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Infections of immunocompromised patients with human
adenoviruses (hAd) can develop into life-threatening condi-
tions, whereas drugs with anti-adenoviral efficiency are not
clinically approved and have limited efficacy. Small double-
stranded RNAs that induce RNAi represent a new class of
promising anti-adenoviral therapeutics. However, as yet, their
efficiency to treat hAd5 infections has only been investigated
in vitro. In this study, we analyzed artificial microRNAs
(amiRs) delivered by self-complementary adeno-associated
virus (scAAV) vectors for treatment of hAd5 infections in
immunosuppressed Syrian hamsters. In vitro evaluation of
amiRs targeting the E1A, pTP, IVa2, and hexon genes of
hAd5 revealed that two scAAV vectors containing three copies
of amiR-pTP and three copies of amiR-E1A, or six copies
of amiR-pTP, efficiently inhibited hAd5 replication and
improved the viability of hAd5-infected cells. Prophylactic
application of amiR-pTP/amiR-E1A- and amiR-pTP-express-
ing scAAV9 vectors, respectively, to immunosuppressed Syrian
hamsters resulted in the reduction of hAd5 levels in the liver of
up to two orders of magnitude and in reduction of liver
damage. Concomitant application of the vectors also resulted
in a decrease of hepatic hAd5 infection. No side effects were
observed. These data demonstrate anti-adenoviral RNAi as a
promising new approach to combat hAd5 infection.
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INTRODUCTION
Human adenoviruses (hAds) belong to the genusMastadenovirus and
are divided into seven species (A–G).1 They usually induce mild, self-
.limiting infections of the upper respiratory tract and the gastrointes-
tinal tract. Children and adolescents are more often affected than
adults.2–4 In immunocompromised patients, most notably those after
transplantation of hematopoietic stem cells or solid organs, hAds can
induce severe infections with fatal outcomes. Affected patients often
suffer from disseminated viral infection and show a high and rapid
increase of viral load in the blood serum.5,6 Fulminant liver failure
is the most frequent cause of death in such cases.7,8 Morbidity rates
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in these patients are between 9% and 26%,9,10 and the mortality can
be as high as 80%.11,12

Treatment options for immunocompromised patients with severe
hAd infection are limited. Clinical protocols recommend intensive
supportive care, reduction of immunosuppressive agents, administra-
tion of immunoglobulins, anti-hAd-adoptive T cell therapy, and
application of antiviral drugs.13,14 The most commonly used drug
to treat hAd infections is cidofovir (CDV), a nucleoside analog that
is phosphorylated by cellular kinases to become a deoxycytidine
(dCTP) analog that specifically blocks viral DNA polymerase and
interrupts viral DNA replication.15

The response rate to CDV is low (about 25%) and toxic side effects
such as nephrotoxicity are widely observed.16 Brincidofovir (BCV)
is a lipid-ester derivate of CDV. Due to its altered structure, bioavail-
ability is increased, and its safety profile is improved.17 BCV was
shown to be highly effective in a permissive animal model and in
human patients with hAd infections.18–21 However, fatal outcomes
could not be prevented in several patients with severe hAd
infections.22,23

RNAi is an evolutionary conserved cellular mechanism of gene
silencing, which is induced by small double-stranded RNAs.24 These
RNAs can be delivered as synthetic short interfering RNAs (siRNAs)
to the cells or expressed intracellularly from vectors as small hairpin
RNAs (shRNAs) or artificial microRNAs (amiRs). In contrast to
siRNAs, shRNAs and amiRs require intracellular processing, because
of their hairpin structures, in order to form mature functional
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siRNAs.25 The siRNAs are incorporated into the RNAi silencing com-
plex (RISC) and one strand is degraded, while the other guides the
RISC to the target mRNA, where it binds to a complementary
sequence and induces cleavage of the target sequence.26 The efficiency
of anti-adenoviral siRNAs has been proven in several in vitro studies
which have demonstrated that silencing of different adenoviral genes
is suitable to inhibit hAd replication.27–30 The most efficient inhibi-
tion (about two to three orders of magnitude in virus titer) was
observed after the silencing of pre-terminal protein (pTP) and
DNA Pol.27,31 Both proteins are involved in adenoviral DNA synthe-
sis, indicating that disturbing adenoviral DNA replication is a very
potent approach to inhibit hAd infection. Other studies also found
high anti-adenoviral activity of siRNAs directed against IVa2,29,30

which is involved in transcriptional activation of the adenoviral major
late promoter32 and is important for capsid assembly and for encap-
sidation of the viral genome,33,34 and against the hexon protein,29,30

which is the major protein of the viral capsid.35 E1A is the first viral
gene to be transcribed and plays a key role in host cell metabolism
modulation and transcription of other viral genes.35 siRNA-mediated
silencing of E1A also resulted in inhibition of adenoviral replication,
but depending on the study, the efficiency of this approach was very
different.27–30 Importantly, silencing of E1A was more potent in
protecting cells from hAd-induced cell lysis compared to silencing
of other adenoviral genes.27,29 siRNAs can easily be delivered
in vitro, reaching high intracellular concentrations which are suffi-
cient to downregulate target gene expression. Certain cell lines
and primary cells, however, are hard to transfect with siRNAs, and
cell- and/or organ-specific delivery, as well as achievement of pro-
longed therapeutic levels in the target organ in vivo constitute a
general problem for siRNA use.36,37

In the present study, we investigated amiRs targeting different
adenoviral genes in the context of self-complementary adeno-associ-
ated virus (scAAV) vectors. Based on in vitro evaluation, two
scAAV9 vectors expressing amiRs targeting adenoviral genes pTP
and E1A, or just pTP, were developed and analyzed for their antiviral
efficiency in an animal model of immunosuppressed Syrian ham-
sters, which are permissive for hAd 5 (hAd5). We show that prophy-
lactic application of the vectors resulted in a significant decrease of
hAd5 titers in the liver, heart, and serum and led to a distinct reduc-
tion of liver injury. Moreover, inhibition of hAd5 replication in the
liver was also detected when the vectors were applied concomitantly
with hAd5.

RESULTS
Evaluation of Anti-adenoviral amiRs

We generated eight different anti-adenoviral amiRs and inserted
them into the 30 UTR of a cytomegalovirus (CMV) promoter driven
GFP reporter in AAV shuttle plasmids containing the sequence of
scAAV vector genomes (Figure 1A). Five amiRs targeted different
sequences of the adenoviral E1A gene, and one each was directed
against target sequences of the adenoviral hexon, IVa2, and pTP genes
(Table S1). To assess their silencing efficiencies, a multistep evalua-
tion procedure was carried out. First, HeLa cells were co-transfected
with the amiR-expression plasmids and with indicator plasmids
containing fully complementary amiR target sequences (amiR-TS)
in the 30 UTR of a Renilla luciferase (hRLuc) reporter. All amiRs
induced strong suppression of hRLuc expression of at least 70%,
and amiR-pTP, amiR-E1A_3, and amiR-Hex even led to a reduction
of luciferase activity of about 90% (Figure 1B). Next, we analyzed the
amiRs in the context of scAAV2 vectors. HeLa cells were transduced
with equal amounts of the vectors and transfected with corresponding
amiR-TS containing hRLuc indicator plasmids. Again, hRLuc expres-
sion was inhibited by all amiRs. As before, amiR-pTP and amiR-Hex
showed the strongest silencing effect, reaching a suppression of
hRLuc activity of more than 80%. A similar efficiency was observed
for amiR-E1A_2, whereas amiR-E1A_3, which was effective in the
previous plasmid assay, showed distinctly lower silencing efficiency
(Figure 1C). Finally, we investigated the ability of scAAV2 vector
expressed amiRs to inhibit hAd5 replication. New scAAV2 vectors
were constructed containing the sequences of the three most effective
E1A-amiRs (amiR-E1A_2, amiR-E1A_3, and amiR-E1A_4), amiR-
pTP, amiR-IVa2, and amiR-Hex, respectively. Compared to previ-
ously used scAAV2 vectors, the sequence encoding GFP was
removed, as we observed negative crosstalk of GFP and amiRs
when both were inserted in a single scAAV2 vector genome (data
not shown). As shown in Figure 1D, the application of 1� 104 vector
genome equivalents (vge)/cell of the amiR-pTP-expressing vector
scAAV2-amiR-pTP resulted in a strong decrease of hAd5 replication
by about 89%. The amiR-IVa2-expressing scAAV2 vector also
inhibited hAd5 replication, but only by about 61%. No inhib-
itory effect was seen for both scAAV2 vectors expressing the E1A
targeting amiRs and amiR-Hex, respectively. In conclusion, the
evaluation experiments demonstrated that among the considered
amiRs, amiR-pTP showed the strongest anti-adenoviral efficiency if
expressed from scAAV2 vectors. Therefore, it was selected for further
investigation.

Concatemerization of amiR-pTP and amiR-E1A_2 Increases

Inhibition of hAd5 Infection

Earlier studies reported that use of concatemerized antiviral amiRs
can result in higher inhibition of virus replication than the use of
single amiRs.31,38 To prove this in the context of amiR-pTP and
AAV vectors, we generated scAAV2 vectors containing three and
six copies of amiR-pTP and compared them with the scAAV2 vector
containing only a single copy of amiR-pTP. The copy number of
amiR-pTP was limited to six to ensure that the vector genome
did not exceed the packaging capacity of the scAAV vectors. We
also generated a scAAV2 vector expressing three copies of amiR-
E1A_2 to compare it with the scAAV2 with a single copy of
amiR-E1A_2. This was done because previous investigations had
revealed that silencing of E1A can improve cell viability of hAd-
infected cells much more efficiently than silencing of any other
adenoviral gene.27,29 Among the analyzed E1A-amiRs, amiR-
E1A_2 showed the best silencing activity in the reporter gene assay
when expressed from scAAV2 vectors, so it was selected (Figure 1C).
Transduction of HeLa cells with 1 � 103 vge/cell of the scAAV2 vec-
tors containing one, three, or six copies of amiR-pTP, concomitant
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Figure 1. Evaluation of Anti-adenoviral amiRs

(A) Schematic representation of the anti-adenoviral amiR and luciferase reporter vectors. One copy of anti-adenoviral amiR was inserted into a GFP-expression cassette of an

AAV shuttle plasmid containing a self-complementary (sc) AAV2 vector genome (upper panel). One copy of amiR-target sequences (amiR-TS) was inserted downstream of a

Renilla luciferase (hRLuc) gene in the reporter plasmid psiCHECK2-amiR-TS (lower panel). L-ITR/R-ITR = left and right inverted terminal repeat of AAV2, respectively; bGH

pA - poly A signal of the bovine growth hormone; Syn pA - synthetic poly A signal. The silencing vector shows the amiR of the adenoviral pre-terminal protein (pTP). The

reporter vector shows the corresponding amiR-pTP target sequence. (B) Silencing activity of anti-adenoviral amiRs in reporter gene assay. HeLa cells were transfected with

anti-adenoviral amiR-expressing plasmids and co-transfected with hRLuc reporter plasmids containing the corresponding amiR-TS. The cells were harvested 48 hr after

transfection and hRLuc activity was determined. As a control, each amiR-TS plasmid was co-transfected with a plasmid expressing an amiR against dsRed (con). The amiR-

silencing activity was calculated as a percentage of hRLuc activity in samples treated with anti-adenoviral amiRs compared to samples treated with con. **p < 0.01 and

***p < 0.001 versus con. (C) HeLa cells were transduced with equal amounts of scAAV2 vectors containing one copy of the indicated amiR or the dsRed amiR (con) and 72 hr

later transfected with hRLuc reporter plasmids containing the corresponding amiR-TS. Cells were harvested 96 hr after transduction, and the silencing activity of the anti-

adenoviral amiRs was calculated as described under (B). *p < 0.05; **p < 0.01; and ***p < 0.001 versus con. (D) HeLa cells were transduced with 1� 104 vge/cell of scAAV2

vectors containing one copy of the indicated amiRs concomitant to infection with hAd5 at an MOI of 0.05. The cells were lysed 48 hr after infection, and the number of

adenoviral genomeswas quantified by real-time PCR. The number of copies of hAd5 after treatment with amiRs expressing scAAV2 vectors is shown relative to the number of

copies after treatment with con ( = 1). *p < 0.05 and ***p < 0.001 versus con. Note: in this panel, the scAAV2 vector genome lacks GFP cDNA, while GFP cDNA is present in

(C). Results of (B)–(D) show mean values ± SEM.

