Supplemental Information:

The differentiation of ROR-yt expressing iNKT17 cells

is orchestrated by Runx1

Puspa Thapa¹, Bryce Manso¹, Ji Young Chung¹, Sinibaldo Romero Arocha¹, Hai-Hui Xue², Derek B. Sant' Angelo³ and Virginia Smith Shapiro^{1*}

¹Department of Immunology, Mayo Clinic, College of Medicine, 200 1st Street SW, Rochester, MN 55905

²Department of Microbiology and Immunology, University of Iowa, 51 Newton Rd Iowa City, IA, 52242

³Department of Pediatrics, Rutgers Robert Wood Johnson Medical School and The Children's Health Institute of New Jersey, 89 French Street, New Brunswick, NJ 08901

^{*}To whom correspondence should be addressed: Virginia Smith Shapiro Ph.D. 200 1st Street SW Rochester, MN 55905 Phone: 507-293-0615 Email: shapiro.virginia1@mayo.edu

Supplemental Figure 1: Runx1-deficient Stage 3 iNKT cells have normal expression of IL-15R and Bcl-xL.

(a) Expression of IL-15 receptor subunits: IL-15R α , IL-15R β (IL-2R β , CD122), IL-15R γ (γ c, CD132), and pro-survival gene Bcl-xL in Stage 3 iNKT cells of WT (grey filled) and PLZF-cre Hdac3 cKO (black line) mice. Data is representative of at least 3 mice/genotype from 3 independent experiments. Quantification of MFI for IL-15R α , IL-15R β (IL-2R β , CD122), IL-15R γ (γ c, CD132), and Bcl-xL in Stage 3 iNKT cells of WT (black bar) and PLZF-cre Hdac3 cKO (white bar) mice. Data is calculated from at least 3 mice/genotype from 3 independent experiments. All statistical analysis was done using Student's *t-test*. Means ± S.E.M.

Supplemental Figure 2: Absence of peripheral iNKT17 cells in the spleen and liver of PLZF-cre Runx1 cKO mice.

(a) FACS analysis of splenic and liver iNKT1, iNKT2 and iNKT17 cells of WT (top) and PLZF-cre Runx1 cKO (bottom) mice. Gating for functional subsets were done as defined in Figure 4, using PLZF, Tbet and ROR-γt. Data is representative of at least 11 mice/genotype for spleen and 9 mice/genotype for liver. (b) Absolute number of iNKT cell subsets (iNKT1, iNKT2 and iNKT17) in spleen and liver of WT (black bars) and PLZF-cre Runx1 cKO (white bars) mice. Data is calculated from at least 11 mice/genotype for spleen and 9 mice/genotype for liver. (c) Frequency of iNKT cell subsets (iNKT1, iNKT2 and iNKT17) in spleen and liver of WT (black bars) and PLZF-cre Runx1 cKO (white bars) mice. Data is calculated from at least 11 mice/genotype for spleen and 9 mice/genotype for liver. (d) Expression of mTOR, pAKT (Ser374), and pS6 in Stage 2 iNKT cells of WT (grey filled), PLZF-cre Hdac3 cKO (black line) mice and Secondary antibody only control (dashed line). Data is representative of at least 4 mice/genotype from 4 independent experiments. Quantification of MFI for mTOR, pAKT (Ser374), and pS6 in Stage 2 iNKT cells of WT (black bar) and PLZF-cre Hdac3 cKO (white bar) mice. Data is calculated from at least 4 mice/genotype from 4 independent experiments. All statistical analysis was done using Student's *t-test*. Means ± S.E.M.

4

Supplemental Figure 3: Ectopic expression of PLZF in Runx1-deficient iNKT cells does not rescue block in iNKT17 differentiation. FACS analysis of iNKT cell development and ROR-γt expression in Stage 2 iNKT cells in WT, Lck-PLZF Tg and Lck-PLZF Tg/PLZF-cre Runx1 cKO mice. Analysis of iNKT cells was performed as described in Fig 1. Data is representative of 3 mice/genotype from 3 independent experiments.