1 Absence of deformed wing virus and Varroa destructor in Australia

2 provides unique perspectives on honeybee viral landscapes and colony

- 3 losses
- 5 John M K Roberts^{1*}, Denis L Anderson^{1,2} and Peter A Durr³
- 6 ¹Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia
- 7 ² ADFCA, Research and Development Division, AI Ain, UAE
- 8 ³ CSIRO-Australian Animal Health Laboratory, Geelong, Victoria, 3219, Australia
- 9 *Author for correspondence

25 Supplementary material 1. Primers used for RT-PCR virus detection. T_a is the

26 PCR annealing temperature.

Virus	Primers	Ta	Reference
ΙΔΡΙ	F: AGACACCAATCACGGACCTCAC	58 °C	Maori et al 2007 ¹
	R: AGATTTGTCTGTCTCCCAGTGCACAT		
KBV	F: GATGAACGTCGACTATTGA	58 °C	Stoltz et al 1995 ²
	R: TGTGGGTTGGCTATGAGTCA		
BOCV	F: TGG TCA GCT CCC ACT ACC TAA AAC	58 °C	Benjeddou et al 2001 ³
5201	R: GCA ACA AGA AAC GTA AAC CAC		
LSV1	F: TTA TCT CGC GCC GCC ACC TC	52 °C	Runckel et al 2011 ⁴
	R: ATC GCC GCT GCA ACG TGA CC		
LSV2	F: CGG CCG GTC TAG CGT GGT TG	52 °C	Runckel et al 2011 ⁴
2072	R: TGG CAA GCT GTG ACG AAT CCC T		
DWV-A/	F: ATA TTC ACG GAT TGT TTG AAA GA	58 °C	Meeus et al 2010 ⁵
DWV-B	R: CRC TAA CAT TCA TGA TAA GAT CGT C		
SBPV	F: GAT TTG CGG AAT CGT AAT ATT GTT TG	58 °C	de Miranda 2010 ⁶
	R: ACC AGT TAG TAC ACT CCT GGT AAC TTC G		
SBV	F: AAT GGT GCG GTG GAC TAT GG	58 °C	Grabensteiner et al 2001 ⁷
	R: TGA TAC AGA GCG GCT CGA CA		
ABPV	F: TGA GAA CAC CTG TAA TGT GG	58 °C	Tentcheva et al 2004 ⁸
	R: ACC AGA GGG TTG ACT GTG TG		
CBPV	F: AGT TGT CAT GGT TAA CAG GAT ACG AG	58 °C	Ribiere et al 2000 ⁹
	R: TCT AAT CTT AGC ACG AAA GCC GAG		

34 Supplementary material 2. Summary of BLAST results for sequence fragments from NT, QLD and WA-2 samples that mapped to

