
Expanded View Figures

Figure EV1. BAM3-CLE45 control experiments and bam3 alleles.

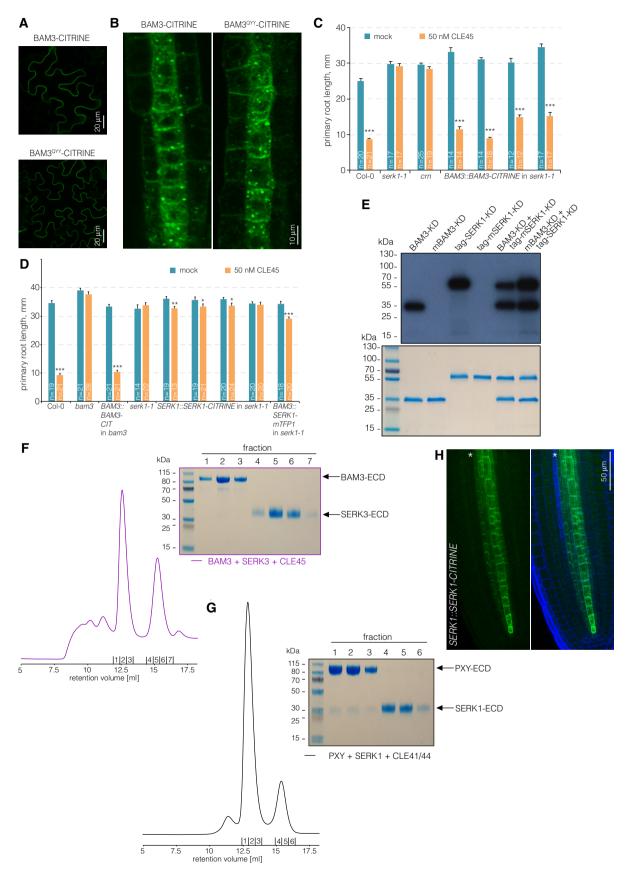

- A Relative primary root length of indicated genotypes at 9 dag, in response to increasing amounts of CLE45 in the media. n = 12 for each genotype, mean \pm s.e.m. All differences as compared to wild type were statistically significant (Student's t-test) with P < 0.001 for 15 and 50 nM, and P < 0.05 for 100 nM.
- B ITC of purified PXY extracellular domain vs. CLV41/44 peptide. n.d.: not detectable. N: stoichiometry, K_d dissociation constant. Shown are experimental values \pm fitting errors (95% confidence interval).
- C ITC of purified BAM3 extracellular domain vs. CLV3 peptide.
- D ITC of purified BAM3 extracellular domain vs. an N-terminally tyrosine-modified CLV3 peptide.
- E ITC of purified BAM3 extracellular domain vs. an N-terminally tyrosine-modified CLE45 peptide.
- F Representative 9-day-old Col-O seedlings grown on mock or in presence of indicated peptides.

Figure EV2. BAM3 localization and biochemical control experiments.

- A Transient expression of BAM3 wild-type or mutant BAM3^{QYY} CITRINE fusion proteins (green fluorescence) in tobacco leaf epidermal cells, under control of a constitutive promoter (confocal microscopy).
- B Close-up of developing protophloem sieve element cell files expressing BAM3 wild-type or mutant BAM3^{QYY} CITRINE fusion proteins (green fluorescence). C, D Primary root length of 7-day-old seedlings of indicated genotypes on mock or CLE45 media, several independent lines per transgene construct are shown.
- Differences as compared to mock are not statistically significant unless indicated (Student's t-test); *P < 0.05; **P < 0.01; ***P < 0.001; mean \pm s.e.m.
- E Transphosphorylation kinase assays with purified BAM3 kinase domain (BAM3-KD) or SERK1 kinase domain (SERK1-KD) as well as kinase dead point mutant versions (mBAM3-KD & mSERK1-KD) alone and in combination.
- F Analytical size-exclusion chromatography of purified BAM3 and SERK3 extracellular domains in the presence of CLE45 peptide reveals no ligand-induced complex formation between BAM3 and SERK3.
- G Analytical size-exclusion chromatography of purified PXY and SERK1 extracellular domains in the presence of CLE41/44 peptide reveals CLE41/44-induced binding of SERK1 to the PXY ectodomain.
- H Expression of SERK1-CITRINE fusion protein (green fluorescence) under control of the native SERK1 promoter (blue fluorescence: calcofluor white cell wall staining). Green channel is shown separately (left) and in overlay with blue channel (right). Asterisk indicates the developing sieve element cell file.