Molecular Therapy: Nucleic Acids
with hAd5 (dose 0.05 MOI) led to inhibition of adenoviral replica-
tion by 76%, 89%, and 91%, as determined by real-time PCR, respec-
tively (Figure 2A). In contrast, scAAV2 vectors with one or three
copies of E1A_2 did not inhibit adenoviral replication. The same
vectors were used to analyze cell viability of hAd5-infected cells.
HeLa cells were transduced with 1 � 104 vge/cell of scAAV2 vector
5 hr before infection with 1 MOI of hAd5, and cell viability was
determined 5 days later. Each of the scAAV2-amiR-pTP vectors
significantly improved cell viability, but those with three or six
copies were able to fully preserve it. There was no improvement
for the vector containing one copy of amiR-E1A_2, but the vector
302 Molecular Therapy: Nucleic Acids Vol. 8 September 2017
with three copies of amiR-E1A_2 significantly protected cell viability
(Figure 2B).

To determine the molecular basis leading to increased inhibition of
hAd5 replication and reduction of cytotoxicity, we quantified the
expression levels of amiR-pTP and amiR-E1A_2 48 hr after transduc-
tion of HeLa cells with 1� 103 vge/cell of respective scAAV2 vectors.
As shown in Figure 2C, the presence of three amiR copies in the
vector genome increased the amiR levels of both amiR-pTP and
amiR-E1A_2 by approximately 2.4-fold compared to the vectors
containing only one copy of the individual amiRs. An increase of



Figure 2. Repetition of amiR-pTP and amiR-E1A Coding Units in the scAAV2 Vector Genome Increases Inhibition of hAd5

(A) Determination of hAd5 replication. HeLa cells were infected with hAd5 at an MOI of 0.05 and concomitantly transduced with 1 � 103 vge/cell of scAAV2-amiR vectors

expressing the indicated amiRs. The cells were lysed 48 hr later, and the amount of viral DNA was quantified by real-time PCR. The copy number of each amiR in the vector

genome is shown in parentheses. Cells, which were infected only with hAd5, are labeled “hAd5”. Con represents a scAAV2 control vector containing an array of six amiR

sequences directed against dsRed. The genome copy number for each sample was related to con ( = 1). Significance was determined compared to con, ***p < 0.001.

Significance compared to pTP (1�), #p < 0.05. (B) Determination of viability of hAd5-infected cells. HeLa cells were transduced with 1 � 104 vge/cell of indicated scAAV2-

amiR vectors 5 hr prior to infection with hAd5 at an MOI of 1. Cell viability was determined 5 days after infection. Mock, untransduced/uninfected cells ( = 1). Con and hAd5,

see under (A). Cell viability for each sample was related to mock infected. Significance compared to con, ***p < 0.001. Significance as shown, ##p < 0.01 and ###p < 0.001;

n.s., not significant. (C) Relative expression of amiR-pTP and amiR-E1A_2 by scAAV2 vectors. HeLa cells were transduced with 1� 103 vge/cell and analyzed 48 hr later for

amiR-pTP and amiR-E1A_2 expression. The abundance of amiR-pTP and amiR-E1A_2 expression was analyzed with real-time RT-PCR and corrected for the expression of

snU6RNA, *p < 0.05. Results of (A)–(C) show mean values ± SEM.
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amiR-pTP expression was also seen for the scAAV2 vector containing
six copies of amiR-pTP. However, the expression levels increased only
1.2-fold compared to the scAAV vector containing three copies of
amiR-pTP. In conclusion, these data demonstrate that concatemeri-
zation of amiR-pTP and amiR-E1A_2 improves the effectiveness of
the scAAV2 vectors.

scAAV2 Vectors with Three Copies of amiR-pTP and Three

Copies of amiR-E1A_2 Are Not More Efficient than scAAV2

Vector with Six Copies of amiR-pTP

Since both concatemerized amiR-pTP and amiR-E1A_2 showed an
increased protective effect on hAd5 infections, we next investigated
whether simultaneous expression of both amiRs could increase the
anti-adenoviral efficiency. For this purpose, three copies of amiR-
pTP and three copies of amiR-E1A_2 were inserted in different
arrangements in the expression cassette of scAAV2 vectors (Fig-
ure 3A). Among the four investigated scAAV vectors with mixed
amiRs, scAAV2-amiR-pTP (3�)-E1A_2 (3�) containing the amiR-
pTP copies immediately downstream of the CMV promoter and
amiR-E1A_2 copies downstream of the amiR-pTP showed the best
performance. It inhibited viral replication in hAd5-infected cells by
about 91% and increased cell viability by about 84%. Thus, its effi-
ciency was in the range of scAAV2-amiR-pTP (6�), which was
used as the control. The other vectors had significantly weaker
responses in terms of adenoviral replication. Only scAAV2-3�
(amiR-E1A_2-pTP) containing amiR-E1A_2 and amiR-pTP in alter-
nating order increased cell viability similar to scAAV2-amiR-pTP
(6�) and scAAV2-amiR-pTP (3�)-E1A_2 (3�) (Figures 3B and
3C). Analysis of amiR expression levels revealed that all four vectors
expressed amiR-pTP at significantly lower levels than the control
vector scAAV2-amiR-pTP (3�). However, scAAV2-amiR-pTP
(3�)-E1A_2 (3�) showed significantly higher amiR-pTP expression
Molecular Therapy: Nucleic Acids Vol. 8 September 2017 303
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Figure 3. Configuration of the amiR pTP/amiR-E1A 2-Expression Cassette Affects Its Ability to Inhibit hAd5 Infection

(A) amiR-pTP- and amiR-E1A_2-expression cassettes of scAAV2-amiR vectors. Each scAAV2 vector contains an array of six amiR sequences in different configurations.

scAAV2-amiR-Con (Con) contains six copies of amiR-dsRed. (B) Determination of hAd5 replication after treatment with amiR-pTP/amiR_E1A_2 scAAV2 vectors. HeLa cells

were treated and analyzed as described in Figure 2A. Cells, which were infected only with hAd5, are labeled “hAd5”. Values are shown relative to Con ( = 1). Significance of

anti-adenoviral amiR vectors compared to Con, ***p < 0.001. Significance of anti-adenoviral amiR vectors compared to scAAV2-amiR-pTP (6�), ###p < 0.001. (C) Deter-

mination of cell viability. HeLa cells were treated and analyzed as described under Figure 2B. Cell viability was related to mock ( = 1). hAd5 represents cells which were

infected only with hAd5. Significance of anti-adenoviral amiR vectors compared to Con, ***p < 0.001. Significance of anti-adenoviral amiR vectors compared to scAAV2-

amiR-pTP (6�), #p < 0.05 and ##p < 0.01. (D) Expression of amiR-pTP and amiR-E1A_2. HeLa cells were treated and analyzed as described under Figure 2C. Expression

levels are shown relative to scAAV2-amiR-pTP (3�) (left side). Significance of amiR-pTP expression compared to scAAV2-amiR-pTP (3�), #p < 0.05 and ###p < 0.001.

Significance of amiR-pTP expression compared to scAAV2-amiR-pTP (3�)-E1A_2 (3�), ***p < 0.001. Expression values are shown relative to scAAV2-amiR-E1A_2 (3�)

( = 1) (right side). There was no significant difference in the expression of amiR-E1A_2 levels between the different scAAV2 vectors. Results of (B)–(D) show mean

values ± SEM.
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than the other vectors with mixed amiR-pTP/amiR-E1A_2. In
contrast, the expression of amiR-E1A_2 in the vectors with mixed
amiR-pTP/amiR-E1A_2 was not significantly changed compared to
the control vector scAAV2-amiR-E1A_2 (3�) (Figure 3D). These
results demonstrate that co-expression of amiR-pTP and amiR-
E1A_2 does not increase anti-adenoviral efficiency compared to
positive control vectors expressing only amiR-pTP. Only scAAV2-
amiR-pTP (3�)-E1A_2 (3�) showed a similar efficiency as
scAAV2-amiR-pTP (6�). Therefore, this vector and scAAV-miR-
pTP (6�), which showed best anti-adenoviral performance among
all tested amiR-expressing scAAV vectors in previous experiments,
were selected for further investigations.
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Anti-adenoviral amiR-Expressing scAAV2 Vectors Inhibit

Ongoing hAd5 Infections in the Terminally DifferentiatedHepatic

Cell Line HepaRG

hAds can infect the liver in immunosuppressed patients, which can
lead to liver failure and death.7,8 Therefore, we next investigated the
inhibitory efficiency of scAAV2-miR-pTP (6�) and scAAV2-amiR-
pTP (3�)-E1A_2 (3�) in terminally differentiated hepatic HepaRG
cells. HepaRG cells were treated with 1 � 103 vge/cell of scAAV2-
miR- TP (6�) and scAAV2-amiR-pTP (3�)-E1A_2 (3�) 5 hr before
concomitant and 5 hr after infection with hAd5 and analyzed for
abundance of hAd5 48 hr later by real-time PCR. HeLa cells were
used as control in these experiments. Both vectors induced a marked



Figure 4. Transduction of scAAV9 Vectors after Intravenous Application in

Immunosuppressed Syrian Hamsters

(A) Syrian hamsters were immunosuppressed by application of cyclophosphamide

(CP). CPwas administered i.p. at a dose of 140mg/kg and then twiceweekly at a dose

of 100 mg/kg. Concomitant with the first CP treatment, all three animals were injected

with 2� 1011 virus genomes of scAAV9-hRLuc intravenously. On the indicated days,

the hamsters were injected intraperitoneally (i.p.) with coelenterazine and 10 min later

imaged in an IVIS Spectrum optical imaging platform. Images shown are normalized

using the same color/intensity scale. The order of the animals is the same for day 5 and

day11, and theday15 imagehasonly animals #1 (left) and#2 (right). Themock infected

animal shown at day 11 is a hamster that did not receive scAAV9-hRLuc, but was in-

jected with coelenterazine i.p. (B) At 21 days post injection, the animals #1 (left) and #2

(right) and mock animal were injected i.p. with coelenterazine. At 20 min after the in-

jection of coelenterazine, the animals were sacrificed, dissected, and selected organs

were imaged. For the scAAV9-hRLuc-injected hamsters, strong luminescence was

detected in the liver and small intestine. The luminescence was stronger on the visceral

surfaceof the liver, suggesting that thecoelenterazinesubstratedidnotabsorbwell after

i.p. injection. No luminescencewas detected in the organsof themock infected animal.
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inhibition of hAd5 replication at each time point in both cell lines (Fig-
ure S1). The results demonstrate the anti-hAd5 efficiency of both
vectors in liver cells and furthermore in ongoing hAd5 infections.

scAAV9 Vectors Transduce the Liver of Immunosuppressed

Syrian Hamsters after Systemic Administration

Previous studies reported that AAV vectors containing the capsid of
serotype 9 efficiently transduced the liver of rodents.39–41 The stan-
dard model for investigation of hAd5 infection in vivo makes use of
immunosuppressed Syrian hamsters. Nothing is known, however,
about the targeting of scAAV9 vectors and transgene expression in
this system.18 Therefore, we injected Syrian hamsters intravenously
(i.v.) with 2 � 1011 vge of scAAV9 vector-expressing hRLuc and
immunosuppressed the animals with cyclophoshamide (CP). The
animals were analyzed for hRLuc expression 5, 11, and 15 days later
by in vivo imaging after intraperitoneal (i.p.) application of coelenter-
azine. Strong hRLuc activity was detected in the liver and in the small
intestine of the investigated animals. Highest expression levels were
found on day 11, but hRLuc was also abundantly expressed on days
5 and 15 (Figures 4A and 4B). On day 21, two hamsters were injected
i.p. with coelenterazine, sacrificed, dissected, and the selected organs
were imaged. Confirming the previous in vivo imaging data, the liver
and small intestine showed the strong luminescent signals, whereas
low or no expression was detected in the heart, the colon, the lung,
and the kidney. The relatively low transduction of the heart was a
surprising result, as a recent study found strong transgene expression
after i.v. injection of AAV9 vectors into adult F1B hamsters.41 We
observed that the luminescent signal intensity of explanted organs
was stronger on the visceral surface of the liver, suggesting that the
coelenterazine did not absorb well after i.p. injection. This may also
have negatively affected the luminescence signal intensities of other
organs, such as the heart.

