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Supplementary Note 1
We desire to quantify the residual stresses due to anisotropic, differential growth in the E. coli cell wall,
ignoring its hemispherical endcaps. It is convenient to use the language of differential geometry inmodeling
differential growth. In general, geometric information about a surface, a subset of R3 whose coordinates ~ri
are functions of two independent parameters, can be encoded in a metric, a quantity which relates small
increments in parameter space to the lengths of corresponding steps on the surface. The covariant metric
tensor associatedwith any surface parameterization~r(x1, x2) is gij = ~mi·~mj , where ~mi = ∂~r/∂xi. A cylinder
of radius r and length L, for instance, is parametrized in cylindrical coordinates (x ∈ [0, L], θ ∈ [0, 2π]) as
~r = (x, r sin θ, r cos θ) and described by the metric tensor

(gij) =

(
1 0
0 r2

)
. (S1)

The cylinder is not the only shape that possesses this metric: there can be many embeddings of this metric
in R3. By Gauss’s theorema egregium, any isometric embedding preserves the Gaussian curvature of the
cylindrical metric and does not cause any elastic stretching of the two-dimensional material (but may be
penalized by other factors, or extrinsic properties, that depend on the embedding and not the metric). An
example of an extrinsic property is the mean curvature. The free energy of an elastic shell generally con-
tains contributions due to both an in-plane stretching energy and a curvature energy which quadratically
penalizes changes in mean curvature from the initial conformation. For extremely thin shells like the E. coli
cell wall, the curvature energy is negligible compared to the stretching energy. Hence, it is valid to ignore
the curvature energy and model the E. coli cell wall as an elastic membrane. Another extrinsic property
which can change the embedding of the shell is an internal pressure, which is relevant to E. coli and will be
discussed below.

Differential growth of the bacterial cell wall. Wemodel the cell wall as an isotropic, homogeneous, linear-
elastic membrane which is plastically deformed due to growth [1, 2]. There is evidence for cell wall growth
occurring through circumferential insertions of glycan strands that are then crosslinked to their neighbor-
ing strands [3, 4, 5]. The insertion of glycan strands in the circumferential direction can be coupled to the
mechanical strains and other elastic quantities of the cell wall, which may not assume a uniform profile.
Generally, growth can be described as a flow on the metric [6, 7]: after sustained growth, the target metric
gt may be different from the initial metric gb. The components of the target metric, which describes the in-
trinsic geometry of the cell after growth, can be arbitrary functions of the surface coordinates x1 and x2:
gtij = gtij(x1, x2). The energetic penalty for deviating from this metric is the in-plane stretching energy

Estretch =
1

2

∫
uijσijdx1dx2, (S2)

where uij = U j
i are the mixed (covariant and contravariant) forms of the strain tensor U = 1

2 (g − gt), σij
are the associated stress resultants, and g is the metric of the actual embedding (which may differ from gb).
Here, index lowering and raising are definedwith respect to gt. In the absence of extrinsic properties such as
pressure, the realized embedding is simply the onewhichminimizesEstretch. However, an internal pressure
results in an additional pressure-volume term in the total energy

H = −pV + Estretch, (S3)

and may thus change the equilibrium embedding. Finding the equilibrium embedding for E. coli then be-
comes a more delicate problem, and we address this numerically below.

Generally, upon realizing the equilibrium embedding, a cell’s shapemay not be cylindrical. Determining the
embedding may therefore yield information about past growth processes and patterns of glycan insertions.
In addition to the final shape, any residual stresses may affect the subsequent growth of the cell. Both the
shape due to a metric and the associated elastic quantities are therefore objects of interest in our theory.

2



Target metric of a cell with uniform differential growth. In this section, we find the target metric gt for a
growing E. coli cell subject to differential growth as a result of bending. This determines the form ofEstretch,
which is needed to find the equilibrium embedding and stress profile.

We consider growth that is uniform along the cylinder length, meaning that if

gt =

(
gb11(1 + f1(x, θ))2 0

0 gb22(1 + f2(x, θ))2

)
=

(
(1 + f1(x, θ))2 0

0 r2(1 + f2(x, θ))2

)
, (S4)

where gt is the target metric and gbij are components of the initial, cylindrical metric, then f1 and f2 are
functions of θ alone that encode the geometric changes caused by the growth process. The condition that f1
and f2 are functions of θ alone reflects our assumption that the differential growth is uniform over different
cross-sections of the cell. We further postulate that differential growth acts in the direction of the long axis
of the cell, so that f2(θ) = 0. This is the mode of growth if the PGEM adds new PG strands strictly along the
circumference. We now determine the form of f1(θ), which corresponds to growth that pushes apart points
along the long axis, but not along the circumference.

We hypothesize that differential growth depends on the areal strain. The deformation of the cell, as it is
confined in the microchamber, then determines the form of f1(θ). The bending of a circular, cylindrical
shell of radius r into a circular, toroidal shell results in a uxx component of the form

ubxx ≈ B sin θ, (S5)

a result that is familiar from Euler-Bernoulli beam theory. Here the superscript b denotes quantitites in-
duced by bending, andB, the bending parameter, is assumed small compared to unity and sets the curvature
of the bent cylinder via Rcurv = r/B, where Rcurv is the major radius of the toroidal section (and hence the
radius of the microchamber when the cell is confined). The strain tensor is expressed with respect to the
surface coordinates (x, θ), where x = Rcurvφ, θ = y/r, and (φ, θ) are doubly polar coordinates.

