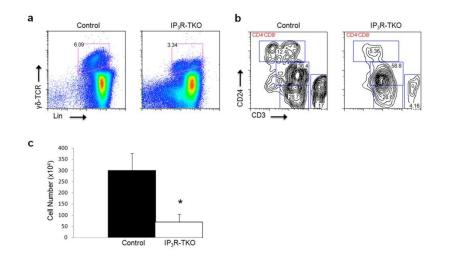
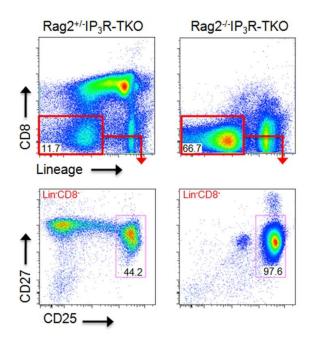

Supplementary Figure 1: Gene targeting strategies to generate Itpr1 and Itpr3 knockout mice.

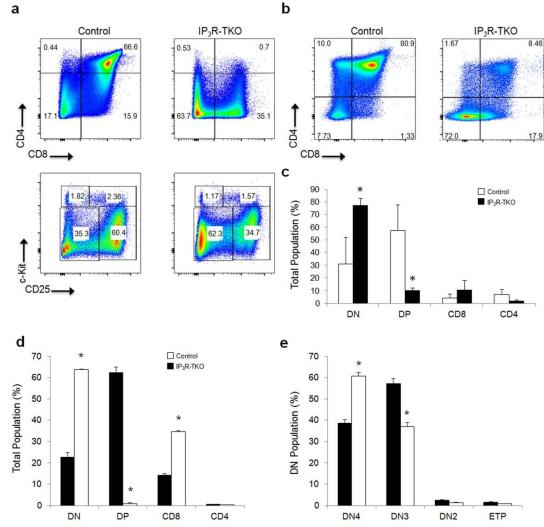
a) Targeting strategies for *Itpr1* and *Itpr3* genes. A restriction map of the relevant genomic regions (top), the targeting vectors (middle) and the targeted locus after recombination (bottom) is shown. The targeting construct was generated by flanking exon 5 of *Itpr1* (a) and exon 3 of *Itpr3* (d) with loxP sites, while frt sites flank the Neo-cassette. A, *Acc65I*; B, *BamHI*; Bg, *BgIII*; E, *EcoRV*; N, *NotI*. Neo represents the neomycin resistance gene; while the arrowheads represent LoxP sites and the long boxes represent frt sites. b) Detection of wild type (WT) and targeted alleles for the *Itpr1* gene by DNA Southern blot analysis. DNAs isolated from neo positive electroporated ES cell clones were digested with *Acc65I* and analyzed by DNA blot analysis with the probe as shown in (a). The 10.3- and 5.3-kb bands represent the WT and targeted alleles, respectively. c) Detection of Itpr1 by protein analysis. Proteins were prepared from the brains of neonatal WT and Itpr3 gene by DNA Southern blot analysis, DNAs were digested with *NotI*. The 13.2- and 5.5-kb bands represent WT and targeted alleles, respectively. e) Detection of Itpr3 by protein analysis. Proteins were prepared from the 13.2- and 5.5-kb bands represent WT and targeted alleles, respectively. e) Detection of Itpr3 by protein analysis. Proteins were prepared from the 13.2- and 5.5-kb bands represent WT and targeted alleles, respectively. e) Detection of Itpr3 by protein analysis. Proteins were prepared from the 13.2- and 5.5-kb bands represent WT and targeted alleles, respectively. e) Detection of Itpr3 by protein analysis. Proteins were prepared from the placenta of WT and targeted alleles, respectively. e) Detection of Itpr3 by protein analysis. Proteins were prepared from the placenta of WT and targeted alleles, respectively. e) Detection of Itpr3 by protein analysis. Proteins were prepared from the placenta of WT and Itpr3-null (KO) mice, and analyzed with Itpr3 antibodies.

