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1 EAPPENDIX 1. METHODS 

1.1 Study design 

This study was a randomized, double-blind, placebo-controlled, crossover design involving two drugs:  

varenicline pills and nicotine patches.  Subjects completed a total of 6 fMRI sessions: 2 baseline sessions 

(pre-pill), and 2 sessions each after a varenicline or placebo pill regimen. In each of the 3 varenicline 

conditions, the two sessions were randomized to either nicotine or placebo patch. Randomization was 

maintained by the study physician, while researchers, technicians, and participants remained blinded. 

This is in accordance with the protocol described in previous publications1–4. 

 
eFigure 1. Study design. The current study reports data from the four completely counterbalanced 
sessions (sessions 3-6). Varenicline and placebo pill sessions were separated by more than two weeks 
(**). Nicotine and placebo patch scans were separated by an average of 2.9 ± 1.7 days (*). No washout 
interval separated medication periods (#). Double-headed arrows explain indicate randomized and 
counterbalanced order of the sessions. Figure reproduced with permission from Sutherland et al.3 See 
also eAppendix 1: Study design. 

1.2 Drug regimen 

Varenicline and placebo pills were administered in accordance with standard guidelines 

(http://www.pfizer.com/products) over a ~17-day schedule. The varenicline regimen began at an 0.5 mg 

once-daily dosage for days 1-3, stepped up to 0.5 mg twice daily at days 4-7, and remained at 1 mg twice 

daily for days 8-17. Active and placebo medication appeared identical and were distributed in blister 

packs. Scanning sessions occurred at the end of each regimen (varenicline 17.0 ± 4.2 days; placebo pill 

16.5 ± 3.4 days). No washout interval separated medication periods. For those participants whose 

placebo regimen followed the varenicline regimen, carryover effects were assumed negligible given the 

~24-hour elimination half-life of varenicline5 and the fact that placebo varenicline scanning sessions and 

active varenicline scanning sessions were separated by more than 2 weeks. 
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For each of the pill conditions, nicotine or placebo patches were applied to the upper back at the start of 

fMRI visits (separated by 2.9 ± 1.7 days). Nonsmokers received a 7mg nicotine patch dose, while 

smokers received a dose that matched daily nicotine intake (21, 28, 35, or 42 mg patches for 10-15, 16-

20, 21-25, and >25 cigarettes/day, respectively). The patch was worn for the duration of the 9-hour visit, 

which consisted of 2 MRI scans. 

The PRL task was completed in the second of the 2 MRI scans and began approximately 6-7 hours after 

initial patch application. It was assumed that data collected within the 2-9 hour post-patch window was 

associated with steady plasma nicotine levels, in accordance with pharmacokinetic data.6 

 

Before each scanning session, subjects were asked to abstain from alcohol for 24 hours, and to moderate 

caffeine intake for 12 hours. Smokers were required to abstain from cigarette use for 12 hours before and 

also during scanning days, but were not otherwise restricted on smoking behavior during the 6-8 week 

course of the entire study. At the start of each session, all participants underwent testing for recent drug 

and alcohol use, and expired carbon monoxide (CO) levels. CO levels of less than or equal to 15 parts 

per million (ppm) indicated abstinence. Medication dose was confirmed by the participant on the morning 

of the scanning session. Medication side effects and adherence were monitored by regular telephone 

assessments and at in-person visits. 

1.3 Probabilistic reversal learning task 

Task structure: The probabilistic reversal learning task was based on that used by Cools et al.7 

Participants were presented with two easily-distinguishable, abstract color patterns, and were required to 

select the correct one (eFigure 2). One pattern probabilistically led to a monetary reward (75% chance of 

a reward, 25% chance of a punishment) while the other had the reverse contingencies. The goal of the 

task was for participants to earn as much money as possible by making the “correct” choice through trial-

and-error. The contingencies reversed when the participant had selected the correct pattern 5 times 

consecutively, or when 20 trials elapsed since the last reversal (i.e., a failed reversal). Participants thus 

had to infer contingency switches based on the probabilistic outcomes.  