35 **DWV reference genomes.**

Sequence fragment and length	BLAST aligned sequence	Location on aligned sequence	Highest nucleotide similarity to DWV isolates
NT DWV-like 1 (54bp)	GTAGGGACCCCTCTATCCTCTAGGTACTGTATGTCGCGAAAGTATGAAAGTAAT	734-787	91% similar to DWV isolate leuven-dwv1 (KX783225)
NT DWV-like 2 (127bp)	ATATGCGATGTACCTAATACAATACCTTTCAAGGTGCATGCA	2045-2171	84% similar to DWV isolate leuven-dwv1 (KX783225)
NT DWV-like 3 (66bp)	TGTTTATGTATGTGCAAGTACCATTGATACCGATGGAAGCTGTAGCTGATACTATCGATATTAATG	3189-3254	92% similar to DWV isolate leuven-dwv1 (KX783225)
NT DWV-like 4 (148bp)	TGAAATGATGAATACTGTCATCACCATCGTAAAACGATTGTTAGGCAAATATAGATTGGCGACGCAACCCCAGGACCACGCCGATTCACGTACTGTTAACGCTACCCCA GAGGGACCTAGTGCTGAGGCTGAGGAAACAAGTGCGTGG	4867-5017	75% similar to DWV isolate leuven-dwv1 (KX783225)
NT DWV-like 5 (51bp)	GTGAAGATGAACCTGAAATTGTAAAGCGATGGGTTAAAGAATGTTTGTATT	5240-5291	89% similar to DWV isolate leuven-dwv1 (KX783225)
NT DWV-like 6 (421bp)	ATTTTGTTGCATGACCTTACAGCTGAGATGAATCAGTCGAGAAATTTGACTGTGTTTACTCGGGTGTATGATCAAATATCGAAATTGAAGACCGACC	5375-5863	72% similar to DWV isolate leuven-dwv1 (KX783225)
NT DWV-like 7 (95bp)	TTTGATAATCCTACGTGGCGATTAATATATAATGCATCAAGAAAGGGTTTGCCAGAATATTATACACTACCAAGTGATGAAATTTCATTAGATTC	7049-7143	78% similar to DWV isolate leuven-dwv1 (KX783225)
NT DWV-like 8 (203bp)	CACTTGAAAGAGAAGTTTATAAACCGTTATTAAACCGTTGTAAAACTGGTAGAAGTCGGAGGATGCTATTTTTGGCGCACCTGGAGTAGAAGGATATGATTCGA TTTCGTGGAATACGAGTGCCGGTTTTCCGTTGTCTACAATGAAGCCGGCTGGAACATCAGGAAAGCGCTGGTTGTTTGATATTGAACTTACAAG	8480-8681	77% similar to DWV isolate leuven-dwv1 (KX783225)
NT DWV-like 9 (153bp)	GGGCATAAAGCCACATACGATATTTACTGACTGCCTCAAAGATACATGTTTGCCCATAGAGAAGTGTATGATACCGGGTAAAACGAGGATATTTAGTATTGCGCCTGTT CAATATACAATACCTTTTCGACAATATTTTCTCGATTTTATGGC	8761-8913	77% similar to DWV isolate leuven-dwv1 (KX783225)
NT DWV-like 10	ATTATACAGAGGAAAAAGATAAGACTGAGATGAGTCGAGTCATGTGGACTATGGCTCAGGAGATTCTTGCACCAAGCCATCTTTGTAGAGATTTGGTGTATAGAGTAC	9111-9253	75% similar to DWV isolate leuven-dwv1 (KX783225)