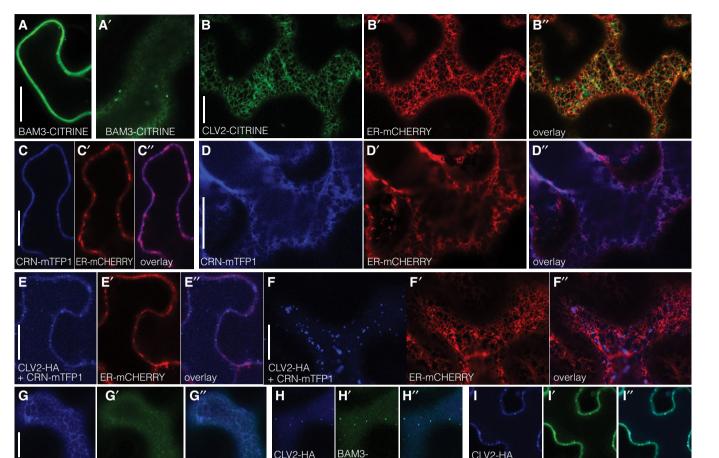


Figure EV2.

Figure EV3. CLV2 and CRN localizations in Arabidopsis roots.

- A Expression of CLV2-CITRINE fusion protein (green fluorescence) under control of the native promoter in *clu2* root meristems (magenta fluorescence: calcofluor white cell wall staining) (confocal microscopy). Asterisk marks developing protophloem sieve element strand. Close-up (A') with developing protophloem at the center is shown.
- B Same as in (A), for CRN-CITRINE fusion protein under control of the native promoter in crn root meristems.
- C Representative 5-day-old clu2 seedlings expressing CLV2-CITRINE fusion protein under control of its native promoter grown on mock or CLE45.
- D Representative 5-day-old crn seedlings expressing CRN-CITRINE fusion protein under control of its native promoter grown on mock or CLE45.
- E Same as in (A), for CRN-CITRINE fusion protein under control of the native promoter in *clv2* root meristems.
- F Same as in (A), for CLV2-CITRINE fusion protein under control of the native promoter in crn root meristems.

Figure EV4. Tobacco co-localization, additional, and control experiments.

overlay

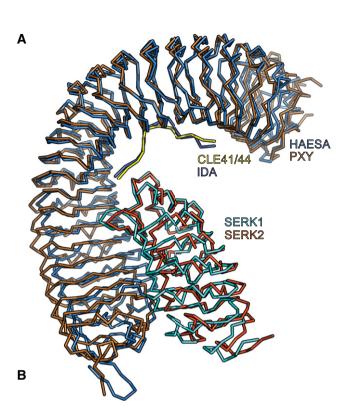
BAM3-CITRINE

Transient expression of BAM3-CITRINE fusion protein (green fluorescence) in tobacco (Nicotiana benthamiana) leaf epidermal cells, under control of a constitutive А promoter (confocal microscopy), optical section through cell center. Panel (A'): same in cell surface view.

ITRIN

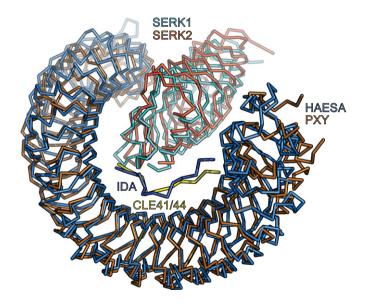
overlay

 $CI \lambda$


- В Transient co-expression of CLV2-CITRINE fusion protein (green fluorescence) and an endoplasmic reticulum marker (ER-mCHERRY, red fluorescence).
- Transient co-expression of CRN-mTFP1 fusion protein (blue fluorescence) and the ER-mCHERRY marker (red fluorescence), optical section through cell center. С D Same as (C), in cell surface view.
- E, F Corresponding to (C) and (D), in the additional presence of (non-fluorescent) CLV2-HA fusion protein.
- Transient co-expression of CRN-mTFP1 (blue fluorescence) and BAM3-CITRINE (green fluorescence) fusion proteins, in cell surface view. G

CLV2-HA

H, I Transient co-expression of CRN-mTFP1 (blue fluorescence) and BAM3-CITRINE (green fluorescence) fusion proteins, in the additional presence of (non-fluorescent) CLV2-HA fusion protein. Panel (H): cell surface view. Panel (I): optical section through cell center.


Data information: Scale bars are 20 µm.

CRN-mTFP1

Figure EV5. Structure comparison of HAESA-IDA-SERK1 and PXY-CLE41-SERK2 signaling complexes.

A, B Structural superposition of HAESA-IDA-SERK1 (PDB-ID 5IYX, HAESA in light blue, IDA in dark blue, and SERK1 in cyan) (Santiago *et al*^[30]) with a PXY-CLE41/44-SERK2 complex (PDB-ID 5GQR, PXY in gold, IDA in yellow, and SERK2 in orange) (Zhang *et al*^[45]). The complexes closely align with an r.m.s.d. of 2.3 Å comparing 770 C_x atoms.