Monetary reward: There was a monetary incentive for PRL task performance. Participants were paid 50% 

of the amount “earned” in the task (see eTable 2: Overall Score), typically in the $50-$80 range 

(mean=$66.37, SD=$20.67).  
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Trials and timing: The task consisted of three runs, each consisting of 120 trials.  The total task took ~35 

minutes. Cues were presented for 1500ms, feedback for 1000ms. Trial onsets were temporally jittered 

(1500-5500ms) to allow independent estimation of the BOLD response for each trial.  

 
eFigure 2. Probabilistic reversal learning task and trial types. Each line represents a trial. The participant 

selects (red frame) one of the two cues presented on the screen and immediately receives feedback 

indicating win (reward) or loss (punishment). Contingencies (left-most image indicates reward-predicting 

cue) reverse at regular intervals during the task. Trials are categorized based on the outcome (win or 

lose) and on whether the participant chooses the same or a different cue the next trial (stay or shift). See 

also eAppendix 1: Probabilistic reversal learning task. 

 

Training and instructions: Participants received explicit instruction and thorough training on the PRL task. 

During a separate orientation session, participants were trained in multiple phases to maximize their 

understanding of the task structure. Participants were first instructed that one of two images would lead to 

a monetary reward, that these contingencies would reverse, and that the participant should learn which 

image is rewarding through trial and error. Participants then practiced this deterministic version of the 

reversal learning task. Second, after this basic structure of the task was well-understood and participants 

learned how to maximize monetary gain by selecting the correct image and shifting their selections when 

appropriate, the probabilistic element was introduced. Participants were explicitly told that the computer 

would sometimes give the wrong feedback to make it harder for the participant to identify the correct 

image and earn money. Participants then performed a training block without reversals but with 
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probabilistic feedback, to expose them to the probabilistic feedback aspect. Third, all elements of the PRL 

were recapped by talking the participant through a diagram that depicted a series of 15 hypothetical trials 

and responses. This series of trials illustrated the probabilistic nature of the task and the reversals further. 

Participants were instructed that “the hardest part of this task is deciding if you should switch your 

response or stay with the same picture.  In other words, the hardest part of the task is determining if the 

rule has switched or if the computer is lying to you.  Just because the computer told you that you won a 

dollar does not mean that the image you chose is the correct one.  And just because you lost a dollar 

does not necessarily mean that you chose the wrong image. Remember that you should only switch your 

response when you are sure that the rule has changed.” Finally, participants performed a 120-trial 

practice block of the PRL task in the mock scanner.  

1.4 Computational modeling  

Our modeling approach was based on Hampton et al,8 who found that a Hidden Markov Model (HMM), 

which incorporates model-bases knowledge of the task structure (namely the anti-correlated nature of the 

values of the two cues) fits choice data in a PRL task better than a simple Rescorla-Wagner (RW) model. 

The RW model relies solely on experience and therefore learns only about the cue that is encountered 

(model-free learning), whereas the HMM incorporates the task structure and therefore constitutes model-

based learning. Since then, other researchers have also found that computational models that incorporate 

the underlying task structure explain choice behavior in PRL better than simple RW models.9,10 We fit 

three models: one Rescorla-Wagner (RW) model and two HMMs.  

1.4.1 Rescorla-Wagner model 

In a RW model, participants update the value of cues (A and B) through experience on each trial (t). The 

value associated with the selected cue (VA) is updated proportionally to the difference between the 

predicted outcome (o) and the actual outcome (prediction error δ), weighted by the learning rate η. Higher 

learning rates and larger prediction errors lead to larger updates in the values associated with each cue. 

In this model, the participant updates only the value of the selected cue; in a trial where A is selected, the 

participant learns nothing about B. 

 

𝑉𝑉𝐴𝐴 (𝑡𝑡 + 1) = 𝑉𝑉𝐴𝐴(𝑡𝑡) + 𝜂𝜂𝜂𝜂(𝑡𝑡)     (1)   
 

𝛿𝛿(𝑡𝑡) = 𝑜𝑜(𝑡𝑡) − 𝑉𝑉𝐴𝐴(𝑡𝑡)      (2) 
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On the basis of the difference between these values VA and VB, the probability of choosing the cue A is 

described by Luce’s rule11: 

 

𝑃𝑃(𝐴𝐴) =  1

1+ 𝑒𝑒−𝛽𝛽(�𝑉𝑉𝑎𝑎−𝑉𝑉𝑏𝑏�−𝛼𝛼)     (3) 
 

Here, the probability of selecting cue A depends on the value difference between the two cues, the bias 

α towards one value, and the inverse temperature β. In the RW model, positive values for α indicate a 

bias toward selecting B, as a larger difference between VA and VB is required to increase the chance of 

selecting cue A. Conversely, a negative α implies a bias toward selecting cue A. The inverse temperature 

β can be interpreted as the sensitivity to the available evidence. A small β pulls the probability of selecting 

a particular cue toward 0.5 - relying less on the evidence (the VA minus VB term), while a large β amplifies 

the impact of the difference in value between the two cues. For example, if VA > VB and α is 0, then a high 

β would make it extremely likely that cue A would be chosen, while a low β pulls this probability toward 

indifference. In fitting this model to the data, we estimated the learning rate η, α and β. The probability of 

selecting cue B is the complement of the probability of selecting cue A.  