(143bp)	CTTGTGGCATACCTTCGGGCTCACCCATCACGGAC		
NT DWV-like 11 (72bp)	CGTGTAGCCACTATAGAAAATGCTAAACAATCTCTAGAGTTGGCATTCGGTTGGGGTCCGCAATACTTCAAT	9626-9697	83% similar to DWV isolate leuven-dwv1 (KX783225)
NT DWV-like 12 (44bp)	AAGCTTGGTATTTATGAGGATCTCATTACATGGGAGGAGATGGA	9731-9774	89% similar to DWV isolate leuven-dwv1 (KX783225)
QLD DWV-like 1 (105bp)	TAGACCTCTACGGCATCGAGTAGAGATTAAAAAGAGTAGTGCAATAGTATAATCACTGTCTACCACCACATATGGTAATGATATGGTTTGTGGTAAACCGGTTAT	488-592	80% similar to VDV-1 genome (AY251269)
QLD DWV-like 2 (99bp)	ATGTCAGGTTATATTATGAATGCTCGAGTATGATTTTCTGCGTTGGAGTCGGGACCCCTCGGTCTCCCAGGTGTCGCATGTGACGAAAGTGCGAAAATA	687-785	80% similar to VDV-1 genome (AY251269)
QLD DWV-like 3 (135bp)	ATATGCGATGTACCTAATACAATACCATTCAAGGTACATGCATATTGGCGTGGAGAGATGCAAGTTCGAATACAAGTTAATTCGAATAAATTCCAAGTAGGTCAATTGC AAGCCACTTGGTATTATATGGATTAT	2045-2179	84% similar to VDV-1 genome (AY251269)
QLD DWV-like 4 (232bp)	ATGGATTATATGACACTTAAAGCATCAAGTTATGTGGTATTTGATTTGCAAGAAACAAATAGCTTTACGTTTGAAGTGCCTTATGTGTCATATAGACCATGGTGGTGTTT ATGTATGTACAAGTACCGTTGATACCTATGGAAGCTGTTGCAGATACCATAGATATCAATGTGTATTTAAGAGGAGGCTCTTCATTTGAAGTATGTAT	3029-3315	69% similar to VDV-1 genome (AY251269)
QLD DWV-like 5 (326bp)	TTTCCGCAACACCAGAAGGACCTAGTGCTGAGGCTGAGGAAACAAGTGCGTGGGTATCCGTTATTTAT	4965-5307	77% similar to VDV-1 genome (AY251269)
QLD DWV-like 6 (111bp)	TACACCTGTCACCACTGGAATTAAGTGTGTTGTTAATCCCCTCTCTGACTATTGGGATCAGTGTGATTTCCAACCGGTTTTGTGCGTTGATGATATGTGGAGTGTGGAAA C	5599-5709	82% similar to VDV-1 genome (AY251269)
QLD DWV-like 7 (98bp)	AACTATTTTAGTTATTTATTCCATAAATCATGGTTATACGCAAATCCCACGTGGAGACTGATTTTTAATGGTTCAAAGAAAG	7013-7110	80% similar to VDV-1 genome (AY251269)
QLD DWV-like 8 (90bp)	TGGAATACGAGTGCAGGTTTTCCATTGTCAACAATGAAACCTGCTGGAACATCTGGAAAGAGAGATGGTTGTTTGATATTGAACTAAAAGAT	8594-8683	80% similar to VDV-1 genome (AY251269)
QLD DWV-like 9 (88bp)	CAACGACTCAAGAAATGAGAAAGAGAGAGAATCAAGCCTCACACCATCTTCACAGATTGCCTCAAAGATACATGTTTGCCAGTAGAAAA	8736-8823	82% similar to VDV-1 genome (AY251269)
QLD DWV-like 10	AGGGAAGTACCACCCCCCCACTCGTTCGTTTTTAAATCTGCTAATAGGAATGAACTCTATTATAAGAGTCCAAAAGCAGTGTGGATTAGACCATCACTTTTGGCTTATAC	9854-10050	85% similar to VDV-1 genome (AY251269)

(198bp)	TAGAGAAAGGATGAGCTGCCTCTAAAGGCTCAATTCCGTAGTAGAGTAGGTTTAATTAGGATTAAAGTGGTACTCTAGGTTAGGTATT		
WA-2 DWV-like 1 (127bp)	ATAGGTAATGATCCCAATACGGTACCATTTAGAGTACATGCATATTGGCGTGGAGATATTGAAGTTAAAATTCAGATAAATTCTAATAAATTTCAAGTTGGGCAATTGC AAGCTACTTGGTATTATT	2072-2198	84% similar to DWV isolate Chilensis A1 (JQ413340)
WA-2 DWV-like 2 (91bp)	TGGCGTGGATCTTTGGAGTATCGATTTGATATCGTTGCTTCTCAATTTCATACTGGTAGGTTGATTGTAGGCTATATCCCCCGGATATGACA	2948-3037	80% similar to DWV isolate Chilensis A1 (JQ413340)
WA-2 DWV-like 3 (98bp)	AATTGTCAAAGTAGTAATCAAGTATTTATTTTCTTTAAGAATACATTTGAAGTATTAAAGAAGACTTGGGCTTATTTAT	5150-5247	81% similar to DWV isolate Chilensis A1 (JQ413340)

36 Supplementary material 3. Alignment of mapped reads from the NT sample to DWV-A (NC_004830), DWV-B (NC_006494) and

37 DWV-C (ERS657949) using Geneious (Version 9.1.5, created by Biomatters, Auckland, New Zealand)

38

46 Supplementary material 4. Australian apiary survey results within the context of comparable molecular-based surveys. In relation

47 to Figure 4, populations with profiles 1-3 are on the lower end of the stress spectrum, populations with profile 4 range across the