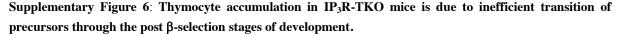

Supplementary Figure 2: Conditional deletion of *Itpr* in mouse thymocytes.

a) Surface CD4 and CD8 expression of adult *Itpr* conditional double knockout thymi. b) Western blot of Itpr expression from ED 17.5 control (CTL) and IP₃R-TKO thymi. c) Ca²⁺ influx in adult control and IP₃R-TKO thymocytes in response to crosslinking of TCR with anti-CD3 antibody and d) after passive depletion of intracellular Ca²⁺ stores by thapsigargin (TG), followed by reintroduction of extracellular Ca²⁺. Relative Ca²⁺ levels were determined by ratiometric measurement with Fluo-5 (F1) and Fura-red (F2) Ca²⁺ indicator dyes. A.U., arbitrary units. Data are representative of a minimum of three independent experiments. All animals displaying signs of malignant disease were excluded from these analyses. e) Quantification of surface CD4 and CD8 expression of adult *Itpr* conditional double knockout thymi in (a). Data are expressed as percentage of total thymocytes (mean \pm SEM, n=3 for all genotypes).

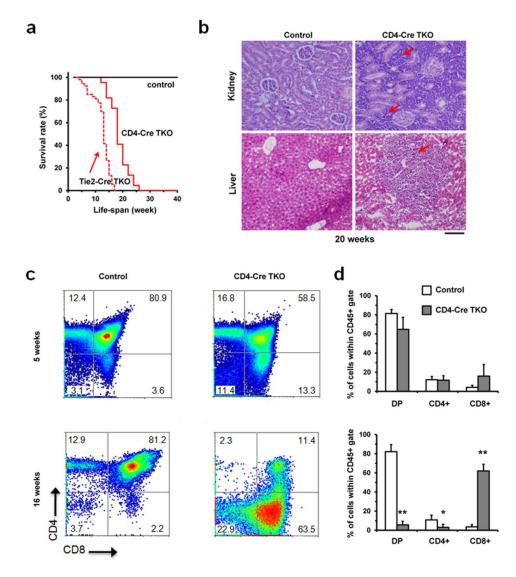

Supplementary Figure 3: Accumulation of ISP thymocytes in pre-leukemic and tumor-burdened IP₃R-DFNKO thymi.

CD4 and CD8 surface expression (top) in thymi of pre-leukemic (a) and tumor-burdened (b) IP₃R-DFNKO adult mice. CD8⁺CD4⁻ thymocytes were subgated and surface expression of CD24 and CD3 (bottom) was examined (as in **Figure 1**). Numbers in plots indicate percentage of cells. Data are representative of a minimum of ten independent experiments. Age was not used to define these stages, as we observed significant variability in the age of onset and age of progression from normal (left column), pre-leukemic mice (middle column) and T-LBL burdened (right column) IP₃R-TKO mice. **c**) Quantification of surface CD4 and CD8 expression of pre-leukemic IP₃R-DFNKO adult thymi. Data are expressed as percentage of total thymocytes (mean \pm SEM, Control, n=5; IP₃R-DFNKO, n=4.). **d**) ISP and CD8⁺ SP T cells as a percentage of total CD8⁺ cells from data in (**c**). *, p < 0.05, measured with two-tailed Student's t test.

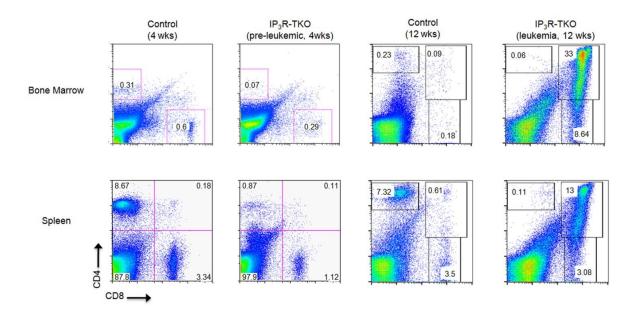



Supplementary Figure 4: γδ T cell development is disrupted in IP₃R-TKO mice.