1.4.2 Hidden Markov Models 

The other two models were HMMs whereby the model of the task is considered. In a PRL task, there are 

two states (correct: having selected the correct cue; or incorrect: having selected the incorrect cue), each 

of which is associated with a certain outcome Y (a reward or a punishment; e.g. a 75% probability of a 

reward in state Xcorrect).   

At any time point t, participants must infer a hidden state (Xt = correct or Xt = incorrect) from imperfect 

(probabilistic) outcomes (Y; Yt = reward or Yt = punishment). The probability of being correct is initially set 

at 0.5 and updated each trial. Each trial participants make a choice S (St = stay or St = shift). Reward 

contingencies reverse with transition probability δ (δ therefore has a different meaning than in the RW 

model). That is, if Xt=1 = correct, and the participant shifts their response, then Xt=2 is correct with 

probability δ and Xt=2 is incorrect with probability 1-δ. If Xt=1 = correct, and the participant does not shift, 

then Xt=2 is correct with probability 1-δ and Xt=2 is incorrect with probability δ. A high δ means reversals are 

likely, while a low δ means reversals are unlikely.  
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𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) =  ∑ 𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 |𝑋𝑋𝑡𝑡−1 , 𝑆𝑆𝑡𝑡) ∗ 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋𝑡𝑡−1𝑋𝑋𝑡𝑡−1 )   (4) 

 

The probability of being correct (probability that Xt = correct) given the evidence Yt is calculated per 

Bayes’ rule 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑒𝑒) =  𝑃𝑃(𝑌𝑌𝑡𝑡|𝑋𝑋𝑡𝑡=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)∗𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋𝑡𝑡=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
∑ 𝑃𝑃(𝑌𝑌𝑡𝑡|𝑋𝑋𝑡𝑡)∗𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋𝑡𝑡)𝑋𝑋𝑡𝑡 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 

      (5) 

 

The probability of being incorrect state (posterior probability that Xt = incorrect; Pincorrect) informs the 

probability of a shift, which can be calculated per Luce’s choice rule: 

 

𝑃𝑃(𝑠𝑠ℎ𝑖𝑖𝑖𝑖𝑖𝑖) =  1
1+ 𝑒𝑒−𝛽𝛽(𝑃𝑃𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖−𝛼𝛼)      (6) 

 

Two nested HMMs were fitted. The first HMM (HMM1) had three free parameters: δ (the probability of a 

reversal), α (the bias toward shifting (<0.5) or staying (>0.5)), and β, the reliance on the available 

evidence. 

 

The third model, HMM2, incorporated a fourth free parameter that captures the extent to which the time 

since the last switch increases the probability of a switch. That is, as the number of trials increases, a 

reversal becomes more likely, regardless of the valence of the outcomes. Per HMM1, one should become 

increasingly confident that one is in the correct state, and increasingly reluctant to shift as the number of 

trials since the last reversal grows and outcomes are positive. However, the task structure is such that, in 

fact, the longer it has been since the last reversal, the more likely a new reversal becomes. HMM2 

includes a free parameter that weights to what extent the time since the last reversal increases the 

probability of a reversal. 

 

For HMM2, this is implemented into the calculation of the posterior probability of being in the correct state 

or the incorrect state (with Posterior(Xt=incorrect) = 1- Posterior(Xt=correct) ): 

 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋𝑡𝑡 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) =  𝑃𝑃(𝑌𝑌𝑡𝑡|𝑋𝑋𝑡𝑡=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)∗𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋𝑡𝑡=𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 
∑ 𝑃𝑃(𝑌𝑌𝑡𝑡|𝑋𝑋𝑡𝑡)∗𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃(𝑋𝑋𝑡𝑡)𝑋𝑋𝑡𝑡 𝑠𝑠𝑠𝑠𝑎𝑎𝑡𝑡𝑡𝑡𝑡𝑡 

∗ 𝑒𝑒−𝑙𝑙𝑙𝑙𝑔𝑔𝑡𝑡∗𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑−𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡 (7) 
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Where the fixed parameter lag has value 0 for the first four trials following a reversal (where a reversal is 

impossible, even if the participant selects the correct cue on each trial), and then increases linearly. Non-

zero values for the free parameter delay-weight mean that the longer one gets away from the previous 

reversal, the more likely one is in the incorrect state. Therefore, delay-weight signals that a participant 

factors in the structure of the task, whereby switches occur with some regularity.  