- 48 *middle of the stress spectrum and populations with profile 5 are on the high end of the stress spectrum.*
- 49

Survey reference	Country:	Increased colony			Color	ny stressors			Strass profile	Commercial- scale beekeepers
Juivey reference	Region	recorded	Varroa destructor	DWV complex	Other viruses detected	Viruses tested for but <u>not</u> detected	Other pathogens	Abiotic stressors		
This survey	Australia	No	No	No	BQCV SBV LSV1 LSV2 IAPV ALPV	DWV SBPV KBV CBPV ABPV	Most	Most	1	Yes
Malfroy et al. ¹⁰	Australia: Norfolk Island	No	No	No	LSV	DWV ABPV IAPV KBV BQCV SBV CBPV SBPV	Few	Few	2	No

Kajobe et al. ¹¹	Uganda	No	No	No	BQCV	DWV SBV CBPV ABPV IAPV	Few	Few	2	No
Shutler et al. ¹²	Canada : Newfoundland	No	No	DWV-A	BQCV	IAPV KBV SBV	Few	Few	3	No
Sanpa and Chantawannakul ¹³	Thailand : Northern provinces	No	Yes	DWV-A	ABPV KBV SBV	BQCV CBPV	Most	Some	4	Yes
Ai et al. ¹⁴	China	No	Yes	DWV-A	ABPV IAPV BQCV SBV CBPV	KBV	Most	Most	4	Yes
Kojima et al. ¹⁵	Japan	No	Yes	DWV-A	BQCV SBV IAPV	CBPV KBV ABPV	Most	Most	4	Yes
Strauss et al. ¹⁶	South Africa	No	Yes	DWV-B	BQCV IAPV	DWV-A SBV CBPV KBV VdMLV	Most	Some	4	Yes
Muli et al. ¹⁷	Kenya	No	Yes	DWV-A	BQCV ABPV	SBV KBV IAPV	Some	Some	4	No

						CBPV				
Yang et al. ¹⁸	China	No	Yes	DWV-A	BQCV IAPV SBV CBPV	ABPV KBV	Most	Most	4	Yes
Mondet et al. ¹⁹	New Zealand	No	Yes	DWV-A	BQCV KBV SBV CBPV		Some	Most	4	Yes
Adjlane et al. ²⁰	Algeria	No	Yes	DWV-A	BQCV SBV ABPV IAPV CBPV	DWV-B	Most	Some	4	No
Tsevegmid et al. 21	Mongolia: northern regions	No	Yes	DWV-A	SBV BQCV CBPV	ABPV KBV IAPV LSV2	Some	Some	4	No
Giacobino et al. ²²	Argentina	No	Yes	DWV-A	BQCV ABPV CBPV	KBV IAPV	Most	Some	4	Yes
Anido et al. ²³	Uruguay	No	Yes	DWV-A	BQCV SBV ABPV	IAPV KBV	Most	Some	4	Yes
Teixeira et al. ²⁴	Brazil: southeast	No	Yes	DWV-A	BQCV ABPV	KBV CBPV	Most	Some	4	Yes

	region					SBV				
Soroker et al. ²⁵	Israel	No	Yes	DWV-A DWV-B	BQCV SBV ABPV IAPV	KBV CBPV	Most	Most	4	Yes
Rodriguez et al. ²⁶	Chile: Biobio region	No	Yes	DWV-A	BQCV SBV ABPV		Most	Some	4	Yes
Desai et al. ²⁷	Canada	Yes	Yes	DWV-A	BQCV SBV ABPV KBV IAPV CBPV		Most	Most	5	Yes
Forgach et al. ²⁸	Hungary	Yes	Yes	DWV-A	BQCV SBV ABPV	KBV CBPV	Most	Most	5	Yes
Tentcheva et al. ⁸	France	Yes	Yes	DWV-A	BQCV SBV ABPV KBV CBPV		Most	Most	5	Yes
Berenyi et al. ²⁹	Austria	Yes	Yes	DWV-A	BQCV SBV ABPV CBPV	KBV	Most	Most	5	Yes