In summary, our data reveal that the liver was efficiently transduced
by scAAV9 vectors. This is important, as the liver is the main target
organ of hAd5 in the Syrian hamster animal model.18

Course of hAd5 Infection in Immunosuppressed Syrian

Hamsters in a Moderate-Dose Infection Model

In the standard model for investigation of hAd5 infection, Syrian
hamsters are immunosuppressed with cyclophosphamide (CP) for
2 weeks and then i.v. injected with 1.9 � 1012 vp/kg of hAd5.18

Animals treated in this manner developed a severe, disseminated
hAd5 infection, which was accompanied by high mortality of about
50%.18 Applying the replace, reduce, or refine animal experiments
(3R) principle42 aiming to specifically reduce the burden on experi-
mental animals, we investigated whether immunosuppressed Syrian
hamsters could also be infected with lower doses of hAd5. Therefore,
the animals were immunosuppressed with CP, injected with 4� 1011

vp/kg hAd5, and analyzed 3, 7, and 14 days later for hAd5 infection
(Figure S2A). No deaths were observed in the investigation period.
Animals showed a sustained reduction of body weight up to day 10
post infection. Thereafter, the body weight increased to day 14, reach-
ing values similar to those determined immediately before hAd5
infection (Figure S2B). Liver tissues of the hAd5-infected animals
showed minimal focal to moderately diffuse hepatocellular necrosis.
The medians of the pathological scores were higher at day 7 and
day 14 than at day 3. There was no tissue damage detected in the
heart, lung, or kidney. One animal showed minimal pancreatitis
(day 3) and another necroses of the pancreas islands at day 7 (Figures
S2C and S2D). Replicating hAd5 was detected in the liver and at lower
levels in the heart (about 100-fold) and the serum (about 10-fold). In
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the liver and heart, the virus titers increased from day 3 to day 7 and
then dropped at day 14, whereas the hAd5 titers in the serum
remained relatively constant over the whole investigation period (Fig-
ures S2E–S2H). These results demonstrate that injection of hAd5 into
immunosuppressed Syrian hamsters at amoderate dose leads to hAd5
infection with significant changes to the liver, but without fatalities.
As the highest hAd5 virus titers and pronounced liver damage were
observed 7 days after hAd5 infection, we decided to choose this
time point of analysis of the animals for follow up experiments.

Prophylactically Applied amiR-pTP and amiR-pTP/amiR-E1A_2-

Expressing scAAV9 Vectors Inhibit hAd5 Infection and Reduce

Liver Injury in Immunosuppressed Syrian Hamsters

To assess the efficacy of scAAV9-amiR-pTP (6�) and scAAV9-
amiR-pTP (3�)-E1A_2 (3�), Syrian hamsters were divided into
five groups and immunosuppressed with CP. Concomitant with
the first CP injection, each group was transduced with either 5 �
1013 vge/kg scAAV9-amiR-pTP (6�), scAAV9-amiR-pTP (3�)-
E1A_2 (3�) or the control vector scAAV9-amiR-Con (6�), whereas
two groups were sham operated and injected with physiological NaCl
solution. At 2 weeks later, all animals, apart from one sham operated
group, were injected i.v. with 4 � 1011 vp/kg hAd5 (Figure 5A).
During the following investigation period of 7 days, only the unin-
fected animals and hAd5-infected animals that were treated with
scAAV9-amiR-pTP (6�) did not lose weight after infection. Animals
that were transduced with the scAAV9-amiR-pTP (3�)-E1A_2 (3�)
and scAAV9-amiR-Con (6�) lost up to 3% of their body weight, but
recovered, whereas untransduced hAd5-infected animals lost up 6%
of their weight and did not recover (Figure S3).

Determination of hAd5 titers in the liver revealed a significant reduc-
tion of virus burden in animals treated with scAAV9-amiR-pTP (6�)
and scAAV9-amiR-pTP (3�)-E1A_2 (3�) compared to animals
treated with the control vector and untransduced, hAd5-infected
animals. The hAd5 titer in the liver (determined by detection of infec-
tious virus particles) in the scAAV9-amiR-pTP (6�) group and in the
scAAV9-amiR-pTP (3�)-E1A_2 (3�) group was 94.5% and 92.8%
lower compared to the control vector group, respectively (Figure 5B).
Detection of hAd5 genome copies in the liver tissue by real-time PCR
confirmed these data, but showed even stronger inhibition. Viral
DNA abundance was significantly reduced about 99.4% in those
hAd5-infected animals which were transduced with scAAV9-amiR-
pTP (6�) and about 98.9% in those that were transduced with
scAAV9-amiR-pTP (3�)-E1A_2 (3�) (Figure 5C). Immunohisto-
chemical analysis revealed strong and diffuse distributed adenovirus
E1A protein expression in the liver of hAd5-infected untransduced
animals and in animals treated with the control vector, whereas in
animals treated with the scAAV9-amiR-pTP (6�) and scAAV9-
amiR-pTP (3�)-E1A_2 (3�), adenoviral E1A protein expression
could only be found in small areas or single cells of the liver tissue,
respectively (Figure 5D). We also investigated the expression of
amiR-pTP and amiR-E1A_2 and the expression of adenoviral pTP-
and E1A-mRNA in the liver. Both amiRs were specifically detected
in animals treated with the respective amiR-expressing vector, but
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not in animals treated with the control vector. However, the expres-
sion of amiR-pTP was distinctly higher in the group treated
with scAAV9-amiR-pTP (6�) than in the group treated with
scAAV9-amiR-pTP (3�)-E1A_2 (3�) (Figure 5E). Both vectors
induced a significant inhibition of pTP-mRNA expression by 87.4%
(scAAV9-amiR-pTP 6�)) and 83.7% (scAAV9-amiR-pTP (3�)-
E1A_2 (3�)) compared to the controls, respectively. A reduction
of E1A-mRNA expression was also seen in both groups, but the
reduction was higher in animals treated with scAAV9-amiR-pTP
(3�)-E1A_2 (3�) (97.2%) than in animals treated with scAAV9-
amiR-pTP (6�) (81.2%) (Figure 5F). The latter indicates that reduc-
tion of E1A expression in the scAAV9-amiR-pTP (3V)-E1A_2 (3�)
treated animals was not only a result of reduced adenoviral replication
induced by amiR-pTP, but also specifically resulted from E1A
silencing.

Hepatic pathological grading of the liver tissues revealed a reduction
of liver injury in all animal groups which were transduced with
scAAV9 vectors and infected with hAd5. Among these groups, there
was no significant difference in pathological scores, but the reduction
was more pronounced in animals treated with scAAV9-amiR-pTP
(6�) and scAAV9-amiR-pTP (3�)-E1A_2 (3�) than in animals
treated with scAAV9-amiR-Con (6�). Only scAAV9-amiR-pTP
(3�)-E1A_2 (3�) showed significantly lower liver injury compared
to untreated hAd5-infected animals. Moreover, animals with no signs
of liver pathology could be found only in the scAAV9-amiR-pTP
(6�) and scAAV9-amiR-pTP (3�)-E1A_2 (3�) groups (Figure 6A).
Histological examination of the liver showed that in untreated hAd5-
infected animals, the inflammation was evenly distributed throughout
the tissue. In the scAAV9-amiR-Con (6�) group, distinct inflamma-
tion could only be detected in individual areas, whereas weak spots of
inflammation were found in animals of the scAAV9-amiR-pTP (6�)
and scAAV9-amiR-pTP (3�)-E1A_2 (3�) groups (Figure 6B). We
also measured activity of the alanine aminotransferase (ALT) and
aspartate aminotransferase (AST) in the serum of all investigated
groups, but detected no differences among the groups. This indicates
that liver damage induced bymoderate hAd5 dose was below the level
required to observe an increase in ALT and AST levels.

A significant reduction of hAd5 titers was also detected in the serum
after application of scAAV9-amiR-pTP (6�) and scAAV9-amiR-pTP
(3�)-E1A_2 (3�) (Figure 7A), indicating that application of the
vectors prevented viremia. To investigate whether hAd5 infection
could also be inhibited in organs other than the liver, we investigated
the heart, spleen, and lung, which were transduced by the scAAV9
vectors (Figure 7B). scAAV9-amiR-pTP (6�) and scAAV9-amiR-
pTP (3�)-E1A_2 (3�) treatment led to significant reduction of
hAd5 titers in the heart (Figure 7C). hAd5 was also found in the
spleen and the lung, but at very low levels and only sporadically in
some animals (data not shown), making it impossible to assess the
efficiency of the anti-adenoviral amiRs in these organs. These results
indicate that prophylactic treatment with scAAV9-amiR-pTP (6�)
and scAAV9-amiR-pTP (3�)-E1A_2 (3�) inhibits hAd5 replica-
tion in the liver, decreases viremia, and inhibits development of



Figure 5. Prophylactic Application of scAAV9-amiR-pTP (6�) and scAAV9-amiR-pTP (3x)-E1A_2 (3x) to Immunosuppressed Syrian Hamsters Inhibits hAd5

Replication in the Liver

(A) Groups and time course of CP, scAAV9 vector, and hAd5 injection. Syrian hamsters were divided into five groups (n = 4 to 6 animals) and immunosuppressed by repetitive

application of CP (as described in Figure 5). The first group (sham, n = 5) was injected with NaCl at two time points (0 day/14 day). The second group (sham + hAd5, n = 4) was

injected with NaCl (0 day) and infected with hAd5 (14 day). The third (n = 4), fourth (n = 5), and fifth groups (n = 6) were transduced with scAAV9-amiR-Con (6�), AAV9-amiR-

pTP (6�), and scAAV9-amiR-pTP (3�)-E1A_2 (3�), respectively, at 0 day and in each case infected with hAd5 at day 14. Animals were sacrificed and analyzed at day 21. The

scAAV9 vectors were applied at a dose of 5� 1013 vge/kg and hAd5 at a dose of 4� 1011 vp/kg. (B) The titers of hAd5measured in liver tissue. Titers of infectious hAd5 in liver

tissue were determined by an in vitro hAd5 amplification/real-time PCR protocol, as described in the Materials and Methods. Significance, **p < 0.01 and ***p < 0.001; n.s.,

not significant. (C) hAd5 genome copy numbers in liver tissue. The hAd5 genome copy numbers were determined by real-time PCR and are shown relative to scAAV9-amiR-

Con (6x). Significance, ***p < 0.001; n.s., not significant. (D) Immunohistochemical detection of adenoviral E1A protein expression in liver tissue using an E1A-specific

antibody. Shown are representatives of each animal group, with the exception of the animal from the sham + hAd5 group, which shows a maximally positive stained liver.

(E) amiR-pTP and amiR-E1A_2 mRNA expression in liver tissue. Abundance of amiR-pTP and amiR-E1A_2 expression was analyzed with real-time RT-PCR and corrected

for the expression of snU6RNA. (F) pTP and E1A mRNA expression in liver tissue. Expression of pTP and E1A mRNA expression was determined by real-time RT-PCR and

corrected for 18S rRNA expression. Expression is shown relative to scAAV9-amiR-Con (6�) ( = 1). Significance, **p < 0.01 and ***p < 0.001; n.s., not significant. Results of

(B), (C), (E), and (F) show mean values ± SEM.
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disseminated hAd5 infection. More importantly, inhibition of repli-
cation was accompanied by reduced liver injury. Our data also
show that there were no differences in anti-adenoviral efficiency
between scAAV9-amiR-pTP (6�) and scAAV9-amiR-pTP (3�)-
E1A_2 (3�) relating to adenovirus replication, whereas slightly
higher efficiency was seen for scAAV9-amiR-pTP (3�)-amiR-
E1A_2 (3�) relating to the inhibition of hAd5-induced liver damage.