1.4.3 Model comparison 

Following Hampton et al,8 we calculated a log likelihood for each of the models as follows: 

 

log 𝐿𝐿 =  ∑𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ∗log𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ
 𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠ℎ

+ 
∑𝐵𝐵𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠∗log𝑃𝑃𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
    (8)  

 

Because there are far more stay trials than switch trials, the likelihood is estimated for stays and switches 

separately and divided by the number of stays and switches. To account for the number of free 

parameters in comparing model fits (three in RW and HMM1, four in HMM2), we calculated the Bayesian 

Information Criterion (BIC), which accounts for this increase in free parameters by “punishing” models 

with more free parameters. 
 

𝐵𝐵𝐵𝐵𝐵𝐵 =  −2 log 𝐿𝐿 + 𝑀𝑀 ∗ 𝐿𝐿𝐿𝐿𝐿𝐿 𝑁𝑁
𝑁𝑁

       (9) 
       

Here M is the number of free parameters and N is the number of observations. Lower BIC values indicate 

a better fitting model. Models were fitted to the choice data and free parameters were estimated with a 

simulated annealing method in R (https://www.r-project.org/). Model fits were compared by submitting the 

BIC to paired t-tests.  

1.5 MRI acquisition 

MRI images were acquired on a Siemens 3T Magnetom Allegra scanner (Erlangen, Germany). To 

capture the blood oxygenation level-dependent (BOLD) response during the task, we acquired T2*-

weighted, single-shot gradient-echo, echo-planar imaging (EPI) scans (1104 volumes over three 368-

volume runs; 39 axial slices, slice thickness 4mm, oblique-axial slices (30° to AC-PC), TR=2000ms; 

TE=27ms; flip angle =80°; field of view=220×220mm; image matrix=64×64). In addition, a high-resolution 

T1-weighted structural scan was acquired (MPRAGE, TR=2500ms; TE=4.38ms; FA=8°; voxel size=1 

mm3, oblique-axial).  
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1.6 MRI analysis 

1.6.1 Preprocessing and first-level modeling 

Preprocessing: Functional images were slice-time corrected, registered to the anatomy, motion-corrected, 

spatially registered to the Talairach template and smoothed to 8mm at FWHM.  

First-level general linear model: Event types of interest were modeled according to their outcome and the 

behavioral response on the next trial, as in previous work12 (win-stay, lose-stay, and lose-shift) . Win-shift 

trials were not modeled separately due to their very small number (mean occurrence = 10.0, SD=11.2 out 

of 360 trials). Regressors were convolved with a haemodynamic response function (HRF) and its 

temporal derivative. Six regressors captured head motion. 5th order polynomial regressors were included 

to capture baseline trends.  

First-level contrasts of interest: Conditions were estimated against the implicit baseline and two contrasts 

of interest were calculated to capture reward-sensitivity and flexibility. The reward-sensitivity contrast 

(win-stay minus lose-stay) was calculated by subtracting lose-stay trials from win-stay trials; cognitive 

flexibility (shift minus stay) was calculated by subtracting lose-shift trials from lose-stay trials. This 

approach was taken to ensure that the reward-sensitivity contrast was not confounded by differences in 

the behavioral response and that the flexibility contrast was not confounded by differences in valence. 

Thus, in the reward-sensitivity contrast the behavioral response was kept constant (stay only), while in the 

flexibility contrast the outcome was kept constant (lose only).  