Genersch et al. ³⁰	Germany	Yes	Yes	DWV-A	SBV ABPV KBV	IAPV	Most	Most	5	Yes
Berthoud et al. ³¹	Switzerland	Yes	Yes	DWV-A	ABPV	KBV CBPV	Most	Most	5	Yes
Nguyen et al. ³²	Belgium	Yes	Yes	DWV-A	BQCV SBV ABPV CBPV		Most	Most	5	Yes
Baker and Schroeder ³³	England: Devon	Yes	Yes	DWV-A	SBV BQCV ABPV	KBV CBPV	Most	Most	5	Yes
Antunez et al. ³⁴	Spain	Yes	Yes	DWV-A	BQCV SBV IAPV KBV		Most	Most	5	Yes
Cornman et al. ³⁵	USA	Yes	Yes	DWV-A	BQCV SBV LSV1 LSV2 ABPV IAPV KBV		Most	Most	5	Yes
Cox-Foster et al.	USA	Yes	Yes	DWV-A	CBPV SBV BQCV ABPV		Most	Most	5	Yes

					KBV IAPV					
Dainat et al. ³⁷	Switzerland	Yes	Yes	DWV-A	BQCV SBV SBPV ABPV	IAPV KBV CBPV	Most	Most	5	Yes
Budge et al. ³⁸	England and Wales	Yes	Yes	DWV-A	BQCV CBPV SBV ABPV KBV		Most	Most	5	Yes
Welch et al. ³⁹	USA: Massachusetts	Yes	Yes	DWV-A	BQCV SBV	ABPV KBV IAPV CBPV	Most	Most	5	Yes
Bacandritsos et al. 40	Greece	Yes	Yes	DWV-A	CBPV BQCV SBV ABPV		Most	Most	5	Yes
Runckel et al. ⁴	USA	Yes	Yes	DWV-A	BQCV CBPV SBV ABPV KBV IAPV		Most	Most	5	Yes
Traynor et al. 41	USA	Yes	Yes	DWV-A	BQCV SBV CBPV	SBPV	Most	Most	5	Yes

					LSV2 ABPV IAPV KBV					
Tozkar et al. ⁴²	Turkey	Yes	Yes	DWV-A DWV-B	BQCV LSV CBPV ABPV KBV IAPV	SBV SBPV	Most	Some	5	Yes
Ravoet et al. ⁴³	Belgium	Yes	Yes	DWV-A	BQCV SBV CBPV LSV ABPV VdMLV ALPV	IAPV SBPV	Most	Most	5	Yes
Amiri et al. ⁴⁴	Denmark	Yes	Yes	DWV-A	SBV BQCV CBPV ABPV KBV		Most	Most	5	Yes
Gajger et al. ⁴⁵	Croatia	Yes	Yes	DWV-A	BQCV SBV ABPV CBPV	KBV IAPV	Most	Most	5	Yes
Granberg et al. ⁴⁶	Spain: Navarre	Yes	Yes	No	iapv Alpv	BQCV SBV ABPV	Most	Most	5	Yes

					LSV	KBV DWV				
Nielsen et al. 47	Denmark	Yes	Yes	DWV-A	BQCV CBPV SBV ABPV KBV		Most	Most	5	Yes