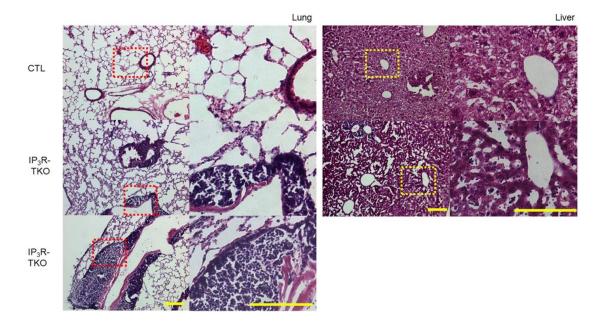
a) Expression of surface $\gamma\delta$ -TCR after staining with lineage markers (CD3, CD4, CD8, B220, CD19, Mac-1, Gr-1, Ter-119) of 1-week-old neonate control and IP₃R-TKO thymocytes. b) CD3 and CD24 expression in DN thymocytes of 1-week-old neonate control and IP₃R-TKO mice. c) Total thymic cellularity of $\gamma\delta$ -TCR⁺ T cells in 1-week-old neonate control and IP₃R-TKO mice. Data are representative of three independent experiments (mean ± SEM). *, p < 0.05, measured with two-tailed Student's t test.



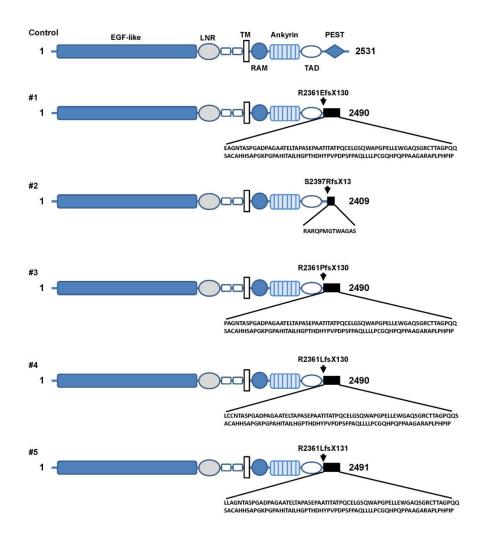
Supplementary Figure 5: IP_3R-Ca^{2+} store depletion is not required for the enforcement of β -selection. Thymocytes from 6-week-old IP_3R -TKO $Rag2^{+/-}$ and IP_3R -TKO $Rag2^{-/-}$ were stained for lineage markers (CD3, CD4, Mac1, Gr1, Ter119, B220, $\gamma\delta$ -TCR) and surface CD8 expression (top). CD8⁻Lineage⁻ thymocytes were then sub-gated and examined for surface CD27 and CD25 expression (bottom). Data are representative of three independent experiments.



a) Expression of surface CD4 and CD8 in ED 17.5 thymocytes (top) of control and IP₃R-TKO mice. CD3⁻CD4⁻CD8⁻ (DN) thymocytes were then sub-gated and examined for surface CD25 and c-Kit expression (bottom). b) Sca-1⁺ hematopoietic stem and progenitor cells purified from ED 14.5 fetal livers of control and IP3R-TKO mice were cultured on OP9-DL1 stromal cells for twelve days and examined for expression of surface CD4 and CD8. Data are representative of (a) two and (b) three independent experiments. c) Surface CD4 and CD8 expression in (b), expressed as percentage of total population (mean \pm SEM, n=3). d) Surface CD4 and CD8 expression in (a, top row), expressed as a percentage of total cells (mean \pm SEM, control, n=6; IP₃R-TKO, n=3). e) Surface CD25 and c-Kit expression of CD3 DN cells (a, bottom row), expressed as a percentage of total CD3 DN cells (mean \pm SEM, control, n=6; IP₃R-TKO, n=3). *, p < 0.01, measured with two-tailed Student's t test.