1.6.2 Regions of interest and correction for multiple comparisons 

We used a region of interest approach based on brain areas that are implicated in addiction and nicotine 

withdrawal, and in PRL13. In addition to classic MCL regions (orbitofrontal cortex, ventral and dorsal 

striatum), we also included the anterior cingulate cortex and the anterior insular cortices, as these are 

densely packed with α4β2 receptors, as well as the bilateral amygdala, due to its pivotal role in withdrawal 
1,2,7,14–16. Anatomical masks of the nucleus accumbens, caudate nucleus, putamen, amygdala, 

orbitofrontal cortex, anterior cingulate cortex, and anterior insula were derived from Desai maximum 

probability maps.17 All 7 masks were summed, and a 3dClustSim algorithm (AFNI) was used to estimate 

the appropriate correction level to arrive at family-wise error (FWE) correction level of α<0.05 across the 

composite mask. Within the small volume (1,978 voxels), we corrected at a voxel-wise level of p<0.05, 

with a cluster size of 53 voxels.  
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eFigure 3: composite mask of the regions of interest. Imaging results were FWE corrected within these 
regions. Talairach coordinates X=2, Y=10, Z=0. Left is displayed on the right. 
 

For the whole-brain task maps, we constructed a 90% probability masks of the functional data (44,413 

voxels). Using a 3dClustSim algorithm, we arrived at a voxel-wise threshold of p<0.001 that was 

combined with a minimum cluster size of 19 voxels (FWE α<0.05). 

2 EAPPENDIX 2. RESULTS 

2.1 Demographics 

Groups were matched on gender and ethnicity. Smokers were moderately nicotine dependent 

(Fagerström scores: 5±2) smoked 18±8 cigarettes/day, and reported daily cigarette use for 18±11 years. 

Smokers were significantly older than controls (eTable 1), and age was therefore included as a covariate 

in all between-group analyses. Data from one male nonsmoker was excluded from all analyses due to 

poor behavioral performance (see below for description and quantification) and excessive head motion. 

 

eTable 1: Demographics. 

  smokers (N=24) nonsmokers (N=20) group differences 

Gender (F/M) 12 / 12 10 / 10 t(42) = 0, p=1 
Age (mean +/- SD) 35.8 +/- 9.9 30.4 +/- 7.2 t(41.327) = 2.12, p=0.040 
IQ (mean +/- SD) 105.95 +/-12.37 113.37 +/- 11.57 t(37.0) = -1.93, p = 0.061 
race (AA/C/A/more than 1) 6 / 14 / 3 / 1 8 / 8 / 3 /1 F(3,40) = 0.49, p=0.6886 
Fagerstrom index 5.00 +/- 1.9 n/a n/a 
Years daily smoking 18.0 +/- 10.6 n/a n/a 
Cigarettes per day 17.7 +/- 7.9 n/a n/a 

Note. AA: African American, C: Caucasian, A: Asian. * p<0.05. 

 

10 

© 2017 American Medical Association. All rights reserved. 



2.2 QA: effectiveness of nicotinic receptor stimulation 

 

eFigure 4. QA: Effectiveness of nicotinic receptor stimulation. Nicotine and varenicline similarly modulated 

smokers’ and nonsmokers’ heart rates. Examination of the heart rate modulation after drug administration 

indicates that the drugs and doses employed in the two groups were physiologically significant, and 

similarly effective in both groups. Nonsmokers (NICOTINE-by-VARENICLINE interaction: =6.45, 

p=0.013) and smokers (NICOTINE-by-VARENICLINE interaction: =5.99, p=0.019) displayed similar 

cardiovascular responses to pharmacological manipulations (NICOTINE-by-VARENICLE-by-GROUP 

interaction =0.076, p=0.78)3. Nicotine-induced HR increases were observed under placebo pill 

conditions (NICOTINE effect in smokers: =21.67, p<0.001; NICOTINE effect in nonsmokers: =15.23, 

p<0.001), and were diminished or absent under varenicline pill conditions (no NICOTINE in either group; 

p’s > 0.26). # p<0.05 interaction effect; * p<0.05 pairwise comparison; *** p<0.001 pairwise comparison.  
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2.3 QA: task engagement 

 
eFigure 5. QA: Assessment for task engagement. We examined two metrics (win-shifts and failed 

reversals) to identify individuals or sessions where participants may not have been appropriately engaged 

in the task or may not have been ‘paying attention’. A) Win-shift behavior. If a participant was not 

engaged with the task, we expected them to make erratic or random choices, even in “easy” task 

conditions. This would be reflected in a high proportion of win-shift choices (with chance being 50%, and 

our definition of a cut-off). B) Failed reversals. The task was constructed such that if a participant did not 

learn the reversal (select the correct stimulus 5 times consecutively) within 20 trials, the rule changed. If a 

participant was not engaged in the task, one would expect many failed reversals. The average number of 

reversals was 36.3 ±4.1), and we used 25% of this (9 failed reversals) as a cut-off. One participant (one 

male control, data point circled) performed considerably worse (responding at chance level after a win, 

over 9 failed reversals in 3 of the sessions), was deemed not to have engaged with the task and was 

therefore removed from behavioral and imaging analyses. PN: placebo-nicotine, PP: placebo-placebo, 