50

51

52 Supplementary material references

- 1 Maori, E. *et al.* Isolation and characterization of Israeli acute paralysis virus, a dicistrovirus affecting honeybees in Israel: evidence for diversity due to intra- and inter-species recombination. *Journal of General Virology* **88**, 3428-3438, doi:10.1099/vir.0.83284-0 (2007).
- 55 2 Stoltz, D., Shen, X. R., Boggis, C. & Sisson, G. Molecular diagnosis of Kashmir bee virus infection. *Journal of Apicultural Research* **34**, 153-160 (1995).
- 56 3 Benjeddou, M., Leat, N., Allsopp, M. & Davison, S. Detection of acute bee paralysis virus and black queen cell virus from honeybees by reverse 57 transcriptase PCR. *Applied and Environmental Microbiology* **67**, 2384-2387, doi:10.1128/aem.67.5.2384-2387.2001 (2001).
- Runckel, C. *et al.* Temporal analysis of the honey bee microbiome reveals four novel viruses and seasonal prevalence of known viruses, *Nosema* and *Crithidia. PLOS One* 6, e20656 (2011).
- Meeus, I., Smagghe, G., Siede, R., Jans, K. & de Graaf, D. C. Multiplex RT-PCR with broad-range primers and an exogenous internal amplification
 control for the detection of honeybee viruses in bumblebees. *Journal of Invertebrate Pathology* **105**, 200-203 (2010).
- de Miranda, J. R. *et al.* Genetic characterization of slow bee paralysis virus of the honeybee (Apis mellifera L.). *Journal of General Virology* 91, 2524 2530, doi:10.1099/vir.0.022434-0 (2010).
- 64 7 Grabensteiner, E. *et al.* Sacbrood virus of the honeybee (Apis mellifera): Rapid identification and phylogenetic analysis using reverse transcription-65 PCR. *Clinical and Diagnostic Laboratory Immunology* **8**, 93-104 (2001).
- Tentcheva, D. *et al.* Prevalence and seasonal variations of six bee viruses in Apis mellifera L. and Varroa destructor mite populations in France.
 Applied and Environmental Microbiology **70**, 7185-7191, doi:10.1128/aem.70.12.7185-7191.2004 (2004).
- Ribiere, M., Faucon, J. P. & Pepin, M. Detection of chronic honey bee (Apis mellifera L.) paralysis virus infection: application to a field survey.
 Apidologie **31**, 567-577, doi:10.1051/apido:2000147 (2000).

70	10	Malfroy, S. F., Roberts, J. M. K., Perrone, S., Maynard, G. & Nadine, C. A pest and disease survey of the isolated Norfolk Island honey bee (Apis
71		mellifera) populationA pest and disease survey of the isolated Norfolk Island honey bee (Apis mellifera) population. Journal of Apicultural Research,
72		doi:10.1080/00218839.2016.1189676 (2016).
73	11	Kajobe, R. et al. First molecular detection of a viral pathogen in Ugandan honey bees. Journal of Invertebrate Pathology 104 , 153-156,
74		doi:10.1016/j.jip.2010.02.007 (2010).
75	12	Shutler, D. et al. Honey Bee Apis mellifera Parasites in the Absence of Nosema ceranae Fungi and Varroa destructor Mites. Plos One 9,
76		doi:10.1371/journal.pone.0098599 (2014).
