally and globally optimal regularization domains

Generally speaking, the fact that the low-rank MNE optimization problem is nonconvex invites the
possibility that there are multiple local minima, many of which may be suboptimal. However, since the
nuclear-norm regularization penalty is convex, it can be shown that there is a regularization domain for
which any solution to the low-rank MNE problem (Eq 8) is guaranteed to be globally optimal. We first
observe that there is some value of the regularization parameters for which the Hessian of f (Eq 33)
becomes positive semidefinite at a given x.

PROPOSITION 3. For a given x, there is a threshold value of εk that satisfies εk < λmax (M) where
λmax (M) is the largest eigenvalue of M such that if all εk are greater than or equal to this threshold then
∇2

xxf evaluated at x is guaranteed to be positive semidefinite.

PROOF. Under the assumption of fixed x, the characteristic polynomial of M+∇2
xx`∗ (Eq 33) is (using

the block LDU decomposition)

det
(
M + ∇2

xx`∗ − λI
)

= −λ
r∏

k=1

det
(

[λ− εk]2 I− [∇JL]2
)

= 0 (36)

where λ is an eigenvalue of the Hessian and I is the identity matrix. For any λ that is a solution, there
is a corresponding eigenvalue, λ′ = εk ± |λ − εk|, symmetric across εk that is also a solution. Since
all εk ≥ 0, the minimum possible eigenvalue of M + ∇2

xx`∗ at a given x occurs when any εk = 0 and
is equal to the smallest eigenvalue of M, λmin(M) ≡ −λmax(M). Therefore, if εk ≥ λmax(M) for all
k at a given x, then the Hessian is guaranteed to be positive semidefinite at x. Since λmin(∇2

xxf) ≥
λmin(RRT) + λmin(M + ∇2

xx`∗), εk = λmax(M) is an upper bound on the value of εk above which the
Hessian becomes positive semidefinite for a given x.

Now, suppose we design a (nonlinear) semidefinite program (SDP) equivalent to the low-rank MNE
problem (Eq 8),

min
a,h,X1,··· ,Xr

f(a,h,X1, · · · ,Xr)

subject to


Jk − JT

k = 0,
rank(Xk) ≤ 1,

Xk ≥ 0

 for all k
(37)

where Xk ≡ Q•,kQ
T
•,k is a 2D×2D rank-one matrix with regularization parameter εk, Jk is the upper-right

D × D block of Xk, and Xk ≥ 0 indicates Xk is constrained to be positive semidefinite. In this form,
the SDP is nonconvex with potentially many local minima. If, however, we relax the SDP by eliminating
the rank constraint (or equivalently modifying it to rank(Xk) ≤ 2D for all k), then the problem becomes
convex.

PROPOSITION 4. (based on proposition 4 from Bach et al. (2008) and theorem 2 from Haeffele et al.
(2014)) If x∗ is a feasible local minimizer of the equivalent SDP (Eq 37) and

min(ε1, · · · , εr) ≥ λmax

(
1

N

∑
t

(Pt − yt)Dt

)
= 2λmax(∇Xk

L) for any k (38)
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solved at x∗ then x∗ is a feasible global minimizer of the equivalent SDP (note that ∇Xk
L is a 2D × 2D

gradient matrix instead of a gradient vector).

PROOF. According to Prop 3, there is some value for each εk above which the eigenvalue spectrum of
2∇Xk

f is strictly positive for a given x. However, since ∇Xj
L = ∇Xk

L for any j and k, the threshold
value of εk such that the Hessian is positive semidefinite is the same for all k. Thus, if the minimal assigned
value of εk across all k satisfies Eq 38, the Hessian is positive semidefinite at x. If x∗ is a solution to the
low-rank MNE minimization problem (Eq 8) and Prop 4 is true, then all ∇Xk

f are positive semidefinite
matrices and ∇Xk

fX∗k = 0 (Eq 31) at x∗. It follows that x∗ is then a solution to the relaxed SDP and a
global minimizer of f (Burer and Monteiro, 2003; Bach et al., 2008; Haeffele et al., 2014). This is true
because the corresponding SDP weights for a, h, and all Xk are a feasible local minimizer of the relaxed
SDP along feasible descent directions shown via the first-order Taylor series expansion of f with respect to
all Xk about solution a∗, h∗, X∗ =

∑
k X∗k:

f(a∗,h∗,X) ≈ f(a∗,h∗,X∗) +
∑
k

Tr
([

∇Xk
f(a∗,h∗,X∗)

]T
[Xk −X∗k]

)
= f(a∗,h∗,X∗) +

∑
k

Tr
([

∇Xk
f(a∗,h∗,X∗)

]T
Xk

)
.