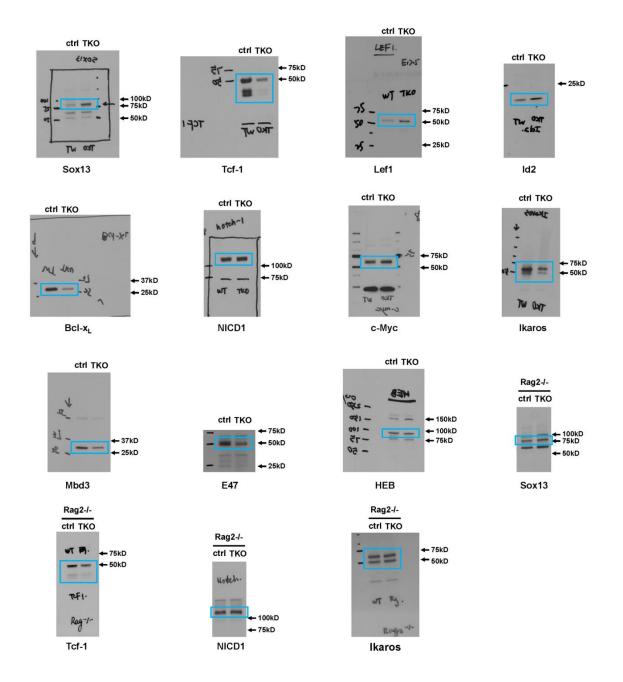

Supplementary Figure 7: CD4-Cre IP₃R TKO mice develop premature lethality, tumors, and abnormal T cell development.

a) Kaplan-Meier survival curve of control, CD4-Cre TKO and Tie2-Cre TKO mice (control, n>100; CD4-Cre TKO, n=22; Tie-Cre TKO, n>100). b) Histological analysis showed leukocyte infiltration (arrow) in kidney and liver of CD4-Cre TKO mice at the age of 20 weeks. Scale bars: 100 μ m. c) Expression of surface CD4 and CD8 in control and CD4-Cre TKO thymocytes at the age of 5 weeks (left, upper; control, n = 5; CD4-Cre TKO, n = 3) and 16 weeks (left, bottom; control, n = 4; CD4-Cre TKO, n = 4), and the percentage of each cell subset (d). Data are presented as mean \pm SEM. *, p<0.05; **, p<0.01, measured with two-tailed Student's t test.



Supplementary Figure 8: Leukemic blasts are present in bone marrow and spleen of moribund IP₃R-TKO mice.

Expression of surface CD4 and CD8 reveal T-ALL blasts present in IP₃R-TKO bone marrow (**top**, leukemia, 12wks) and spleen (**bottom**, leukemia, 12wks). Adult (4wks) Cre-negative control and pre-leukemic IP₃R-TKO bone marrow and spleen are included for comparison, as well an age-matched Cre-negative littermate control (12wks). Data are representative of a minimum of five experiments.



Supplementary Figure 9: **Leukocyte infiltration into lung and liver of moribund IP₃R-TKO mice.** H&E staining of lung (left) samples (red dashed boxes represent image area magnified on right) and liver (yellow dashed boxes represent image area magnified on right). Scale bars: 200μm.

Supplementary Figure 10: Mutations in the Notch1 gene identified in IP₃R-TKO thymi.

Schematic representation of control and predicted truncated Notch1 proteins translated from mRNA carrying frame-shift mutations. Black boxes indicate amino acid sequences (elaborated below) predicted from the new reading frame following the identified mutations.