To determine whether hAd5 infection can also be inhibited by
anti-hAd5 amiRs when a higher dose of hAd5 is used for infection,
the experiments of the prophylactic approach were repeated
with an about 10-fold higher hAd5 dose (5.58 � 1012 vp/animal).
Unlike the moderate-dose model here, the treatment with
scAAV9-amiR-pTP (6�) and scAAV9-amiR-pTP (3�)-E1A_2
(3�) did not reduce the hAd5 levels in the liver. However,
there was a slightly reduced liver pathology for animals treated
with scAAV9-amiR-pTP (3�)-amiR-E1A (3�), as indicated by a
distinctly lower activity of alanine aminotransferase (ALT)
in the serum compared to scAAV9-amiR-Con (6�) (Figures
S4A–S4C).
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Figure 6. Inhibition of Liver Injury after Prophylactic Application of scAAV9-amiR-pTP (6x) and scAAV9-amiR-pTP (3x)-amiR E1A_2 (3x) to hAd5-Infected

Immunosuppressed Syrian Hamsters

Animals were treated and analyzed as shown in Figure 5A. (A) Severity of liver tissue damage. Liver damage was assessed and given as a pathological score presenting a

scale from 0 (no damage) to 5 (severe damage). Significance of anti-adenoviral amiR vectors compared to scAAV9-amiR-Con (6�), *p < 0.05; n.s., not significant. (B) H&E

staining of formalin-fixed liver slides. Shown are representatives of each group. Results of (A) show mean values ± SEM.
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Concomitant Application of amiR-pTP- and amiR-pTP/amiR-

E1A_2-Expressing scAAV9 Vectors Inhibit hAd5 Infection in the

Liver of Immunosuppressed Syrian Hamsters

To investigate the employment of anti-adenoviral amiRs in a therapeut-
ical approach, we repeated the above described in vivo experiments, but
applicated the scAAV9 vectors concomitantly with hAd5. scAAV9
vectors have only low transgene expression in the first days after in vivo
delivery.43 Therefore, in this experiment, the hAd5 dose was reduced
10-fold compared to the prophylactic approach to adapt it to an
expected 10-fold lower amiR expression.43 Unfortunately, infectious
hAd5 could not be detected in the liver of any of the animals 7 days after
vector/hAd5 application, which probably resulted from a too low hAd5
dose.However, real-timeqPCRrevealed a significant reduction of hAd5
genome copy number of about 50% in animals treated with scAAV9-
amiR-pTP (6�) and scAAV9-amiR-pTP (3�)-E1A_2 (3�) compared
to the controls (Figure 8). These data indicate that anti-adenoviral
amiRs can also inhibit hAd5 infection under therapeutic condition.

DISCUSSION
We and others have previously demonstrated that hAd infections
can be efficiently inhibited by anti-adenoviral RNAi in vitro.27–31,44
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However, the potential of RNAi inhibition of hAd infection in vivo
has not been previously investigated. Thus, here we developed scAAV
vectors expressing anti-adenoviral amiRs and analyzed their effi-
ciency in the inhibition of hAd5 infection, first in vitro and then
in vivo in immunosuppressed Syrian hamsters. This approach was
chosen for several reasons: (1) scAAV vectors have a broad tissue
tropism and enable rapid and strong transgene expression after trans-
duction of the target cells in vitro and in vivo,40,43,45 (2) amiRs can
efficiently silence target genes and can easily be delivered from viral
vectors including AAV vectors in vitro and in vivo,46–49 but were
reported to have lower toxicity than shRNAs, which are more
commonly used in the context of viral vector-based gene-silencing
investigations,46,48,50–52 and (3) immunosuppressed Syrian hamsters
represent an animal model that is permissive for hAd5.18,53

Our initial in vitro evaluation experiments revealed that out of eight
tested amiRs targeting the adenoviral genes E1A, IVa2, hexon, and
pTP, only amiR-pTP inhibited the hAd5 replication with high effi-
ciency. pTP is a component of the preinitiation complex which forms
at the adenovirus origin of DNA replication and acts as the protein
primer during DNA synthesis.54 Thus, our data confirm a previous



Figure 7. Prophylactic Application of scAAV9-amiR-pTP (6x) and scAAV9-amiR-pTP (3x)-E1A_2 (3x) Reduces hAd5 Viremia andDecreases Virus Titers in the

Heart

(A and C) The experimental procedure was the same as described in Figure 5A. The hAd5 titers were determined in the blood serum (A) and in the heart (C). Significance,

**p < 0.01 and ***p < 0.001; n.s., not significant. (B) Relative amount of scAAV9-amiR-Con (6�) vector DNA in the lung, heart, and spleen compared to the liver ( = 1) at day 21

after vector application. Results of (A)–(C) show mean values ± SEM.

www.moleculartherapy.org
assessment,31 that proteins of the adenoviral replication machinery
represent the best targets for anti-adenoviral RNAi. The most plau-
sible explanation for the lower inhibition of hAd5 replication by
amiR-IVa2 seems to be the fact that it has a lower target gene-
silencing activity than amiR-pTP. The reason for the failure of the
amiRs directed against the E1A and hexon genes is less obvious, as
their silencing activities were comparable with that of amiR-pTP.
Moreover, previous investigations revealed efficient inhibition of
hAd replication in vitro when E1A or hexon were silenced by
siRNAs.27–29 It indicates that scAAV2 vector-mediated amiR deliv-
ery and/or intracellular amiR processing was too inefficient to
generate amounts of active siRNAs which were sufficient to decrease
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Figure 8. Application of scAAV9-amiR-pTP (6x) and scAAV9-amiR-pTP (3x)-

E1A_2 (3x) Concomitant with hAd5 in Immunosuppressed Syrian Hamsters

Decreases hAd5 Infection of the Liver

The experimental procedure was the same as described in Figure 5A with two

exceptions. The scAAV9 vectors were applied concomitantly with hAd5 at day 14

after first CP injection, and the hAd5 dose was reduced to 4 � 1010 vp/kg body

weights. In each group, group n = 4, significance, *p < 0.05. Results show mean

values ± SEM.
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E1A and hexon to a level that is low enough to prevent hAd5
replication.

The initial investigations cast a light on a comparable limited effi-
ciency of scAAV2-delivered amiRs in vitro. This assessment is
confirmed by the fact that amiR-pTP as the most efficient amiR
only reduced adenoviral replication by about an order of magnitude,
whereas in another study, a reduction of about two orders of magni-
tude was achieved with pTP-siRNAs.27 It has been shown that inser-
tion of several copies of an amiR can increase amiR expression
and improve the target gene silencing.31 In fact, here, we found that
treatment with scAAV2 vectors containing three or six copies of
amiR-pTP significantly increased amiR-pTP expression and hAd5
inhibition when compared with an scAAV2 vector containing only
one copy of amiR-pTP. We did not investigate whether a further
increase in amiR-pTP copy number would further enhance the per-
formance of the vectors, however, anti-hAd vectors with three and
six amiR-pTP copies had comparable anti-adenoviral efficiencies,
so that it is unlikely that a further increase of the amiRs copy number
will be advantageous. We also tested whether the anti-adenoviral ef-
ficiency of the amiR-pTP vector could be further increased by co-
expression of amiR-E1A, as it has been shown previously that
co-silencing of different adenoviral genes can reduce hAd-induced
cytotoxicity, but only if one of the targeted genes is E1A.29 However,
hAd5-induced in vitro cytotoxicity was not further reduced when
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amiR-E1A_2 was inserted into the vector genome in addition to
amiR-pTP, although the concatemerized amiR-E1A_2 alone pre-
vented the hAd5-induced cytotoxicity. One possible explanation for
the failure of the co-silencing approach in vitro could be that the
per se high efficiency of amiR-pTP could not be further improved
by the addition of amiRs against E1A_2.

In consequence of the in vitro evaluation, we generated the amiR-
pTP-expressing vector scAAV9-amiR-pTP (6�) for further in vivo
investigations. We also generated an amiR-pTP/amiR-E1A-express-
ing vector scAAV9-amiR-pTP (3�)-E1A_2 (3�) in order to elucidate
whether pTP/E1A co-silencing in vivo may perhaps still be advanta-
geous compared to silencing of pTP alone. For the in vivo studies, we
established a hAd5 infection model of immunosuppressed Syrian
hamsters. This model is mainly characterized by strong replication
of hAd5 in the liver and moderate liver pathology. Importantly,
compared to a previously developed hAd5 infection model in immu-
nosuppressed Syrian hamsters where a higher hAd5 dose is used,18

there were no mortalities of infected animals. The prophylactic appli-
cation of scAAV9-amiR-pTP (6�) and scAAV9-amiR-pTP (3�)-
E1A_2 (3�), respectively, resulted in strong inhibition of hepatic
hAd5 infection in infected animals. This was shown by up to two
orders of magnitude fewer hAd5 in the liver and a substantial reduc-
tion of liver damage. In this regard, it should be noted that a certain,
but not significant beneficial effect on liver pathology was observed
with the amiR-Con vector (Figure 6A). Although the reason for
this remains to be elucidated, we suggest that this effect was rather
induced by the scAAV9 vector than by the expressed amiR-Con.
This conclusion is supported by another experiment where coxsack-
ievirus infections were treated by use of scAAV9 vectors. Also there,
we observed a beneficial effect of the scAAV9 control vector, although
the vector did not express amiRs (unpublished data). The antiviral
effects correlated with the expression of amiR-pTP and amiR-
E1A_2 in the liver and with silencing of the respective adenoviral
genes pTP and E1A, demonstrating that inhibition of hAd5 infection
was indeed a result of a specific amiR-induced RNAi mechanism.
Even when applied concomitantly with hAd5, an anti-adenoviral
efficiency of the vectors was detected, suggesting therapeutic potential
of the amiR approach. Thus, our data demonstrate for the first time
successful treatment of hAd5 infection by RNAi in vivo.

There were no significant differences between scAAV9-amiR-pTP
(6�) and scAAV9-amiR-pTP (3�)-amiR-E1A_2 (3�) in reduction
of hAd5 replication in the liver, but there was a trend toward reduced
liver damage in animals treated with scAAV9-amiR-pTP (3�)-amiR-
E1A_2 (3�) compared to those treated with scAAV9-amiR-pTP
(6�). Interestingly, this effect was also seen in a further in vivo exper-
iment with immunosuppressed Syrian hamsters treated with an about
10-fold higher hAd5 dose (Figure S4C). It suggests that co-silencing
of pTP and E1A could possibly be beneficial to combat hAd5 infec-
tions in vivo, however, further investigations are necessary to verify it.

When comparing the efficiency of our anti-adenoviral RNAi
approach to the efficiency of a new anti-adenoviral pharmacotherapy
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with the drug BCV in the animal model of immunosuppressed Syrian
hamsters,18 BCV showed a distinctly higher efficiency. This is in some
contrast to previous in vitro investigations, where a comparable effi-
ciency of anti-adenoviral siRNAs and the BCV analog CDV has been
observed.30,31 Limited hepatic delivery of amiRs may be the main
reason for this difference. An improvement of transduction by
increasing vector dose, use of AAV vectors with modified capsids,55

or employment of small molecules56 may increase levels of expressed
anti-adenoviral amiRs in the liver and increase the antiviral effect, but
it may also increase the risk of side effects.52 In this regard, it should
be noted that we did not find signs of liver pathology when the amiR-
expressing vectors were applied to immunosuppressed hamsters (Fig-
ure S4C), indicating the safety of our approach.

Our study provides a first step in the translation of anti-adenoviral
RNAi treatment from the bench to the clinic, but further develop-
ments will be necessary prior to its use in humans. In particular, it
seems to be important to increase the amiRs levels in hAd5-infected
cells. We suggest that for a substantial improvement of therapeutic
efficiency for infections with moderate dose of hAd5, at least 10- to
100-fold higher scAAV9 vector doses are required. Although AAV
vectors are currently the most promising vehicles for the delivery
of transgenes and the first approved gene therapy is based on this
type of viral vector,57 vector-free delivery systems may provide an
appealing alternative. Relevant protocols using nanoparticle-medi-
ated systemic delivery of stabilized siRNAs have been developed
and were successfully used to treat hepatitis C virus infection in vivo
recently.58 It may now be of interest to adapt these protocols to the
specific requirements of hAd infection and analyze its efficacy in vivo
and subsequently in humans.

In summary, here, we show that RNAi-induced gene silencing is a
suitable approach to inhibit hAd5 infection in vivo. We found that
amiRs delivered from scAAV9 vectors inhibit the development of
disseminated hAd5 infections and reduce tissue damage of the liver
in immunosuppressed Syrian hamsters. Moreover, the efficiency of
anti-adenoviral RNAi was documented for the prophylactic and
concomitant application of amiRs and no side effects were observed
in our experiments. Thus, RNAi can be considered as a promising
potential new approach to combat hAd infections in human patients.

MATERIALS AND METHODS
Cell Culture

HEK293 cells and HeLa cell lines were cultured in high glucose
DMEM (PAA Laboratories) supplemented with 10% fetal calf serum
(FCS; c.c. pro and PAA Laboratories) and 1% each of penicillin and
streptomycin (Sigma).