77	13	Sanpa, S. & Chantawannakul, P. Survey of six bee viruses using RT-PCR in Northern Thailand. Journal of Invertebrate Pathology 100, 116-119,
78		doi:10.1016/j.jip.2008.11.010 (2009).
79	14	Ai, H. X., Yan, X. & Han, R. C. Occurrence and prevalence of seven bee viruses in Apis mellifera and Apis cerana apiaries in China. Journal of
80		Invertebrate Pathology 109, 160-164, doi:10.1016/j.jip.2011.10.006 (2012).
81	15	Kojima, Y. et al. Infestation of Japanese Native Honey Bees by Tracheal Mite and Virus from Non-native European Honey Bees in Japan. Microbial
82		Ecology 62, 895-906, doi:10.1007/s00248-011-9947-z (2011).
83	16	Strauss, U. et al. Seasonal prevalence of pathogens and parasites in the savannah honeybee (Apis mellifera scutellata). Journal of Invertebrate
84		<i>Pathology</i> 114 , 45-52, doi:10.1016/j.jip.2013.05.003 (2013).
85	17	Muli, E. et al. Evaluation of the Distribution and Impacts of Parasites, Pathogens, and Pesticides on Honey Bee (Apis mellifera) Populations in East
86		Africa. <i>Plos One</i> 9, doi:10.1371/journal.pone.0094459 (2014).
87	18	Yang, B., Peng, G., Li, T. & Kadowaki, T. Molecular and phylogenetic characterization of honey bee viruses, Nosema microsporidia, protozoan
88		parasites, and parasitic mites in China. <i>Ecology and Evolution</i> 3 , 298-311, doi:10.1002/ece3.464 (2013).
89	19	Mondet, F., de Miranda, J. R., Kretzschmar, A., Le Conte, Y. & Mercer, A. R. On the Front Line: Quantitative Virus Dynamics in Honeybee (Apis
90		mellifera L.) Colonies along a New Expansion Front of the Parasite Varroa destructor. <i>Plos Pathogens</i> 10, doi:10.1371/journal.ppat.1004323 (2014).
91	20	Adjlane, N., Dainat, B., Gauthier, L. & Dietemann, V. Atypical viral and parasitic pattern in Algerian honey bee subspecies Apis mellifera intermissa
92		and A-m. sahariensis. <i>Apidologie</i> 47 , 631-641, doi:10.1007/s13592-015-0410-x (2016).
93	21	Tsevegmid, K., Neumann, P. & Yanez, O. The Honey Bee Pathosphere of Mongolia: European Viruses in Central Asia. Plos One 11,
94		doi:10.1371/journal.pone.0151164 (2016).
95	22	Giacobino, A. et al. Varroa destructor and viruses association in honey bee colonies under different climatic conditions. Environmental Microbiology
96		<i>Reports</i> 8 , 407-412, doi:10.1111/1758-2229.12410 (2016).
97	23	Anido, M. et al. Prevalence and distribution of honey bee pests and pathogens in Uruguay. Journal of Apicultural Research 54, 532-540,
98		doi:10.1080/00218839.2016.1175731 (2015).
99	24	Teixeira, E. W., Chen, Y. P., Message, D., Pettis, J. & Evans, J. D. Virus infections in Brazilian honey bees. Journal of Invertebrate Pathology 99, 117-
100		119, doi:10.1016/j.jip.2008.03.014 (2008).
101	25	Soroker, V. et al. Evaluation of colony losses in Israel in relation to the incidence of pathogens and pests. Apidologie 42, 192-199,
102		doi:10.1051/apido/2010047 (2011).