Supplementary Figure 11: The original Western blots in the paper. Uncropped Western blots of Figure 3d, e.

					Fold			
ID	Term	Count	%	P-Value	Enrichment	Bonferroni	Benjamini	FDR
								2.07
mmu04510	Focal adhesion	47	0.47	1.72E-17	4.20	2.67E-15	2.67E-15	E-14
	ECM-receptor							2.40
mmu04512	interaction	29	0.29	2.01E-15	6.19	3.10E-13	1.55E-13	E-12
	Hypertrophic							
	cardiomyopathy							1.56
mmu05410	(HCM)	25	0.25	1.30E-11	5.27	2.01E-09	6.69E-10	E-08
	Arrhythmogenic							
	right ventricular							
	cardiomyopathy							4.72
mmu05412	(ARVC)	22	0.22	3.93E-10	5.19	6.10E-08	1.52E-08	E-07
	Dilated							8.11
mmu05414	cardiomyopathy	24	0.24	6.76E-10	4.62	1.05E-07	2.09E-08	E-07
	Calcium							
	signaling							5.07
mmu04020	pathway	34	0.34	4.22E-09	3.15	6.54E-07	1.09E-07	E-06
	ABC							5.29
mmu02010	transporters	13	0.13	4.41E-06	5.12	6.83E-04	9.76E-05	E-03
	Small cell lung							
mmu05222	cancer	17	0.17	1.58E-05	3.54	2.44E-03	3.06E-04	0.019
mmu04530	Tight junction	22	0.22	1.72E-05	2.89	2.67E-03	2.97E-04	0.021
	Regulation of							
	actin							
mmu04810	cytoskeleton	29	0.29	2.68E-05	2.37	4.14E-03	4.15E-04	0.032
	Long-term							
mmu04730	depression	14	0.14	1.55E-04	3.44	0.024	2.18E-03	0.19
	Cardiac muscle							
mmu04260	contraction	14	0.14	3.55E-04	3.18	0.054	4.57E-03	0.43
	MAPK signaling							
mmu04010	pathway	30	0.30	3.79E-04	2.00	0.057	4.50E-03	0.45
	Pathways in							
mmu05200	cancer	33	0.33	1.10E-03	1.81	0.16	0.012	1.31
	Viral							
mmu05416	myocarditis	14	0.14	2.15E-03	2.64	0.28	0.022	2.55
mmu04360	Axon guidance	16	0.16	6.46E-03	2.16	0.63	0.061	7.49
	Vascular smooth							
	muscle		0.1-			0.5	0.017	
mmu04270	contraction	15	0.15	7.13E-03	2.21	0.67	0.063	8.23
	GnRH signaling					a =-		
mmu04912	pathway	13	0.13	7.82E-03	2.37	0.70	0.065	9.00
mmu04520	Adherens	11	0.11	9.63E-03	2.56	0.78	0.076	10.97

Supplementary Table 1. KEGG pathway analysis: GO terms enriched in ISP thymocyte gene set.

			-		r	[r	
	junction							
	Purine							
mmu00230	metabolism	17	0.17	0.015	1.92	0.90	0.11	16.37
mmu04144	Endocytosis	20	0.20	0.018	1.75	0.94	0.13	20.05
	ErbB signaling							
mmu04012	pathway	11	0.11	0.023	2.24	0.97	0.15	24.80
	Phosphatidylinos							
	itol signaling							
mmu04070	system	10	0.10	0.024	2.36	0.98	0.15	25.29
mmu05214	Glioma	9	0.09	0.026	2.49	0.98	0.16	27.18
	Inositol							
	phosphate							
mmu00562	metabolism	8	0.08	0.030	2.62	0.99	0.17	31.02
	Long-term							
mmu04720	potentiation	9	0.09	0.042	2.28	1.00	0.22	40.02
	Hematopoietic							
mmu04640	cell lineage	10	0.10	0.045	2.11	1.00	0.23	42.77
	Fc gamma							
	R-mediated							
mmu04666	phagocytosis	11	0.11	0.048	1.99	1.00	0.24	44.54
	Type II diabetes							
mmu04930	mellitus	7	0.07	0.055	2.53	1.00	0.26	49.48
	Alzheimer's							
mmu05010	disease	16	0.16	0.087	1.56	1.00	0.38	66.57
	Cell adhesion							
	molecules							
mmu04514	(CAMs)	14	0.14	0.092	1.61	1.00	0.38	68.75
	Amyotrophic							
	lateral sclerosis							
mmu05014	(ALS)	7	0.07	0.099	2.17	1.00	0.40	71.54