VN: varenicline-nicotine, VP: varenicline-placebo. 
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2.4 QA: absence of learning effects  

 
eFigure 6. QA: Absence of learning effects. No order effects were observed across the sessions included 

in the behavioral and imaging analysis. It is possible that complex tasks such as PRL can show learning 

effects across sessions. However, most of the learning is likely to occur during the training session (see 

eMethods) and first two sessions. Indeed, any behavioral improvements appeared to level off over the 

first sessions, and behavior did not demonstrate significant performance differences within sessions 3 to 

6. In addition, the order of the four pharmacological manipulations (nicotine versus placebo, varenicline 

versus placebo) was counterbalanced (see eFigure 1), indicating that session order was unlikely to 

confound pharmacological effects. Grey area indicates sessions that were included in this report. 
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2.5 Behavioral results 

eTable 2. Behavioral results. 

 
  Overall Score Lose-Shift (%) Win-Stay (%) Trials to Crit. Persev. err. RT (ms) 

    Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE 

Smokers Plac-Plac 124.38 6.12 44.83 0.92 94.43 0.57 10.15 0.21 25.13 1.20 656.64 9.79 

 
Plac-Nic 122.33 6.12 41.67 1.31 95.75 0.44 9.86 0.11 30.33 1.11 629.36 9.25 

 
Var-Plac 120.46 5.11 41.10 1.31 95.83 0.66 9.68 0.12 29.63 0.99 654.10 9.43 

 
Var-Nic 126.17 6.06 41.01 0.96 95.46 0.45 9.63 0.12 29.71 0.90 648.76 8.86 

  Average 123.34 5.85 42.15 1.13 95.37 0.53 9.83 0.14 28.70 1.05 647.22 9.33 

Nonsmokers Plac-Plac 142.42 7.64 47.04 0.70 95.15 0.93 9.66 0.17 24.21 1.04 609.32 8.94 

 
Plac-Nic 145.21 6.42 46.82 1.14 94.89 0.93 9.54 0.12 25.32 1.30 605.04 9.71 

 
Var-Plac 143.89 5.78 48.12 1.06 94.56 0.73 9.59 0.12 24.63 1.23 626.39 11.47 

 
Var-Nic 146.89 5.50 46.72 0.87 93.41 0.67 9.73 0.08 23.42 0.57 613.72 12.70 

  Average 144.60 6.34 47.18 0.94 94.50 0.82 9.63 0.12 24.40 1.04 613.62 10.71 

  
Grand 
mean 133.97 6.09 44.66 1.03 94.94 0.67 9.73 0.13 26.55 1.04 630.42 10.02 

Note. Overall score: number of wins – number of losses. Lose-Shift: percentage of shift responses after a 

loss. Win-Stay: percentage of stay responses after a win. Trials to Crit.: average number of trials until the 

correct stimulus is selected 5 times consecutively. Persev. err.: number of perseverative errors; selections 

of a previously rewarded cue at least three trials (including two losses) after a reversal. RT: reaction time. 
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2.6 Computational modeling results 

 
eFigure 7. Computational modeling results: Model Comparisons. A. Bayesian information criterions for 

the three models. B. Average difference in BIC for HMM1 and HMM2. Error bars denote standard error of 

the mean. *** p<0.001 in paired t-tests. See also eAppendix 2: Computational modeling results. 

 

Both HMM1 (Paired t-test of BIC RW vs. HMM1: t168=25.69, p<0.001) and HMM2 (Paired t-test of BIC RW 

vs. HMM2: t168=25.55, p<0.001) performed better than the Rescorla-Wagner model (eFigure 7A). HMM2, 

which included a fourth free parameter which indexed how much the chance of shifting was affected by 

the time since the last reversal, resulted in slightly better model fits than HMM1 (eFigure 7B; Paired t-test 

of BIC HMM1 minus BIC HMM2: t168=6.74, p<0.001). Therefore, we based our inference on the 

parameter estimates using HMM2. eFigure 8 shows model fit data for a representative subject. Parameter 

estimates for each model can be found in eTables 3-5. 