(39)

No feasible Xk can locally decrease f because the trace of a product of two positive semidefinite matrices
is greater than or equal to zero. Furthermore, since f is a convex function of a, h, and Xk, this local
information is sufficient to conclude that x∗ is at a feasible global minimum of f . Therefore, solutions
to the low-rank MNE minimization problem (Eq 8) and the rank-constrained SDP (Eq 37) are globally
optimal for a given rank and set of regularization parameters provided Prop 4 is satisfied.

Low-rank MNE models optimized to satisfy Prop 4 constitute a regularization domain of globally optimal
solutions to the low-rank MNE minimization problem. Low-rank models within this globally optimal
domain can be a consistent, good approximation to J of a given maximum rank r provided the training
data is sufficiently representative of the underlying ground truth value of J. This can be particularly helpful
when attempting to extract low-rank J from exceptionally high-dimensional problems that are impractical
to solve at full-rank.

A secondary consequence of the above analysis is that, in the locally optimal regularization domain,
solutions are unique along a given unit matrix, Q̂ = Q

‖Q‖F
, where ‖·‖F is the Frobenius norm.

PROPOSITION 5. Given a solution x∗ to the low-rank MNE problem, the associated quadratic weights,
Q∗, are a unique solution along the unit matrix Q̂∗ up to a change in sign of the columns (i.e. ±Q∗•,k are
equivalent solutions).

PROOF. Unlike in the globally optimal regularization domain where ∇Xk
f is a positive semidefinite

matrix at solution x∗, in the locally optimal regularization domain ∇Xk
f may be indefinite at a solution

x∗. However, f is still a convex function of the SDP weights, a, h, and Xk. Furthermore, X∗k is still
complementary to ∇Xk

f (Eq 39) at the solution. Therefore, X∗k is a unique solution along unit matrix X̂∗k.
This unit direction matrix is represented in factorized space by X̂∗k = (±Q̂∗•,k)(±Q̂∗T•,k) = Q̂∗•,kQ̂

∗T
•,k. This

factorization of the unit matrix, X̂∗k, defines a unique direction in factorized space, Q̂∗•,k, and thus Q∗•,k
from solution x∗ is also a unique solution up to a change in sign.
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Intuitively, this means that a local minimum constrained to the unit direction Q̂ is a global minimum along
Q̂. In the case of degeneracy in Q, arbitrary rotations of degenerate vectors are globally optimal along any
unit direction in this degenerate subspace. This result does not find use in this paper but we provide it here
for completeness in case future advancements in numerical optimization techniques are able to exploit this
structure to efficiently obtain certifiable global minima of problems in the locally optimal domain. At the
moment, this property would theoretically decrease the number of iterations necessary to reach the global
minimum using a branch and bound algorithm but the algorithm would still be at worst EXPTIME and
impractical to implement for large D.

To investigate the existence of suboptimal local minima in the locally optimal domain, we took an
empirical approach where we searched for a counterexample to the hypothesis that, despite nonconvexity,
there are no suboptimal local minima. This was done by drawing random weights, x, from a normal
distribution with D = 2 and ropt = 2. For each problem, N = 100 stimulus feature vectors were also
drawn from a normal distribution. The response was generated using Eq 1. Then r = 1 low-rank MNE
models were fit 10 times for each randomly drawn problem with different random initializations of the
weights. If two models for a given random problem differed in negative log-likelihood by 1 · 10−4 at their
respective minima, then that problem qualified as a potential counterexample and was stored. To ensure that
the difference in negative log-likelihood was not due to imprecise fitting, the detected counterexamples were
verified by plotting f (Eq 10) in U space and observing the existence of spatially separated minima. We
found that there are indeed counterexamples to the hypothesis and it is therefore possible that suboptimal
local minima will exist in a given problem. However, we remark that suboptimal local minima are seemingly
rare among problems drawn from a normal distribution, often requiring the generation of on the order of
∼ 103 random problems to find one with a suboptimal local minimum.

5.4 Convergence of the block coordinate descent algorithm

Since the interior-point algorithm (Nocedal and Wright, 2006) used to solve each block problem already
guarantees global convergence to a feasible local minimizer of a given block of weights, xk, with fixed
regularization parameter, εk, each cycle through the r blocks (Eq 13) of the block coordinate descent
algorithm leads to a monotonically decreasing series f(x

(j)
1 ) ≥ f(x

(j)
2 ) ≥ ... ≥ f(x

(j)
r ) for the jth cycle.