ID	Term	Genes
		TLN2, ERBB2, ITGB4, ITGA10, COL2A1, VCL,
		IGF1R, DOCK1, ITGB8, COL6A2, COL6A1,
		COL11A1, THBS3, FN1, SHC4, EGFR, COL4A4,
		PIK3CG, COL4A2, VAV3, FLT1, TNXB, ITGA2,
		ACTN2, ITGA3, FLNC, KDR, LAMA2, VWF,
		ITGA9, LAMA1, CCND1, LAMA4, LAMA3,
		ITGA5, LAMA5, LAMC3, RASGRF1, CCND2,
		ITGA7, COL1A2, PDGFRA, PDGFRB, RELN,
mmu04510	Focal adhesion	LAMC2, LAMC1, MYLK
		ITGB4, ITGA10, COL2A1, ITGB8, COL6A2,
		COL6A1, AGRN, COL11A1, THBS3, FN1,
		COL4A4, COL4A2, TNXB, ITGA2, ITGA3,
		LAMA2, VWF, ITGA9, LAMA1, LAMA4,
		LAMA3, ITGA5, LAMC3, LAMA5, ITGA7,
mmu04512	ECM-receptor interaction	COL1A2, RELN, LAMC2, LAMC1
		ITGB4, ITGA10, CACNB2, TTN, TGFB2, ACE,
		ITGB8, PRKAA2, CACNA2D1, ITGA2, CACNG4,
		ITGA3, MYH7, MYH6, CACNA2D2, CACNA1S,
		CACNA2D4, LAMA2, ITGA9, ITGA5, ITGA7,
mmu05410	Hypertrophic cardiomyopathy (HCM)	RYR2, CACNA1F, CACNA1C, CACNA1D
		CACNA2D1, ITGB4, CACNG4, ITGA2, ITGA10,
		CACNB2, ACTN2, ITGA3, CTNNA1, CACNA1S,
		CACNA2D2, CACNA2D4, JUP, LAMA2, ITGA9,
	Arrhythmogenic right ventricular	ITGB8, ITGA5, ITGA7, RYR2, CACNA1F,
mmu05412	cardiomyopathy (ARVC)	CACNA1C, CACNA1D
		CACNA2D1, ITGB4, CACNG4, ITGA2, ITGA10,
		CACNB2, MYH7, ITGA3, MYH6, TTN,
		CACNA1S, CACNA2D2, TGFB2, CACNA2D4,
		LAMA2, ITGA9, ITGA5, ITGB8, ITGA7, RYR2,
mmu05414	Dilated cardiomyopathy	CACNA1F, CACNA1C, CACNA1D, IGH-VJ558
		PHKA2, ERBB4, ERBB3, ERBB2, PHKA1,
		PLCB3, PLCB4, PTK2B, PDE1C, PDE1A, NOS2,
		PPP3CA, IGH-VJ558, EGFR, NOS1, CACNA1I,
		ITPR3, CACNA1S, ITPR2, P2RX7, RYR3, PLCG2,
		RYR1, CACNA1G, PDGFRA, RYR2, PDGFRB,
		CACNA1E, CACNA1F, CACNA1C, CACNA1D,
mmu04020	Calcium signaling pathway	MYLK, CACNA1A, CACNA1B
		ABCB11, ABCA8A, CFTR, ABCA1, ABCA4,
		ABCA3, ABCA6, ABCA5, ABCC9, ABCC3,
mmu02010	ABC transporters	ABCC4, ABCA13, ABCA12
mmu05222	Small cell lung cancer	PIK3CG, COL4A4, COL4A2, ITGA2, ITGA3,

Supplementary Table 2. KEGG pathway analysis: Genes enriched within ISP thymocyte gene set.