Out of 172 sessions fitted to the HMM2, the model generated erratic parameter estimates for only three 

sessions (three different conditions: one on nicotine only, one on nicotine and varenicline, and one on 

neither; placebo-placebo). These data, from three different smoker participants, were excluded from 

further computational analyses assessing GROUP, NICOTINE, and VARENICLINE effects.  
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eFigure 8. Computational modeling results: Example model fit. Fits for the three models considered are 

shown using one run (120 trials) of a representative participant’s data. Ribbon above indicates the 

outcome on each trial (beige is reward, red is punishment), the bold blue line is the participant’s behavior 

(1 is a shift, 0 is stay). The light green is the probability of a switch as estimated by the model. The dark 

green is a binary version of this switch probability (1 if the Pswitch > 0.5, 0 if Pswitch < 0.5) and represents the 

“guess” the model makes. As is quantified in eFigure 7, the HMM1 and HMM2 fit the behavioral data 

better than RW. HMM2, in turn, provides a better fit to the choice data than HMM1, notably after longer 

periods of positive reinforcement, the probability of a switch increases. HMM1, which does not factor in 

delay weight, overweights the importance of negative outcomes to optimize for. Under HMM2 it is 

recognized that negative outcomes right after a reversal should incentivize a shift less than negative 

outcomes long after a reversal). Negative outcomes are therefore processed more moderately, resulting 

in a better fit to the participant’s choice data. See also eAppendix 2: Computational modeling results. 
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eTable 3. Parameters estimates and goodness of fit measure for HMM2. 

 

eTable 4: Parameters estimates and goodness of fit measure for HMM1. 

HMM1   Alpha log(Beta) Delta NLL BIC 
    Mean SE Mean SE Mean SE Mean SE Mean SE 

Smokers PP 0.45 0.02 0.77 0.024 0.22 0.02 0.87 0.021 1.80 0.04 

 
PN 0.52 0.01 0.91 0.039 0.24 0.02 0.80 0.029 1.65 0.06 

 
VP 0.51 0.01 0.91 0.039 0.20 0.01 0.80 0.033 1.65 0.07 

  VN 0.49 0.009 0.85 0.025 0.20 0.01 0.83 0.025 1.72 0.05 

Nonsmokers PP 0.48 0.009 0.83 0.019 0.23 0.02 0.86 0.021 1.76 0.04 

 
PN 0.48 0.008 0.88 0.018 0.22 0.01 0.82 0.018 1.68 0.04 

 
VP 0.50 0.009 0.85 0.014 0.26 0.02 0.84 0.014 1.72 0.03 

  VN 0.49 0.006 0.80 0.021 0.25 0.01 0.90 0.024 1.84 0.05 

 

eTable 5: Parameters estimates and goodness of fit measure for the Rescorla-Wagner model. 

RW   Alpha log(Beta) Eta NLL BIC 
    Mean SE Mean SE Mean SE Mean SE Mean SE 

Smokers PP -0.003 0.014 0.414 0.023 0.778 0.029 1.022 0.014 2.093 0.029 

 
PN -0.010 0.011 0.527 0.050 0.806 0.018 0.014 0.018 2.078 0.036 

 
VP 0.014 0.009 0.518 0.042 0.766 0.022 1.019 0.018 2.087 0.036 

 
VN -0.015 0.010 0.487 0.024 0.779 0.025 1.025 0.014 2.099 0.027 

Nonsmokers PP -0.008 0.010 0.418 0.022 0.811 0.024 1.043 0.015 2.136 0.031 

 
PN 0.002 0.009 0.462 0.021 0.822 0.020 1.022 0.012 2.093 0.024 

 
VP 0.002 0.012 0.417 0.022 0.842 0.023 1.036 0.012 2.121 0.025 

  VN -0.023 0.018 0.383 0.022 0.827 0.014 1.062 0.016 2.174 0.032 

  

HMM2   Alpha log(Beta) Delta Delay Weight NLL BIC 
    Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE 