- 103 26 Rodriguez, M. *et al.* Prevalence and phylogenetic analysis of honey bee viruses in the Biobio Region of Chile and their association with other honey bee pathogens. *Chilean Journal of Agricultural Research* **74**, 170-177, doi:10.4067/s0718-58392014000200007 (2014).
- 105 27 Desai, S. D., Kumar, S. & Currie, R. W. Occurrence, detection, and quantification of economically important viruses in healthy and unhealthy honey 106 bee (Hymenoptera: Apidae) colonies in Canada. *Canadian Entomologist* **148**, 22-35, doi:10.4039/tce.2015.23 (2016).
- Forgach, P., Bakonyi, T., Tapaszti, Z., Nowotny, N. & Rusvai, M. Prevalence of pathogenic bee viruses in Hungarian apiaries: Situation before joining the European Union. *Journal of Invertebrate Pathology* 98, 235-238, doi:10.1016/j.jip.2007.11.002 (2008).
- 109 29 Berenyi, O., Bakonyi, T., Derakhshifar, I., Koglberger, H. & Nowotny, N. Occurrence of six honeybee viruses in diseased Austrian apiaries. *Applied* 110 and Environmental Microbiology **72**, 2414-2420, doi:10.1128/aem.72.4.2414-2420.2006 (2006).
- Genersch, E. *et al.* The German bee monitoring project: a long term study to understand periodically high winter losses of honey bee colonies.
 Apidologie 41, 332-352, doi:10.1051/apido/2010014 (2010).
- 113 31 Berthoud, H., Imdorf, A., Haueter, M., Radloff, S. & Neumann, P. Virus infections and winter losses of honey bee colonies (Apis mellifera). *Journal of* 114 *Apicultural Research* **49**, 60-65, doi:10.3896/ibra.1.49.1.08 (2010).
- 115 32 Nguyen, B. K. *et al.* Effects of honey bee virus prevalence, Varroa destructor load and queen condition on honey bee colony survival over the winter 116 in Belgium. *Journal of Apicultural Research* **50**, 195-202, doi:10.3896/ibra.1.50.3.03 (2011).
- Baker, A. & Schroeder, D. Occurrence and genetic analysis of picorna-like viruses infecting worker bees of Apis mellifera L. populations in Devon,
 South West England. *Journal of Invertebrate Pathology* 98, 239-242, doi:10.1016/j.jip.2008.02.010 (2008).
- Antunez, K. *et al.* Low prevalence of honeybee viruses in Spain during 2006 and 2007. *Research in Veterinary Science* 93, 1441-1445, doi:10.1016/j.rvsc.2012.03.006 (2012).
- 121 35 Cornman, R. S. *et al.* Pathogen webs in collapsing honey bee colonies. *Plos One* **7**, doi:10.1371/journal.pone.0043562 (2012).
- Cox-Foster, D. L. *et al.* A metagenomic survey of microbes in honey bee colony collapse disorder. *Science* **318**, 283-287,
 doi:10.1126/science.1146498 (2007).
- Dainat, B., Evans, J. D., Chen, Y. P., Gauthier, L. & Neumann, P. Predictive Markers of Honey Bee Colony Collapse. *Plos One* 7, doi:10.1371/journal.pone.0032151 (2012).
- Budge, G. E. *et al.* Pathogens as Predictors of Honey Bee Colony Strength in England and Wales. *Plos One* **10**, doi:10.1371/journal.pone.0133228
 (2015).
- Welch, A., Drummond, F., Tewari, S., Averill, A. & Burand, J. P. Presence and Prevalence of Viruses in Local and Migratory Honeybees (Apis mellifera) in Massachusetts. *Applied and Environmental Microbiology* **75**, 7862-7865, doi:10.1128/aem.01319-09 (2009).
- Bacandritsos, N. *et al.* Sudden deaths and colony population decline in Greek honey bee colonies. *Journal of Invertebrate Pathology* **105**, 335-340, doi:10.1016/j.jip.2010.08.004 (2010).
- 132 41 Traynor, K. S. *et al.* Multiyear survey targeting disease incidence in US honey bees. *Apidologie* **47**, 325-347, doi:10.1007/s13592-016-0431-0 (2016).
- 133 42 Tozkar, C., Kence, M., Kence, A., Huang, Q. & Evans, J. Metatranscriptomic analyses of honey bee colonies. *Frontiers in genetics* **6**, 100 (2015).
- 134 43 Ravoet, J. et al. Comprehensive bee pathogen screening in Belgium reveals Crithidia mellificae as a new contributory factor to winter mortality. Plos
- 135 *One* **8**, doi:10.1371/journal.pone.0072443 (2013).

- Amiri, E., Meixner, M., Nielsen, S. L. & Kryger, P. Four Categories of Viral Infection Describe the Health Status of Honey Bee Colonies. *Plos One* 10, doi:10.1371/journal.pone.0140272 (2015).
- Gajger, I. T., Kolodziejek, J., Bakonyi, T. & Nowotny, N. Prevalence and distribution patterns of seven different honeybee viruses in diseased colonies: a case study from Croatia. *Apidologie* 45, 701-706, doi:10.1007/s13592-014-0287-0 (2014).
- 46 Granberg, F. *et al.* Metagenomic Detection of Viral Pathogens in Spanish Honeybees: Co- Infection by Aphid Lethal Paralysis, Israel Acute Paralysis
 141 and Lake Sinai Viruses. *Plos One* 8, doi:10.1371/journal.pone.0057459 (2013).
- 142 A7 Nielsen, S. L., Nicolaisen, M. & Kryger, P. Incidence of acute bee paralysis virus, black queen cell virus, chronic bee paralysis virus, deformed wing 143 virus, Kashmir bee virus and sacbrood virus in honey bees (Apis mellifera) in Denmark. *Apidologie* **39**, 310-314, doi:10.1051/apido:2008007 (2008).

144