[[LAMA2, LAMA1, CCND1, LAMA4, LAMA3,
		LAMA2, LAMA1, CCND1, LAMA4, LAMA3, LAMC3, LAMA5, LAMC2, LAMC1, NOS2,
		TRAF5, FN1
		SYMPK, INADL, MYH15, MAGI2, MAGI1,
		MPDZ, MYH2, CASK, ACTN2, MYH7, MYH6,
		CTNNA1, CSDA, MYH8, TJP1, CTTN, CGN,
mmu04530	Tight junction	MYH11, MYH13, TJP2, MYH7B, MYH10
IIIIIu04550	Tight junction	FGFR2, FGD1, ENAH, SSH1, ITGAE, ITGB4,
		ITGA10, ITGAM, VCL, DOCK1, ITGAX, ITGB8,
		GSN, FN1, PIK3CG, EGFR, VAV3, ITGA2,
		ACTN2, ITGA3, NCKAP1, ITGA9, ITGA5,
0.4010		ITGA7, PDGFRA, CYFIP1, PDGFRB, MYLK,
mmu04810	Regulation of actin cytoskeleton	MYH10
		NOS1, LYN, GRIA3, ITPR3, ITPR2, IGF1R,
		PLCB3, PLA2G4A, PLCB4, GRIA2, JMJD7,
mmu04730	Long-term depression	RYR1, CRH, CACNA1A
		CACNA2D1, COX7A1, CACNG4, CACNB2,
		MYH7, ATP1A2, MYH6, CACNA2D2,
		CACNA1S, CACNA2D4, RYR2, CACNA1F,
mmu04260	Cardiac muscle contraction	CACNA1C, CACNA1D
		FGFR2, CACNB2, TGFB2, MAP3K5, PPP3CA,
		EGFR, CACNA2D1, CACNA1I, CACNG4,
		NR4A1, FLNC, CACNA2D2, CACNA1S,
		CACNA2D4, RPS6KA6, PLA2G4A, RASGRF2,
		RASGRF1, JMJD7, CACNA1G, PDGFRA,
		PDGFRB, CACNA1E, CACNA1F, MAPK8IP1,
		CACNA1C, CACNA1D, MAP3K12, CACNA1A,
mmu04010	MAPK signaling pathway	CACNA1B
		FGFR2, DCC, ERBB2, STK36, TGFB2, IGF1R,
		NOS2, TRAF5, FN1, COL4A4, EGFR, PIK3CG,
		COL4A2, FLT3, ITGA2, ITGA3, CTNNA1,
		DAPK1, LAMA2, JUP, LAMA1, CCND1, LAMA4,
		CDKN1A, LAMA3, NCOA4, LAMC3, LAMA5,
mmu05200	Pathways in cancer	PLCG2, PDGFRA, PDGFRB, LAMC2, LAMC1
		MYH15, MYH2, MYH7, MYH6, MYH8, LAMA2,
		CCND1, H2-BL, MYH11, H2-T22, MYH13,
mmu05416	Viral myocarditis	MYH7B, IGH-VJ558, MYH10
		DCC, ABLIM2, PLXNA4, PLXNA1, PLXNA2,
		PLXNB1, PLXNB2, L1CAM, EPHB4, SEMA4G,
		SEMA4C, SRGAP3, ROBO2, PPP3CA, ROBO3,
mmu04360	Axon guidance	SRGAP1
		NPR1, NPR2, ITPR3, CACNA1S, ITPR2, PLCB3,
		PLA2G4A, PLCB4, CYP4A32, JMJD7, MYH11,
mmu04270	Vascular smooth muscle contraction	CACNAIF, CACNAIC, CACNAID, MYLK
11111401270	, usediar shiotar musere contraction	chernin, chernine, chernine, ini ER