Because f ≥ 0 is bounded from below on the domain of the weights, the cost function value cannot
decrease indefinitely and the series saturates as j → ∞ to a stationary point. At this stationary point,
the gradient of the Lagrangian with respect to each block is simultaneously zero and all ∇2

xkxk
f are

simultaneously positive semidefinite when projected into the null space of the constraints,

Sk = N (A(k))∇2
xkxk

f |x∗kN (A(k))T ≥ 0. (40)

However, satisfying these conditions alone does not guarantee that this stationary point is a feasible local
minimizer of the low-rank MNE problem (Eq 8). It can be shown that this stationary point is, in fact, a
feasible local minimum of L by verifying that the necessary and sufficient conditions of the full problem
(Prop 1 & 2 in appendix) are satisfied when the block KKT conditions (right-hand-side of Eq 14) and block
second-order sufficient conditions (Eq 40) are satisfied.

In the following discussion, we will assume that the data has been prepared sufficiently according to
Assumption 1, which may be done without loss of generality. We formally state the necessary and sufficient
conditions under which a stationary point of the block coordinate descent is a feasible local minimizer of
the low-rank MNE problem (Eq 8) in Prop 6.
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ASSUMPTION 1. The feature space satisfies

rank

(
1

N

∑
t

[
1
st

] [
1, sTt

])
= D + 1 (41)

or has been transformed in such a way that this is true.

Intuitively, this assumption means that the covariance of the stimulus feature space must be full-rank. If the
stimulus space does not satisfy this assumption, one can, for example, project the stimuli into the subset of
principal components with non-zero variance without loss of generality.

PROPOSITION 6. If, for all k, xk are feasible local minima of the block subproblems (Eq 13) where the
block KKT conditions

∇xk
L = 0, wk = 0 (42)

and block second-order sufficient conditions Sk ≥ 0 (Eq 40) are satisfied, then the equivalent weight
vector, x, of the full problem is a feasible local minimizer of the low-rank MNE problem (Eq 8).

PROOF. (Part 1: necessary conditions) The KKT conditions in Eq 27, 28, & 29 are trivially satisfied
when the block gradients are zero. Also, each constraint vector wk is only dependent on the kth block and
therefore the feasibility conditions in Eq 30 are satisfied as well.

Showing that the second-order sufficient conditions are satisfied is a bit more involved. To make the proof
less cumbersome, we define the abbreviations

A∗Ti:j,i:j =


A∗Ti,i , 0, · · · , 0

0, A∗Ti+1,i+1,
. . . ,

...
..., . . . , . . . , 0
0, . . . , 0, A∗Tj,j

 , (43)

B =
1

N

∑
t

Pt(1− Pt)
[

1
st

] [
1, st

]
, (44)

Ri:j,•R
T
i′:j′,• =

1

N

∑
t

Pt(1− Pt)


DtQ•,i

DtQ•,i+1
...

DtQ•,j




DtQ•,i′
DtQ•,i′+1

...
DtQ•,j′


T

, (45)

Yi:j,• =
1

N

∑
t

Pt(1− Pt)


DtQ•,i

DtQ•,i+1
...

DtQ•,j

 [ 1, sTt
]
, (46)
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Zi:j,i:j =
1

N

∑
t

(Pt − yt)


Dt, 0, · · · , 0

0, Dt,
. . . ,

...
..., . . . , . . . , 0
0, · · · , 0, Dt

+


εiI, 0, · · · , 0

0, εi+1I,
. . . ,

...
..., . . . , . . . , 0
0, · · · , 0, εjI

 (47)

for 0 < i ≤ j ≤ r where i and j can be thought of as slicing indices (the same conditions apply to i′

and j′) that define a submatrix of a larger matrix. Under Assumption 1, Ri:j,•R
T
i:j,• is positive definite

provided all Q•,i, · · · ,Q•,j 6= 0. If any Q•,k = 0 for i ≤ k ≤ j, then Ri:j,•R
T
i:j,• is strictly positive

semidefinite. The matrix Zi,j is generally an indefinite matrix and has rank-deficiency rankN (Zi,j) ≥
rank ([Q•,i,Q•,i+1, · · · ,Q•,j ]) (recall from Eq 31 that Q•,k is complementary to Zk,k). The matrix B is
always positive definite.

In terms of these abbreviations, we rewrite Sk (Eq 40) as[
I, 0
0, A∗k,k

][
B, YT

k,•
Yk,•, Rk,•R

T
k,• + Zk,k

][
I, 0
0, A∗Tk,k

]

=

[
B, YT

k,•A
∗T
k,k

A∗k,kYk,•, A∗k,k

(
Rk,•R

T
k,• + Zk,k

)
A∗Tk,k

] (48)

and take the Shur complement over B

(Sk/B) = A∗k,k

(
Rk,•R

T
k,• + Zk,k

)
A∗Tk,k −A∗k,kYk,•B

−1YT
k,•A

∗T
k,k (49)

which is positive semidefinite and therefore

Θk,k = A∗k,k

(
Rk,•R

T
k,• + Zk,k

)
A∗Tk,k (50)

is positive semidefinite. Provided Q•,k 6= 0, it is much more likely that Θk,k will be positive definite
than strictly positive semidefinite given the structural dissimilarity of Rk,•R

T
k,• and Zk,k. Even if Θk,k is

singular, an infinitesimal increase to εk would theoretically produce a full-rank approximation to Θk,k with
negligible impact on the weights. From here forward, it is assumed that Θk,k is positive definite unless
Q•,k = 0.