HepaRG cells were cultured in William’s E (GlutaMAX) supple-
mented with 5 mg/mL insulin, 50 mM hydrocortison, 10% FCS, and
1% penicillin and streptomycin for 14 days. Themediumwas changed
twice a week. Thereafter, cells were treated with medium supple-
mented with 2%DMSO and cultured for an additional 14 days. There-
after, the cells were used for transduction/infection experiments. After
complete differentiation using DMSO, HepaRG resembled the liver
cells in terms of metabolism in a stable, donor-independent way.

Design of amiRs

The amiRs amiR-E1A_1, amiR-E1A_2, amiR-E1A_3, amiR-Hex, and
amiR-IVa2 were generated by embedding the previously described
siRNA sequences siE1A_1, siE1A_2, siE1A_4, siHexon_4, and
siIVa2_229 in an adapted form into the native environment of the
miR-155 stem loop structure, respectively. For generation of amiRs-
E1A_4 and amiR-E1A_5, the mature siRNA sequences of the amiR
shR-E1A-73659 and shR-E1A-78559 were embedded in an adapted
form into the miR-155 scaffold and named amiR-E1A_4 and amiR-
E1_A5. The amiRs pTP-miR5 was used, as described previously31

and termed as amiR-pTP. Three different control amiRs were
designed to target easily accessible areas of the red fluorescent protein
drFP583 and referred to as amiR-Con_1, amiR-Con_2, and amiR-
Con_3 (Figure 1A; Table S1).

Plasmids

The sequences of amiR-E1A_1, amiR-E1A_2, amiR-E1A_3, amiR-
E1A_4, amiR-Hex, amiR-IVa2, and amiR-pTP (Table S1) were
synthesized as a single segment of DNA and inserted into the plasmid
pMK-RQ (kanR) by GeneArt. Each amiR was flanked by unique
restriction sites for subcloning. As controls, amiR-Con_1 to 3 were
synthesized and inserted as a cluster into pMK-RQ by GeneArt.
The nine anti-adenoviral amiRs, as well as amiR-Con_1 to 3, were
amplified by PCR, the DNA fragments digested with XhoI/ClaI,
and inserted into the XhoI/ClaI-digested AAV shuttle plasmid
pscAAV-CMV-GFP containing a self-complementary AAV vector
genome and a GFP-expression cassette. The resulting plasmids
were named pscAAV-CMV-GFP-amiR (9�) and pscAAV-CMV-
amiR-Con (3�), respectively. pscAAV-CMV-GFP was generated
from pscAAV-GFP60 by digestion with XbaI and religation.
The AAV shuttle plasmid containing two stretches of amiR-Con_1
to 3 was constructed by insertion of a PCR product containing
amiRs-Con_1 to 3 via BglII and ClaI into the plasmid pscAAV-
CMV-GFP-amiR-Con (3�). The resulting plasmid was named
pscAAV-GFP-amiR-Con (6�). Plasmids containing a GFP reporter
and only one amiR were typically constructed by removal of the
unnecessary amiRs from pscAAV-CMV-GFP-amiR (9�) and
pscAAV-CMV-GFP-amiR-Con (3�) using restriction and cloning
procedures. In plasmids expressing only the amiRs, but not the
reporter, the GFP cDNA was cut out. These plasmids were named
pscAAV-amiR-E1A_1, pscAAV-amiR-E1A_2, pscAAV-amiR-E1A_3,
pscAAV-amiR-E1A_4, pscAAV-amiR-Hex, pscAAV-amiR-IVa2,
pscAAV-amiR-pTP, pscAAV-amiR-Con, pscAAV-amiR-Con (3�),
and pscAAV-amiR-Con (6�), respectively.

For generation of an AAV shuttle plasmid containing three copies of
the amiR-pTP, the plasmid pMK-EcoRI-SpeI-amiR-pTP (3�)-NheI-
ClaI (constructed by GeneArt) containing three copies of the amiR-
pTP in tandem orientation was digested with EcoRI/ClaI, and the
DNA fragment containing the pTP-amiRs was inserted into
pscAAV-GFP via EcoRI/ClaI. The resulting plasmid was named
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pscAAV-CMV-amiR-pTP (3�). pscAAV-amiR-pTP (6�) contains
six amiR-pTP. It was generated as follows: the plasmid pMK-
EcoRI-SpeI-amiR-pTP (3�)-NheI-ClaI was digested with NheI/
ClaI, and the DNA fragment containing the three amiR-pTP copies
was inserted into NheI/ClaI-digested pscAAV-CMV-amiR-pTP
(3�). The plasmid pAAV-amiR E1A_2 (3�) was generated from
pscAAV-amiR-pTP (3�)-E1A_2 (3�) (see below) by restriction of
the latter with EcoRI and religation.

Several plasmids were generated expressing three copies of amiR-pTP
and amiR-E1A_2. These plasmids were constructed by a combination
of gene synthesis of amiR sequences with plasmid cloning using
pscAAV-CMV-amiR-pTP (3�) as the plasmid backbone. The
pscAAV-amiR-E1A_2 (3�)-bidCMV-amiR-pTP (3�) contains a
bidirectional CMV promoter with three copies of the amiR-pTP at
one site and three copies of the amiR-E1A_2 at the opposite site of
the bidirectional CMV promoter. pscAAV-amiR-E1A_2 (3�)-pTP
(3�) contains a CMV promoter and three copies of the amiR-
E1A_2 followed by three copies of the amiR-pTP. In pscAAV-
amiR-pTP (3�)-E1A_2 (3�), the three copies of amiR-pTP and
amiR-E1A_2 were inserted in reverse order compared to pscAAV-
amiR-E1A_2 (3�)-pTP (3�). pscAAV-3� (amiR-E1A_2-pTP) con-
tains three copies of amiR-E1A_2 and amiR-pTP in alternating order.

Plasmids containing miR-TS were generated by insertion of annealed
miR-TS primers into the 30 UTR of hRLuc reporter cDNA psiCheck2
(Promega) via XhoI and PmeI restriction sites.

To construct the AAV shuttle plasmid pscAAV-hRLuc containing
hRLuc, hRLuc was amplified from a psiCHEK-2 vector using primers
with EcoRI/XhoI linkers and inserted into pscAAV-GFP via EcoRI/
XhoI. The correctness of all plasmids was confirmed by sequencing.

Construction of AAV Vectors

scAAV2 vectors were produced in 14.5 cm cell culture dishes by
co-transfection of HEK293T cells with AAV shuttle plasmids and the
AAV2 packaging plasmid pDG (kindly provided by Jürgen Kleinsch-
midt, Deutsches Krebsforschungszentrum, Heidelberg, Germany), as
described.61 The luciferase-expressing vector scAAV9-hRLuc was
produced in vented roller bottles by triple transfection of HEK293T
cells by pscAAV-hRLuc- p5E18-VD2/9 (kindly provided by James
M. Wilson, University of Pennsylvania, USA) and pHelper (Agilent
Technologies), as described.62 At 2 days after transfection, vectors
were released from the cells by three freeze-thaw cycles, treated with
Benzonase (Merck; final concentration of 250 U/mL) for 1 hr at
37�C and the cell debris pelleted by centrifugation. The supernatants
containing the scAAV2 vectors were stored at �80�C until use. The
supernatants containing scAAV9-hRLuc were further purified by
iodixanol gradient centrifugation, concentrated using Amicon Ultra-
15 centrifugal filter devices (MerckMillipore) according to the instruc-
tions of the supplier, and stored at �80�C until use. AAV vector titers
were determined by SYBR Green Real-Time PCR using the primers
50-TGCCCAGTACATGACCTTATGG-30 / 50-GAAATCCCCGTGA
GTCAAACC-30 and SsoFast EvaGreen Supermix (Bio-Rad). The
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AAV vectors scAAV9-amiR-pTP (6�), scAAV9-amiR-pTP (3�)-
E1A_2 (3�), and scAAV9-amiR-Con (6�) were constructed and the
vector titers determined by Vigene Biosciences using the AAV shuttle
plasmids pscAAV-amiR-pTP (6�), pscAAV-amiR-pTP (3�)-E1A_2
(3�) and pscAAV-amiR-Con (6�), respectively.

Production of hAd 5

hAd5 was a kind gift from Stefan Weger (Institute of Virology,
Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin,
Berlin, Germany). It was reamplified on HEK293 cells, and the viral
titers were determined by photometricmeasurement of the optical den-
sity at 260 nm to count virus particles ([vp]/mL) and by standard plaque
assay to count plaque-forming units ([pfu]/mL) on HEK293 cells.

Luciferase Reporter Assays for Detection of amiR Activity

HeLa cells were seeded in 48-well plates. The next day they were
transfected with plasmids expressing amiR and luciferase reporter
plasmids containing the corresponding amiR-TS at a ratio of 7:1 using
the transfection agent polyethylenimine. The cell cultures were incu-
bated for 48 hr until analysis. Alternatively, HeLa cells were seeded
in 48-well plates, transduced the next day with amiRs expressing
scAAV2 vectors and incubated for an additional 72 hr. Thereafter,
cells were trypsinized, plated out into 96-well plates, and transfected
24 hr later with luciferase reporter plasmids containing the corre-
sponding amiR-TS for 24 hr until analysis. Firefly luciferase and
hRLuc were analyzed using Dual-Luciferase Reporter Systems (Prom-
ega) in TriStar2 Multimode Reader LB 942 (Berthold Technologies),
as recommended by the manufacturer.

Real-Time PCR for Detection of Adenoviral DNA

After discarding the supernatant of hAd5-infected cells, the cells were
lysed in PBS by four freeze-thaw cycles. After centrifugation at
6,000 � g for 10 min, the supernatant was transferred to a fresh tube,
an aliquot of 5 mL was diluted 1:10 in PBS, and inactivated at 95�C
for 5 min. 2 mL of the solution were used directly in a real-time PCR
for detection of hAd5 DNA using primers 50-CACATCCAGGTGCC
TCAGAA-30 / 50-AGGTGGCGTAAAGGCAAATG-3 directed against
adenoviral hexon gene29 and the SsoFast EvaGreen Supermix (Bio-
Rad). Alternatively, viral and genomic DNA were isolated from tissues
using the Tissue DNAMini Kit (PEQLAB) according to the manufac-
turer’s recommendations. 50 ng of isolated DNA were used in the
real-time PCR reaction. Real-time PCR reaction was carried out in a
C1000 Thermal Cycler and CFX96 Real-Time System (Bio-Rad) using
the following program: 95�C, 3 min, 40 cycles with each: 95�C,
15 s, 55�C, 30 s, and 72�C, 30 s. 18S rRNA was analyzed as refer-
ence in a SYBR Green Real-Time PCR using the primer pair
50-CCCCTCGATGCTCTTAGCTG-30 / 50-TCGTCTTCGAACCTCC
GACT-30 and same PCR program. The PCR reactions were carried
out in duplicate. Relative hAd5genome copynumberswere determined
by the DDc(t) calculation method.

Determination of Titers of Infectious hAd5 in Tissues

To release hAd5 from tissue, animal organs (<40 mg of tissue)
were homogenized in 2 mL serum-free medium using a VDI 12
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homogenizer (VWR International) followed by three freeze-thaw
cycles. The debris was separated by centrifugation and the virus-con-
taining supernatants stored at �80�C. Serum from animals was
obtained by centrifugation of whole blood and stored at �80�C. To
determine virus titers 6 � 105 HeLa cells per well were seeded in a
24-well cell culture plate. The next day the medium was removed,
and cells were inoculated with 1:10 diluted virus solution in serum-
free medium. The medium was changed 4 hr after infection, and
the cells were harvested by trypsinization 48 hr after infection. The
virus was released from the cells by three freeze-thaw cycles, and
the amount of adenoviral DNA and 18S rRNA was detected by
real-time PCR, as described above. Absolute quantification assays
were done by infecting HeLa cells with 100, 500, 1,000, and 5,000
pfu of hAd5 ( = hAd5 standard) in parallel and the amount of adeno-
viral DNA after release of the virus from the cells 48 hr later, as
described above. A standard curve was generated mapping DCt
(Ct Hex � Ct 18S) over virus titer of the hAd5 standard and was
used to calculate the hAd5 load in organs and cells. Alternatively to
this procedure, virus titers were determined by use of the 50% tissue
culture infective dose (TCID50), as described previously18 (only for
data shown in the Figure S4B).

Measurement of ALT and AST

Serum analysis for ALT and AST activity was done by Advanced
Veterinary Laboratories or carried out by use of Infinity ALT
(GPT) Liquid Stable Reagent and Infinity AST (GOT) Liquid Stable
Reagent (Thermo Fisher Scientific).