Smokers PP 0.46 0.02 0.77 0.024 0.19 0.01 0.15 0.02 0.85 0.021 1.78 0.04 

 
PN 0.53 0.01 0.91 0.032 0.22 0.02 0.20 0.02 0.77 0.029 1.61 0.06 

 
VP 0.52 0.01 0.88 0.037 0.18 0.01 0.13 0.02 0.78 0.034 1.63 0.07 

 
VN 0.50 0.01 0.82 0.024 0.17 0.01 0.17 0.01 0.81 0.025 1.68 0.05 

Nonsmokers PP 0.49 0.01 0.84 0.020 0.20 0.02 0.18 0.02 0.83 0.022 1.72 0.04 

 
PN 0.49 0.01 0.88 0.020 0.18 0.009 0.19 0.01 0.79 0.020 1.64 0.04 

 
VP 0.51 0.01 0.88 0.018 0.21 0.02 0.21 0.02 0.79 0.017 1.64 0.03 

  VN 0.50 0.01 0.82 0.022 0.20 0.007 0.21 0.03 0.86 0.025 1.78 0.05 
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2.7 fMRI results 

eTable 6. Reward sensitivity contrast: table of results. 

  Gross anatomical region 
cluster 

size Talairach coordinates (LPI) 
    (voxels) x y z 

      REWARD SENSITIVITY (whole brain corrected FWE alpha < 0.05) 

 
Cingulate / vmPFC / occipitotemporal gyrus / striatum 12959 -1.5 -52.5 14.5 

 
dorsal ACC 610 -1.5 10.5 47.5 

 
right fusiform gyrus 163 22.5 -85.5 -12.5 

 
left fusiform gyrus 161 -34.5 -70.5 -15.5 

 
left anterior insula 136 -31.5 16.5 11.5 

 
right posterior middle temporal gyrus 68 52.5 -46.5 -15.5 

 
right anterior insula 67 31.5 19.5 11.5 

 
right cerebellar Crus II 45 31.5 -67.5 -36.5 

 
right middle frontal gyrus 40 46.5 43.5 11.5 

 
left inferior parietal lobule 21 -55.5 -31.5 44.5 

      GROUP DIFFERENCE - REWARD SENSITIVITY (small volume corrected FWE alpha < 0.05) 

 
Right putamen 114 34.5 -7.5 2.5 

 
Left putamen 82 -25.5 -13.5 8.5 

  Dacc 75 7.5 16.5 29.5 

 

eTable 7. Cognitive flexibility contrast: table of results. 

  Gross anatomical region 
cluster 

size Talairach coordinates (LPI) 
    (voxels) x y z 

      FLEXIBILITY (whole brain corrected FWE alpha < 0.05) 

 
dACC, left AI, bilateral striatum, bilateral lingual gyrus 8128 -31.5 58.5 17.5 

 
Right middle frontal gyrus 582 31.5 61.5 11.5 

 
Right anterior insula / IFG 377 49.5 16.5 -0.5 

 
Right posterior middle temporal gyrus 99 64.5 -31.5 -3.5 

 
Right cerebellar Crus I 27 40.5 -40.5 -33.5 

      SMOKERS: NICOTINE EFFECT ON FLEXIBILITY (small volume corrected FWE alpha < 0.05) 

 
Right dorsal and ventral striatum 296 16.5 19.5 2.5 

 
Left dorsal and ventral striatum 251 -7.5 7.5 -6.5 

 
Left anterior insula / IFG 102 -37.5 22.5 -6.5 

 
vmPFC / subgenual ACC 96 4.5 22.5 -3.5 

 
Right anterior insula / IFG 89 37.5 1.5 5.5 

  dACC 56 -4.5 31.5 23.5 
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eFigure 9. Imaging results: Task Maps for Reward-Sensitivity and Cognitive Flexibility Contrasts Across 

Groups and Sessions. A. Brain areas that respond differently to rewarding versus punishing outcomes 

(warm colors: reward > punishment; cool colors: punishment > reward). B. Brain areas with higher activity 

before a behavioral shift than before staying (red: shift > stay). Whole-brain corrected at FWE <0.05 

(p<0.001 voxelwise, cluster size 19). Left is on the right.  

 

 
eFigure 10. Imaging results: Reward vs. punishment group differences. Extracted regression weights 

from brain areas with a significant group difference for wins (yellow) and losses (red). Extracted 

regression weights and error bars (SEM) presented to aid interpretation only, no statistical inference 

should be drawn. 
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eFigure 11. Imaging results: Cognitive Flexibility is associated with Bias to Shift in Smokers in Areas That 

Show Decreased Shift-Related activity. Neural signatures of cognitive flexibility correlate with the bias 

toward staying as defined in the computational model (alpha). Regression weights extracted from 5 MCL 

regions that showed nicotinic effects in smokers (Figure 5 in main paper). Regression weights from the 6th 

vmPFC cluster were not related to alpha.  
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