		EGFR, PLD1, ITPR3, CACNA1S, ITPR2, PLCB3,
		PLA2G4A, PLCB4, PTK2B, JMJD7, CACNA1F,
mmu04912	GnRH signaling pathway	CACNAIC, CACNAID
		EGFR, IGF1R, TJP1, SORBS1, ERBB2, PVRL3,
mmu04520	Adherens junction	LMO7, ACTN2, CTNNA1, VCL, FARP2
		XDH, ENPP1, NPR1, NPR2, PDE10A, AK7,
		GUCY2C, AMPD1, PDE6A, PDE7B, PDE2A,
		CYP4A32, PDE1C, POLD1, PDE1A, ENTPD8,
mmu00230	Purine metabolism	PDE8B
minuoo250		EGFR, FGFR2, PLD1, FLT1, ERBB4, ERBB3,
		PSD3, EEA1, KDR, IGF1R, RAB31, TFRC,
		RABEP1, WWP1, H2-BL, PDGFRA, H2-T22,
mmu04144	Endocytosis	ITCH, AGAP1, ARAP2
		EGFR, PIK3CG, CDKN1A, EIF4EBP1, ERBB4,
mmu04012	ErbB signaling pathway	ERBB3, ERBB2, PLCG2, GAB1, NRG2, SHC4
	5 51 5	PIK3CG, PLCB3, PLCB4, PIK3C2G, PIK3C2A,
mmu04070	Phosphatidylinositol signaling system	PLCG2, SYNJ2, INPP4B, ITPR3, ITPR2
	1 7 8 8 7	EGFR, PIK3CG, IGF1R, CDKN1A, CCND1,
mmu05214	Glioma	PLCG2, PDGFRA, PDGFRB, SHC4
		PIK3CG, PLCB3, PLCB4, PIK3C2G, PIK3C2A,
mmu00562	Inositol phosphate metabolism	PLCG2, SYNJ2, INPP4B
		RPS6KA6, PLCB3, PLCB4, GRIA2, GRIN2B,
mmu04720	Long-term potentiation	PPP3CA, ITPR3, CACNA1C, ITPR2
		CR2, TFRC, FLT3, ITGA5, ITGA2, ITGA3,
mmu04640	Hematopoietic cell lineage	IL5RA, IL7R, IGH-VJ558, ITGAM
		PIK3CG, PLA2G4A, DOCK2, PLD1, VAV3, LYN,
mmu04666	Fc gamma R-mediated phagocytosis	GSN, PLCG2, PPAP2B, IGH-VJ558, AMPH
		PIK3CG, CACNA1G, CACNA1E, CACNA1C,
mmu04930	Type II diabetes mellitus	CACNA1D, CACNA1A, CACNA1B
		NOS1, COX7A1, SNCA, ITPR3, CACNA1S,
		ITPR2, NDUFV3, PLCB3, LRP1, PLCB4,
		GRIN2B, RYR3, PPP3CA, CACNA1F, CACNA1C,
mmu05010	Alzheimer's disease	CACNA1D
		CD276, NFASC, L1CAM, ITGAM, ALCAM,
		ITGA9, ITGB8, PVRL3, ICOS, H2-BL, CNTNAP2,
mmu04514	Cell adhesion molecules (CAMs)	H2-T22, CNTNAP1, CD226
		ALS2, MAP3K5, NOS1, GRIA2, GRIN2B,
mmu05014	Amyotrophic lateral sclerosis (ALS)	PPP3CA, CAT