Cell Viability Assay

Cell viability was determined using the Cell Proliferation Kit II (XTT)
(Roche) as recommended by manufacturer. Data were normalized to
untreated mock infected cells.

Quantification of hAd5 mRNA Expression

Total RNA was isolated from tissue and cell cultures with TRIzol
(Thermo Fisher Scientific) according to manufacturer’s recommenda-
tions. 5 mg of the RNA were treated with 2 U DNaseI (New England
Biolabs) for 1 hr. 2 mg DNaseI-treated RNA were reverse transcribed
using a High Capacity cDNA Reverse Transcription Kit (Thermo
Fisher Scientific) in a 20 mL reaction. For determination of adenoviral
pTP and E1A expression, 2 mL of this reaction were mixed with the
SsoFast EvaGreen Supermix and the primer pairs 50-CGGCGCAGGT
CTTTGTAG�30 / 50-CACGCATGGGAGGAAGAG-30 (pTP mRNA
detection) and 50-CTTGGGTCCGGTTTCTATGC-30 / 50-CCCGTAT
TCCTCCGGTGATA-30 (E1A mRNA detection), respectively, and
analyzed using the above described PCR program. Cellular 18S
rRNA expression was used as reference and analyzed using the
same PCR primers as mentioned above. The relative pTP and E1A
mRNA expression was determined by the DDc(t) calculation method.

Quantification of amiR Expression

Total RNA was isolated using TRIzol (Thermo Fisher Scientific), and
the expression of mature amiR-pTP and amiR-E1A_2 was quantified
using Custom Design TaqMan MicroRNA Assays (Thermo Fisher
Scientific) according to the manufacturer’s recommendations.
SnU6RNA served as internal standard (TaqMan MicroRNA Assay
Number: 001973, Thermo Fisher Scientific).

Ethic Statement for In Vivo Experiments

All in vivo procedures involving the use and care of animals were
performed according to the Guide for the Care and Use of Laboratory
Animals published by the US NIH (NIH Publication No. 85-23,
revised 1996) and the German animal protection code.

In Vivo Imaging of Luciferase Expression in Immunosuppressed

Syrian Hamsters Transduced with scAAV9-hRLuc

Syrian hamsters were obtained from Envigo. Animals were immuno-
suppressed with CP according to a previously established protocol.18

Briefly, CP was administered i.p. at a dose of 140 mg/kg and then
twice weekly at a dose of 100 mg/kg. At the time of the first injection,
the animals weighed between 70 and 80 g. Concomitant with the first
CP treatment, the animals were injected with 2 � 1011 vge of
scAAV9-hRLuc i.v. percutaneously into the jugular vein. For detec-
tion of hRLuc expression, the hamsters were anesthetized with
isoflurane to effect, injected with 150 mg/animal of coelenterazine
(XenoLight RediJect Coelenterazine, PerkinElmer) i.p., and 10 min
later imaged in an in vivo imaging system (IVIS) Spectrum Optical
Imaging Platform (PerkinElmer). Images were normalized using
the same color/intensity scale. In vivo imaging of luciferase activity
was carried out 5, 11, and 15 days after vector transduction. At
21 days after vector injection, two scAAV9-hRLuc-transduced
animals and one mock infected animal were injected i.p. with coelen-
terazine and sacrificed 20 min later. The animal was dissected and
select organs were imaged for luciferase activity.

Course of hAd5 Infection in Immunosuppressed Syrian

Hamsters

Male Syrian hamsters supplied from Charles River Laboratories were
treated at an age of 5 weeks (weight between 100 and 135 g) with CP.
CP treatment was repeated during the whole experiment, as described
above. At 2 weeks after initial CP injection, the animals were narco-
tized with isoflurane, the left jugular vein was prepared, and hAd5
injected into the vein at a dose of 4 � 1011 vp/kg. The surgical step
was accompanied by analgesic treatment with 5 mg/kg carprosol
(CP-Pharma). Animals were sacrificed for organ harvest 3, 7, and
14 days after infection.

Determination of hAd5 Infection of Immunosuppressed Syrian

Hamsters after Treatment with amiR-Expressing scAAV9

Vectors

Animals were supplied fromCharles River Laboratories and treated at
an age of 5 weeks with CP, as described above. In the prophylactic
approach, concomitant to the onset of immunosuppression, the
animals were transduced with 5 �1013 vge/kg scAAV9-amiR-Con
(6�), scAAV9-amiR-pTP (6�), or scAAV9-amiR-pTP (3�)-E1A_2
(3�) or were injected with physiological saline into the left jugular
vein under isoflurane narcosis. At 2 weeks later, animals were infected
with 4 � 1011 vp/kg hAd5 under isoflurane narcosis into the right
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jugular vein. One group that already had received saline was again in-
jected with saline. Each surgical step was accompanied by analgesic
treatment with carprosol, as described above. Animals were sacrificed
7 days after infection with hAd5, and the organs were dissected
and rapidly frozen in liquid nitrogen or put in 4% formalin. In the
therapeutic approach, Syrian hamsters were treated as described
above with the following modification: scAAV9 vectors were injected
concomitantly with hAd5 and hAd5 was used at a dose of 4 �
1010 vp/kg. Alternatively, 5-week-old hamsters were obtained from
Envigo and treated with CP, as described above. Concomitant with
the first CP injection, three groups of animals were injected via the
jugular vein under ketamine-xylazine narcosis with one of the three
scAAV9-amiR vectors at a dose of 5� 1013 vge/kg and a fourth group
received vehicle (PBS). At 14 days after vector administration, half of
the animals in all groups were injected i.v. (into the jugular vein) with
hAd5 at a dose of 5.58 � 1012 vp/kg, while the remaining animals
received vehicle (PBS) injections. Animals were sacrificed 7 days later.

Immunohistological Examination

Tissues were formalin-fixed, paraffin-embedded (FFPE), cut, and
stained with H&E, as previously described.63 For immunohistochem-
ical staining, 4- to 5-mm sections of the FFPE hearts were cut and
deparaffinized in xylene and rehydrated in graded alcohols.64 Endog-
enous peroxidases were blocked by incubating sections in methanol
with 3% hydrogen peroxide for 20 min. Antigen heat retrieval was
performed in citric buffer for 12 min, followed by a cooling period
of 15 min. Slides were then incubated for 30 min with Roti-Immuno-
block (Roth) and goat serum to block non-specific antibody binding.
Sections were incubated overnight at 4�C with monoclonal mouse
anti-adenovirus antibody (ab3648, Abcam). The antibody recognizes
the hAd5 E1A protein.65 Slides were then incubated with a bio-
tinylated secondary goat anti-mouse antibody (dilution 1:200 each;
Vector Laboratories) for 30 min at room temperature. Immunolabel-
ing was performed by an avidin-biotin-immunoperoxidase system
(Vectastain Elite ABC Kit; Vector Laboratories). Diaminobenzidine
tetrahydrochloride (DAB; Merck) was used for antigen visualization
of viral protein.

Statistics

Results are expressed as means ± SEM. To test for statistical
significance of in vitro data, an unpaired Student’s t test was applied.
Statistical significance of in vivo data was determined using the
Mann-Whitney U test.

SUPPLEMENTAL INFORMATION
Supplemental Information includes four figures and one table and
can be found with this article online at http://dx.doi.org/10.1016/j.
omtn.2017.07.002.

AUTHOR CONTRIBUTIONS
K.S. conducted in vitro and in vivo experiments with hAd5-infected
immunosuppressed Syrian hamsters and contributed to writing the
manuscript. A.G. performed in vitro experiments. M.K. designed
amiRs and carried out in vitro experiments. S.P. andM.P. contributed
314 Molecular Therapy: Nucleic Acids Vol. 8 September 2017
to in vivo experiments with hAd5-infected immunosuppressed Syrian
hamsters. R.K. conducted histological and immunohistological inves-
tigations. J.F.S., A.E.T., B.Y., W.S.W., and K.T. contributed by in vivo
imaging of immunosuppressed Syrian hamsters after AAV9 vector
transduction and by design of the study. J.K. contributed to the
writing of the paper. H.F. designed the experiments and wrote the
paper.

ACKNOWLEDGMENTS
This work was supported by the Deutsche Forschungsgemeinschaft
(DFG) through grant FE785/4-1 to H.F. The project was also funded
in part with funds from theNational Institute of Allergy and Infectious
Diseases, National Institutes of Health and Human Services (http://
www.niaid.nih.gov), under contract no. HHSN272201000021.We
thank Xiaomin Wang for help with hAd5 preparation and Erik
Wade for critical reading of the manuscript and helpful comments.

REFERENCES
1. Kidd, A.H., Jonsson, M., Garwicz, D., Kajon, A.E., Wermenbol, A.G., Verweij, M.W.,

and De Jong, J.C. (1996). Rapid subgenus identification of human adenovirus isolates
by a general PCR. J. Clin. Microbiol. 34, 622–627.

2. Echavarría, M. (2008). Adenoviruses in immunocompromised hosts. Clin. Microbiol.
Rev. 21, 704–715.

3. Hong, J.Y., Lee, H.J., Piedra, P.A., Choi, E.H., Park, K.H., Koh, Y.Y., and Kim, W.S.
(2001). Lower respiratory tract infectionsdue to adenovirus inhospitalizedKoreanchil-
dren: epidemiology, clinical features, and prognosis. Clin. Infect. Dis. 32, 1423–1429.

4. Rocholl, C., Gerber, K., Daly, J., Pavia, A.T., and Byington, C.L. (2004). Adenoviral
infections in children: the impact of rapid diagnosis. Pediatrics 113, e51–e56.

5. Lion, T., Baumgartinger, R., Watzinger, F., Matthes-Martin, S., Suda, M., Preuner, S.,
Futterknecht, B., Lawitschka, A., Peters, C., Potschger, U., and Gadner, H. (2003).
Molecular monitoring of adenovirus in peripheral blood after allogeneic bone
marrow transplantation permits early diagnosis of disseminated disease. Blood 102,
1114–1120.

6. Schilham, M.W., Claas, E.C., van Zaane, W., Heemskerk, B., Vossen, J.M., Lankester,
A.C., Toes, R.E., Echavarria, M., Kroes, A.C., and van Tol, M.J. (2002). High levels of
adenovirus DNA in serum correlate with fatal outcome of adenovirus infection in
children after allogeneic stem-cell transplantation. Clin. Infect. Dis. 35, 526–532.

7. Vyas, J.M., and Marasco, W.A. (2012). Fatal fulminant hepatic failure from adeno-
virus in allogeneic bone marrow transplant patients. Case Rep. Infect. Dis. 2012,
463569.

8. Terasako, K., Oshima, K., Wada, H., Ishihara, Y., Kawamura, K., Sakamoto, K.,
Ashizawa, M., Sato, M., Machishima, T., Nakasone, H., et al. (2012). Fulminant
hepatic failure caused by adenovirus infection mimicking peliosis hepatitis on
abdominal computed tomography images after allogeneic hematopoietic stem cell
transplantation. Intern. Med. 51, 405–411.

9. Baldwin, A., Kingman, H., Darville, M., Foot, A.B., Grier, D., Cornish, J.M., Goulden,
N., Oakhill, A., Pamphilon, D.H., Steward, C.G., and Marks, D.I. (2000). Outcome
and clinical course of 100 patients with adenovirus infection following bone marrow
transplantation. Bone Marrow Transplant. 26, 1333–1338.

10. Howard, D.S., Phillips, G.L., II, Reece, D.E., Munn, R.K., Henslee-Downey, J., Pittard,
M., Barker, M., and Pomeroy, C. (1999). Adenovirus infections in hematopoietic stem
cell transplant recipients. Clin. Infect. Dis. 29, 1494–1501.

11. Hierholzer, J.C. (1992). Adenoviruses in the immunocompromised host. Clin.
Microbiol. Rev. 5, 262–274.

12. Lion, T. (2014). Adenovirus infections in immunocompetent and immunocompro-
mised patients. Clin. Microbiol. Rev. 27, 441–462.