We will now use the result in Eq 50 (and the surrounding discussion) and recursive application of the
Schur complement to show that the second-order sufficient conditions (Prop 2) of the full problem are
satisfied.

PROOF. (Part 2: sufficient conditions) The second-order sufficient conditions of the low-rank MNE
problem (Prop 2) are rewritten in terms of Eq 43, 44, 45, 46, & 47[

I, 0
0, A∗1:r,1:r

] [
B, YT

1:r,•
Y1:r,•, R1:r,•R

T
1:r,• + Z1:r,1:r

] [
I, 0
0, A∗T1:r,1:r

]

=

[
B, YT

1:r,•A
∗T
1:r,1:r

A∗1:r,1:rY1:r,•, A∗1:r,1:r

(
R1:r,•R

T
1:r,• + Z1:r,1:r

)
A∗T1:r,1:r

]
,

(51)
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Then one can take the Schur complement over B

(S/B) = Θ1:r,1:r −A∗1:r,1:rY1:r,•B
−1YT

1:r,•A
∗T
1:r,1:r, (52)

where Θi:j,i′:j′ = A∗i:j,i:j

(
Ri:j,•R

T
i′:j′,• + Zi:j,i′:j′

)
A∗Ti′:j′,i′:j′ and then recursively take the Schur

complement of Θk:r,k:r with respect to Θk,k forming the sequence

(Θ1:r,1:r/Θ1,1) = Θ2:r,2:r−Θ2:r,1Θ
−1
1,1Θ1,2:r

(Θ2:r,2:r/Θ2,2) = Θ3:r,3:r−Θ3:r,2Θ
−1
2,2Θ2,3:r

(Θ3:r,3:r/Θ3,3) = Θ4:r,4:r−Θ4:r,3Θ
−1
3,3Θ3,4:r

...

(Θr−1:r,r−1:r/Θr−1,r−1) = Θr,r−Θr−1:r,r−1Θ
−1
r−1,r−1Θr−1,r−1:r.

(53)

If all Q•,k 6= 0, it is apparent that the last equation in the sequence is positive definite because Θr−1,r−1
and Θr,r are in block form (Eq 50) and each of the blocks are already known to be positive definite. We
can then work backwards inserting the result of the equation below into the equation above, showing that
each equation is positive definite, until we reach Eq 52 which will also be positive definite. Therefore, S
is positive definite and x is a feasible local minimum. Now suppose that Q is rank-deficient with rank
r∗ < r; then (without loss of generality) we can assume the first r − r∗ columns are zeros (Q•,k = 0 for
k ≤ r − r∗). The k ≤ r − r∗ rows and columns of R1:r,•R

T
1:r,• are all zeros in this case and therefore

the submatrix Θ1:r−r∗,1:r−r∗ = Z1:r−r∗,1:r−r∗ is block diagonal, the submatrix Θr−r∗+1:r,r−r∗+1:r is
positive definite, and the remaining submatrices all zeros. Since each Θk,k for k ≤ r − r∗ is singular,
the inverses Θ−1k,k in the first r − r∗ lines of the recursive Shur complement sequence (Eq 53) need to be

replaced with the generalized inverse Θ†k,k and must satisfy the additional condition that N (Θk,k+1:r) =

N (A∗k,kRk,•R
T
k+1:r,•A

∗T
k+1:r,k+1:r) is a superset of N (Θk,k) for Θk:r,k:r to be positive semidefinite (see

the generalized Schur complement for background). The null space condition can be tested with the null
space projection operator of Θk,k acting on the row space of Θk,k+1:r

PN (Θk,k)Θk,k+1:r = 0 (54)

where the equality is true because Rk,• = 0 when Q•,k = 0. Working backwards from the bottom of
the sequence again, we see that S must be positive semidefinite. Therefore, we conclude that the block
coordinate descent algorithm converges to a feasible local minimizer of f consistent with Prop 6.

Note that the above analysis is equivalent to showing that block coordinate descent will converge when the
constraints are directly substituted by setting V•,k = −πkU•,k for each k. This is true because S ≡ S(sub)

(Eq 32) and Sk ≡ S(sub)
k (Eq 40) where S(sub) and S(sub)

k are the full and block second-order sufficient
conditions, respectively, of the low-rank MNE problem with the constraints directly substituted.
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