13. Wy Ip, W., and Qasim, W. (2013). Management of adenovirus in children after allo-
geneic hematopoietic stem cell transplantation. Adv. Hematol. 2013, 176418.

http://dx.doi.org/10.1016/j.omtn.2017.07.002
http://dx.doi.org/10.1016/j.omtn.2017.07.002
http://www.niaid.nih.gov
http://www.niaid.nih.gov
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref1
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref1
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref1
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref2
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref2
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref3
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref3
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref3
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref4
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref4
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref5
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref5
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref5
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref5
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref5
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref6
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref6
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref6
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref6
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref7
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref7
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref7
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref8
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref8
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref8
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref8
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref8
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref9
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref9
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref9
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref9
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref10
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref10
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref10
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref11
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref11
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref12
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref12
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref13
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref13


www.moleculartherapy.org
14. Schaar, K., Röger, C., Pozzuto, T., Kurreck, J., Pinkert, S., and Fechner, H. (2016).
Biological antivirals for treatment of adenovirus infections. Antivir. Ther. (Lond.)
21, 559–566.

15. De Clercq, E., and Holý, A. (2005). Acyclic nucleoside phosphonates: a key class of
antiviral drugs. Nat. Rev. Drug Discov. 4, 928–940.

16. Plosker, G.L., and Noble, S. (1999). Cidofovir: a review of its use in cytomegalovirus
retinitis in patients with AIDS. Drugs 58, 325–345.

17. Ciesla, S.L., Trahan, J., Wan, W.B., Beadle, J.R., Aldern, K.A., Painter, G.R., and
Hostetler, K.Y. (2003). Esterification of cidofovir with alkoxyalkanols increases oral
bioavailability and diminishes drug accumulation in kidney. Antiviral Res. 59,
163–171.

18. Toth, K., Spencer, J.F., Dhar, D., Sagartz, J.E., Buller, R.M.L., Painter, G.R., andWold,
W.S. (2008). Hexadecyloxypropyl-cidofovir, CMX001, prevents adenovirus-induced
mortality in a permissive, immunosuppressed animal model. Proc. Natl. Acad. Sci.
USA 105, 7293–7297.

19. Voigt, S., Hofmann, J., Edelmann, A., Sauerbrei, A., and Kühl, J.S. (2016).
Brincidofovir clearance of acyclovir-resistant herpes simplex virus-1 and adenovirus
infection after stem cell transplantation. Transpl. Infect. Dis. 18, 791–794.

20. Florescu, D.F., Pergam, S.A., Neely, M.N., Qiu, F., Johnston, C., Way, S., Sande, J.,
Lewinsohn, D.A., Guzman-Cottrill, J.A., Graham, M.L., et al. (2012). Safety and effi-
cacy of CMX001 as salvage therapy for severe adenovirus infections in immunocom-
promised patients. Biol. Blood Marrow Transplant. 18, 731–738.

21. Camargo, J.F., Morris, M.I., Abbo, L.M., Simkins, J., Saneeymehri, S., Alencar, M.C.,
Lekakis, L.J., and Komanduri, K.V. (2016). The use of brincidofovir for the treatment
of mixed dsDNA viral infection. J. Clin. Virol. 83, 1–4.

22. Awosika, O.O., Lyons, J.L., Ciarlini, P., Phillips, R.E., Alfson, E.D., Johnson, E.L., Koo,
S., Marty, F., Drew, C., Zaki, S., et al. (2013). Fatal adenovirus encephalomyeloradi-
culitis in an umbilical cord stem cell transplant recipient. Neurology 80, 1715–1717.

23. Keyes, A., Mathias, M., Boulad, F., Lee, Y.J., Marchetti, M.A., Scaradavou, A., Spitzer,
B., Papanicolaou, G.A., Wieczorek, I., and Busam, K.J. (2016). Cutaneous involve-
ment of disseminated adenovirus infection in an allogeneic stem cell transplant recip-
ient. Br. J. Dermatol. 174, 885–888.

24. Fire, A., Xu, S., Montgomery, M.K., Kostas, S.A., Driver, S.E., and Mello, C.C. (1998).
Potent and specific genetic interference by double-stranded RNA in Caenorhabditis
elegans. Nature 391, 806–811.

25. Poller, W., and Fechner, H. (2010). Development of novel cardiovascular therapeutics
from small regulatory RNA molecules–an outline of key requirements. Curr. Pharm.
Des. 16, 2252–2268.

26. Kurreck, J. (2009). RNA interference: from basic research to therapeutic applications.
Angew. Chem. Int. Ed. Engl. 48, 1378–1398.

27. Kneidinger, D., Ibri�simovi�c, M., Lion, T., and Klein, R. (2012). Inhibition of adeno-
virus multiplication by short interfering RNAs directly or indirectly targeting the viral
DNA replication machinery. Antiviral Res. 94, 195–207.

28. Chung, Y.S., Kim, M.K., Lee, W.J., and Kang, C. (2007). Silencing E1A mRNA by
RNA interference inhibits adenovirus replication. Arch. Virol. 152, 1305–1314.

29. Eckstein, A., Grössl, T., Geisler, A., Wang, X., Pinkert, S., Pozzuto, T., Schwer, C.,
Kurreck, J., Weger, S., Vetter, R., et al. (2010). Inhibition of adenovirus infections
by siRNA-mediated silencing of early and late adenoviral gene functions. Antiviral
Res. 88, 86–94.

30. Pozzuto, T., Röger, C., Kurreck, J., and Fechner, H. (2015). Enhanced suppression of
adenovirus replication by triple combination of anti-adenoviral siRNAs, soluble
adenovirus receptor trap sCAR-Fc and cidofovir. Antiviral Res. 120, 72–78.

31. Ibri�simovi�c, M., Kneidinger, D., Lion, T., and Klein, R. (2013). An adenoviral vector-
based expression and delivery system for the inhibition of wild-type adenovirus repli-
cation by artificial microRNAs. Antiviral Res. 97, 10–23.

32. Ewing, S.G., Byrd, S.A., Christensen, J.B., Tyler, R.E., and Imperiale, M.J. (2007).
Ternary complex formation on the adenovirus packaging sequence by the IVa2
and L4 22-kilodalton proteins. J. Virol. 81, 12450–12457.

33. Zhang, W., and Imperiale, M.J. (2003). Requirement of the adenovirus IVa2 protein
for virus assembly. J. Virol. 77, 3586–3594.
34. Tyler, R.E., Ewing, S.G., and Imperiale, M.J. (2007). Formation of a multiple protein
complex on the adenovirus packaging sequence by the IVa2 protein. J. Virol. 81,
3447–3454.

35. Russell, W.C. (2000). Update on adenovirus and its vectors. J. Gen. Virol. 81, 2573–
2604.

36. Juliano, R., Alam,M.R., Dixit, V., and Kang, H. (2008). Mechanisms and strategies for
effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res. 36,
4158–4171.

37. Watanabe, A., Arai, M., Yamazaki, M., Koitabashi, N., Wuytack, F., and Kurabayashi,
M. (2004). Phospholamban ablation by RNA interference increases Ca2+ uptake into
rat cardiac myocyte sarcoplasmic reticulum. J. Mol. Cell. Cardiol. 37, 691–698.

38. Saha, A., Bhagyawant, S.S., Parida, M., and Dash, P.K. (2016). Vector-delivered arti-
ficial miRNA effectively inhibited replication of Chikungunya virus. Antiviral Res.
134, 42–49.

39. Geisler, A., Schön, C., Größl, T., Pinkert, S., Stein, E.A., Kurreck, J., Vetter, R., and
Fechner, H. (2013). Application of mutated miR-206 target sites enables skeletal mus-
cle-specific silencing of transgene expression of cardiotropic AAV9 vectors. Mol.
Ther. 21, 924–933.

40. Inagaki, K., Fuess, S., Storm, T.A., Gibson, G.A., Mctiernan, C.F., Kay, M.A., and
Nakai, H. (2006). Robust systemic transduction with AAV9 vectors in mice: efficient
global cardiac gene transfer superior to that of AAV8. Mol. Ther. 14, 45–53.

41. Yang, L., Jiang, J., Drouin, L.M., Agbandje-McKenna, M., Chen, C., Qiao, C., Pu, D.,
Hu, X., Wang, D.Z., Li, J., and Xiao, X. (2009). A myocardium tropic adeno-associ-
ated virus (AAV) evolved by DNA shuffling and in vivo selection. Proc. Natl.
Acad. Sci. USA 106, 3946–3951.

42. Schiffelers, M.J., Blaauboer, B.J., Bakker, W.E., Beken, S., Hendriksen, C.F., Koëter,
H.B., and Krul, C. (2014). Regulatory acceptance and use of 3R models for pharma-
ceuticals and chemicals: expert opinions on the state of affairs and the way forward.
Regul. Toxicol. Pharmacol. 69, 41–48.

43. Röger, C., Pozzuto, T., Klopfleisch, R., Kurreck, J., Pinkert, S., and Fechner, H. (2015).
Expression of an engineered soluble coxsackievirus and adenovirus receptor by a
dimeric AAV9 vector inhibits adenovirus infection in mice. Gene Ther. 22, 458–466.

44. Nikitenko, N.A., Speiseder, T., Lam, E., Rubtsov, P.M., Tonaeva, Kh.D., Borzenok,
S.A., Dobner, T., and Prassolov, V.S. (2015). Regulation of human adenovirus repli-
cation by rna interference. Acta Naturae 7, 100–107.

45. McCarty, D.M., Fu, H., Monahan, P.E., Toulson, C.E., Naik, P., and Samulski, R.J.
(2003). Adeno-associated virus terminal repeat (TR) mutant generates self-comple-
mentary vectors to overcome the rate-limiting step to transduction in vivo. Gene
Ther. 10, 2112–2118.

46. Zhang, H., Tang, X., Zhu, C., Song, Y., Yin, J., Xu, J., Ertl, H.C., and Zhou, D. (2015).
Adenovirus-mediated artificial MicroRNAs targeting matrix or nucleoprotein genes
protect mice against lethal influenza virus challenge. Gene Ther. 22, 653–662.

47. Ivacik, D., Ely, A., Ferry, N., and Arbuthnot, P. (2015). Sustained inhibition of hep-
atitis B virus replication in vivo using RNAi-activating lentiviruses. Gene Ther. 22,
163–171.

48. Gröbl, T., Hammer, E., Bien-Möller, S., Geisler, A., Pinkert, S., Röger, C., Poller, W.,
Kurreck, J., Völker, U., Vetter, R., and Fechner, H. (2014). A novel artificial
microRNA expressing AAV vector for phospholamban silencing in cardiomyocytes
improves Ca2+ uptake into the sarcoplasmic reticulum. PLoS ONE 9, e92188.

49. Stoica, L., Todeasa, S.H., Cabrera, G.T., Salameh, J.S., ElMallah, M.K., Mueller, C.,
Brown, R.H., Jr., and Sena-Esteves, M. (2016). Adeno-associated virus-delivered arti-
ficial microRNA extends survival and delays paralysis in an amyotrophic lateral scle-
rosis mouse model. Ann. Neurol. 79, 687–700.

50. Borel, F., van Logtenstein, R., Koornneef, A., Maczuga, P., Ritsema, T., Petry, H., van
Deventer, S.J., Jansen, P.L., and Konstantinova, P. (2011). In vivo knock-down of
multidrug resistance transporters ABCC1 and ABCC2 by AAV-delivered shRNAs
and by artificial miRNAs. J. RNAi Gene Silencing 7, 434–442.

51. Boudreau, R.L., Martins, I., and Davidson, B.L. (2009). Artificial microRNAs as
siRNA shuttles: improved safety as compared to shRNAs in vitro and in vivo. Mol.
Ther. 17, 169–175.
Molecular Therapy: Nucleic Acids Vol. 8 September 2017 315

http://refhub.elsevier.com/S2162-2531(17)30212-3/sref14
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref14
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref14
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref15
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref15
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref16
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref16
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref17
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref17
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref17
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref17
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref18
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref18
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref18
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref18
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref19
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref19
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref19
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref20
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref20
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref20
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref20
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref21
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref21
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref21
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref22
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref22
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref22
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref23
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref23
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref23
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref23
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref24
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref24
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref24
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref25
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref25
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref25
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref26
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref26
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref27
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref27
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref27
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref27
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref27
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref28
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref28
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref29
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref29
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref29
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref29
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref30
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref30
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref30
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref31
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref31
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref31
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref31
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref31
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref32
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref32
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref32
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref33
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref33
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref34
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref34
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref34
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref35
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref35
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref36
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref36
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref36
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref37
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref37
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref37
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref38
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref38
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref38
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref39
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref39
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref39
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref39
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref40
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref40
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref40
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref41
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref41
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref41
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref41
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref42
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref42
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref42
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref42
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref43
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref43
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref43
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref44
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref44
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref44
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref45
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref45
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref45
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref45
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref46
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref46
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref46
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref47
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref47
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref47
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref48
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref48
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref48
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref48
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref49
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref49
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref49
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref49
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref50
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref50
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref50
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref50
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref51
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref51
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref51
http://www.moleculartherapy.org


Molecular Therapy: Nucleic Acids
52. Grimm, D., Streetz, K.L., Jopling, C.L., Storm, T.A., Pandey, K., Davis, C.R., Marion,
P., Salazar, F., and Kay, M.A. (2006). Fatality in mice due to oversaturation of cellular
microRNA/short hairpin RNA pathways. Nature 441, 537–541.

53. Toth, K., Lee, S.R., Ying, B., Spencer, J.F., Tollefson, A.E., Sagartz, J.E., Kong, I.K.,
Wang, Z., and Wold, W.S. (2016). Correction: Stat2 knockout syrian hamsters sup-
port enhanced replication and pathogenicity of human adenovirus, revealing an
important role of type I interferon response in viral control. PLoS Pathog. 12,
e1005392.

54. Botting, C.H., and Hay, R.T. (2001). Role of conserved residues in the activity of
adenovirus preterminal protein. J. Gen. Virol. 82, 1917–1927.

55. Lisowski, L., Dane, A.P., Chu, K., Zhang, Y., Cunningham, S.C., Wilson, E.M.,
Nygaard, S., Grompe, M., Alexander, I.E., and Kay, M.A. (2014). Selection and eval-
uation of clinically relevant AAV variants in a xenograft liver model. Nature 506,
382–386.

56. Nicolson, S.C., Li, C., Hirsch, M.L., Setola, V., and Samulski, R.J. (2016).
Identification and validation of small molecules that enhance recombinant adeno-
associated virus transduction following high-throughput screens. J. Virol. 90,
7019–7031.

57. Ylä-Herttuala, S. (2012). Endgame: glybera finally recommended for approval as the
first gene therapy drug in the European union. Mol. Ther. 20, 1831–1832.

58. Moon, J.S., Lee, S.H., Kim, E.J., Cho, H., Lee, W., Kim, G.W., Park, H.J., Cho, S.W.,
Lee, C., and Oh, J.W. (2016). Inhibition of hepatitis c virus in mice by a small inter-
fering RNA targeting a highly conserved sequence in viral ires pseudoknot. PLoS
ONE 11, e0146710.
316 Molecular Therapy: Nucleic Acids Vol. 8 September 2017
59. Gürlevik, E., Woller, N., Schache, P., Malek, N.P., Wirth, T.C., Zender, L., Manns,
M.P., Kubicka, S., and Kühnel, F. (2009). p53-dependent antiviral RNA-interference
facilitates tumor-selective viral replication. Nucleic Acids Res. 37, e84.

60. Fechner, H., Sipo, I., Westermann, D., Pinkert, S., Wang, X., Suckau, L., Kurreck, J.,
Zeichhardt, H., Müller, O., Vetter, R., et al. (2008). Cardiac-targeted RNA interfer-
ence mediated by an AAV9 vector improves cardiac function in coxsackievirus B3
cardiomyopathy. J. Mol. Med. (Berl.) 86, 987–997.

61. Geisler, A., Jungmann, A., Kurreck, J., Poller, W., Katus, H.A., Vetter, R., Fechner, H.,
and Müller, O.J. (2011). microRNA122-regulated transgene expression increases
specificity of cardiac gene transfer upon intravenous delivery of AAV9 vectors.
Gene Ther. 18, 199–209.

62. Sipo, I., Knauf, M., Fechner, H., Poller, W., Planz, O., Kurth, R., and Norley, S. (2011).
Vaccine protection against lethal homologous and heterologous challenge using re-
combinant AAV vectors expressing codon-optimized genes from pandemic swine
origin influenza virus (SOIV). Vaccine 29, 1690–1699.

63. Klopfleisch, R., Lenze, D., Hummel, M., and Gruber, A.D. (2011). The metastatic
cascade is reflected in the transcriptome of metastatic canine mammary carcinomas.
Vet. J. 190, 236–243.

64. Klose, P., Weise, C., Bondzio, A., Multhaup, G., Einspanier, R., Gruber, A.D., and
Klopfleisch, R. (2011). Is there a malignant progression associated with a linear
change in protein expression levels from normal canine mammary gland to metasta-
tic mammary tumors? J. Proteome Res. 10, 4405–4415.

65. Harlow, E., Franza, B.R., Jr., and Schley, C. (1985). Monoclonal antibodies specific for
adenovirus early region 1A proteins: extensive heterogeneity in early region 1A prod-
ucts. J. Virol. 55, 533–546.

http://refhub.elsevier.com/S2162-2531(17)30212-3/sref52
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref52
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref52
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref53
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref53
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref53
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref53
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref53
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref54
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref54
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref55
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref55
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref55
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref55
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref56
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref56
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref56
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref56
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref57
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref57
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref58
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref58
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref58
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref58
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref59
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref59
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref59
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref60
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref60
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref60
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref60
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref61
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref61
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref61
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref61
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref62
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref62
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref62
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref62
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref63
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref63
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref63
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref64
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref64
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref64
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref64
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref65
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref65
http://refhub.elsevier.com/S2162-2531(17)30212-3/sref65


OMTN, Volume 8
Supplemental Information
Anti-adenoviral Artificial MicroRNAs Expressed

from AAV9 Vectors Inhibit Human Adenovirus

Infection in Immunosuppressed Syrian Hamsters

Katrin Schaar, Anja Geisler, Milena Kraus, Sandra Pinkert, Markian
Pryshliak, Jacqueline F. Spencer, Ann E. Tollefson, Baoling Ying, Jens
Kurreck, William S. Wold, Robert Klopfleisch, Karoly Toth, and Henry Fechner



Supplementary material 

 

Figure S1. Inhibition of hAd5 ongoing infection in hepatic HepaRG and HeLa cells by 

anti-adenoviral amiRs 

 

 

 

HepaRG cells (a) and HeLa cells (b) were infected with 0.05 MOI hAd5 and transduced 5 h 

before, concomitant (0 h) or 5 h after infection of cells with 1,000 vge/cell of scAAV2-amiR 

vectors containing the indicated amiRs (copy number of each amiR in the vector genome is 

shown in parentheses). The cells were lysed 48 h later and the amount of viral DNA 

quantified by qPCR. hAd5 represents cells which were only infected with hAd5 but not 

transduced. Con represents scAAV2-amiR-control vector containing six copies of amiR-

dsRed. Abundance of hAd5 genomes after treatment with anti-adenoviral amiRs expressing 

scAAV2 vectors was related to Con (= 1). Significance of the anti-adenoviral amiR vectors 

compared to Con, ** p< 0.01, *** p<0.001.  

 

 

 

 

 

 

 

 

 

 

 



Figure S2. hAd5 infection in immunosuppressed Syrian hamsters. 

 

  

 

 

(a) Experimental design. Syrian hamsters were immunosuppressed with cyclophosphamide 

for two weeks and then infected with 4x10
11

 vp/kg hAd5. Immunosuppression was pursued 

until days 3 (n = 4), 7 (n = 4) and 14 (n = 3) after infection with hAd5 respectively, on which 

animals were sacrificed and analyzed.  

(b) Development of body weight. Shown are the mean values of body weight.   



(c) Hematoxilin-eosin staining of tissues of hAd5 infected animals at Day 7 post 

infection. Liver tissue (left panel) shows local necrotic area. Liver tissue (right) shows 

inclusion bodies (shown by arrows). Pancreas with necrosis and inflammation of an islet. 

Spleen shows depletion of immune cells. Heart, lung and kidney were not affected compared 

to uninfected immunosuppressed animals (not shown). Magnification 400x.  

(d) Pathological grading of liver tissue damage. Liver damage was assessed and given as a 

pathological score presenting a scale from 0 (no damage) to 3 (severe damage); Score 0 = 

without necrosis, score 1 = minimal necroses, score 2 = minimal, multifocal necroses, score 3 

= moderate, multifocal necroses.  

(e) hAd5 titers in the liver. 

(f) Relative abundance of hAd5 genomes copies in the liver.  

(g) hAd5 titers in the heart. 

(h) hAd5 titers in the serum.  

 Number of animals, n = 3 to 4; * p>0.05, ** p<0.01, *** p<0.001; n.s., not significant. 

 

Figure S3. Development of body weight of immunosuppressed Syrian hamsters after 

treatment with anti-adenoviral amiR-expressing scAAV9 vectors and hAd5.  
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Shown are relative changes of body weight beginning at day 14 after scAAV9 vector 

transduction of immunosuppressed Syrian hamsters.         

 

 

 

 

 



Figure S4. Treatment of hAd5 infection with anti-adenoviral amiRs in a high hAd5 

doses infection model of immunosuppressed Syrian hamsters 

 

Syrian hamsters were immunosuppressed with cyclophosphamide. Concomitant with the first 

CP injection, three groups of animals were injected i.v. with one of the three scAAV9-amiR 

vectors at a dose of 5x10
13

 vge/kg, and a fourth group received vehicle (PBS). At 14 days 

after vector administration, half of the animals in all groups were injected i.v. with hAd5 at a 

dose of 5.58x10
12

 vp/kg, while the remaining animals received vehicle (PBS) injections.  

Animals were sacrificed seven days later. Number of animals per group, n = 6. 

a) Body weight changes.  The symbols represent the group mean. 

(b) Infectious hAd5 burden in the liver. There was no significant reduction of virus titers 

after treatment of hAd5 infected animals with scAAV9-amiR-pTP (6x) or scAAV9-amiR-pTP 
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(3x)-E1A_2 (3x).  For this graph and the one shown in panel c, the columns represent the 

group mean, and the error bars show the standard error of the mean.  

(c) Alanine transaminase (ALT) levels in the serum. There was no significant reduction of 

ALT levels after treatment of hAd5 infected animals with scAAV9-amiR-pTP (6x) or 

scAAV9-amiR-pTP (3x)-E1A_2 (3x), but a clear tendency for an protective effect of 

scAAV9-amiR-pTP(3x)-E1A_2 (3x), p = 0.0519.  

 

Table S1. siRNA sequences of anti-adenoviral amiRs 

amiR antisense / sense strand 

5’ → 3’ 

Target gene Target sequence in hAd5 

Gene bank: AC_000008.1 

 

E1A_1 UUU ACA GCU CAA GUC CAA AGG  

CCU UUG GAU GAG CUG UAA A 

E1A  1510-1530 

E1A_2 UAU UGC AUU CUC UAG ACA CAG 

CUG UGU AGA GAA UGC AAU A 

E1A 1334-1354 

E1A_3 UCG GUA AUA ACA CCU CCG UGG 

CCA CGG AUG UUA UUA CCG A 

E1A 577-597 

E1A_4 AAA AUC UGC GAA ACC GCC UCC 

GGA GGC GGU CGC AGA UUU U 

E1A 736-756 

E1A_5 AGU GAG UAA GUC AAU CCC UUC 

GAA GGG AUA CUU ACU CAC U 

E1A 785-805 

Hex UUU CCA CUU GAC UUU CUA GCU 

AGC UAG AAU CAA GUG GAA A 

Hexon 19611-19631 

IVa2 AUU UCU GGG AUC ACU AAC GUC 

GAC GUU AGA UCC CAG AAA U 

IVa2 4649-4669 

pTP AAG AGA GUU CGA CAG AAU CAA 

UUG AUU CUC GAA CUC UCU U 

pTP 8789-8809 

Con_1 GUA UAG UCU UCG UUG UGG CUU 

AAG CCA CAG AAG ACU AUA C 

drFP383  

Con_2 UUU UAU AGU CUG GUA UGU CGG 

CCG ACA UAA GAC UAU AAA A 

drFP383   

Con_3 UUC UAU UUC AAA CUC GUG CCC 

GGG CAC GAU UGA AAU AGA A 

drFP383  
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