Although we shall see that it is valid to ignore the cross-sectional ovalization due to bending in E. coli, it is
also possible for the cell to react in the circumferential direction due to the Poisson effect so that σbyy ≈ 0.
In confirmation of this, we numerically simulated a pressurized cylinder subjected to a bending moment
using the finite-element software Abaqus FEA (Dassault Systems, Providence, RI). The simulation details
are discussed in the Supplementary Methods. The results, which are summarized in Supplementary Fig. 1,
suggest that σbxx ≈ Y B sin θ and σbyy ≈ 0. Thus, from the Hookean constitutive relations for a linear-elastic
material

uxx =
1

Y
(σxx − νσyy), uyy =

1

Y
(σyy − νσxx), (S6)

we obtain ubyy = −νB sin θ.

From the strain tensor, it is easily seen that the areal strainA = (1+uxx)(1+uyy)−1 caused by the deforma-
tion contains sinusoidal variations which are linear in B. We shall ignore the non-sinusoidal variations in
A, which are higher-order inB. Consider now a growth rate which depends on the areal strain as described
in the main text. For a pressurized bent cell, we anticipate that A ≈ A0 + A1 sin θ, where the constant term
is due to uniform stretching caused by pressure and the variational term comes from bending under mi-
crochamber confinement. If differential growth is proportional to the differential areal strain A1 sin θ, then
f1(θ) = c sin θ, where the coefficient c is set by the growth rates and the time of growth in the bent state.
We call c the differential growth parameter, and relate c to A1 in Supplementary Note 2. The target metric
prescribed by differential growth is then

gtij =

(
(1 + c sin θ)2 0

0 r2

)
, (S7)
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which completely specifies the form of Estretch. The equilibrium embedding and residual stresses in the
presence of pressure are determined in the next section.

We finally return to the assumption that it is acceptable to ignore any cross-sectional ovalization caused by
the longitudinal tension and compression which resist the applied bending moment. This ovalization is
widely known as the Brazier effect, first studied by L. G. Brazier in 1927, and is responsible for the buckling
behavior of cylindrical shells under bending [8]. However, in the presence of a large internal pressure which
resists ovalization—as for the case of the E. coli cell wall—the cross-sectional eccentricity becomes vanish-
ingly small. In particular, assuming that a typical cross-section deforms due to longitudinal tension and
compression according to w = rε cos(2θ), where w is the radial component of displacement due to bending,
we find

ε ≈ Y t2r4

t2R2
curv (Y t2 + 4pr3)

≈ Y r

4R2
curvp

, (S8)

where E is the three-dimensional elastic modulus, h is the thickness, ν is the Poisson ratio of the shell,
Y = Eh, t = h(1 − ν2)−1/2, and p is the internal pressure [9]. We see that ε is higher-order in B; for
characteristic values of h = 3 nm, ν = 1/3, E = 30 MPa, Rcurv = 4 µm, r = 0.5 µm, and p ranging from
0.3-2 atm (see Supplementary Table 1), ε = 0.004-0.0234, which is small compared to B = r/Rcurv = 0.125
in our experiments. Interestingly, if E. coli were not internally pressurized, then the corresponding value of
ε ≈ 400 surpasses the buckling limit of ε ≈ 2/9, and the cell wallmay have buckled inside themicrochamber.

Note that the foregoing discussion applies only to the deformation of cylindrical shells under an applied
bending moment. Although an internal pressure may intuitively resist cross-sectional deviations from a
circle, this intuition is incorrect when considering the equilibrium of a pressurized torus of circular cross-
section, as we do below. In particular, loading a circular torus with an internal pressure results in nontrivial
cross-sectional deformations [10, 11].

Numerical solution for a residually stressed cell. Having determined the form of gt in equation (S7), we
now wish to determine the embedding and associated elastic quantities of the cell when released from the
microchamber.

If the embedding of the cell were fully compatible with the target metric of equation (S7), then the cell wall
may be parametrized by the surface ~r(φ, θ) = ((R+ r sin θ) cosφ, (R+ r sin θ) sinφ, r cos θ), which describes
a circular toroid with major radius R = r/c. A direct calculation reveals that this parameterization has a
metric tensor exactly matching that of equation (S7), and would be the embedding describing the cell wall
if the pressure were small emough so that pV � Estretch and the total energy is H ≈ Estretch. The stress
resultants of a circular torus loaded by an internal pressure p are, in surface coordinates (x, y) = (Rφ, rθ),

σxx =
pr

2
, σyy =

pr

2

(
2 + c sin θ

1 + c sin θ

)
. (S9)

This result assumes geometric linearity—namely, that pressure loading does not change the embedding
~r—and results in an infinite displacement field at the crowns [12]. A solution which corrects for the latter
involves a boundary layer analysis or detailed examination of geometric nonlinearity [10, 11]. In this work,
we will not concern ourselves with this more detailed analysis.

Because equation (S9) assumes geometric linearity, it is not immediately applicable to the E. coli cell wall,
which is under a large internal pressure and finitely strained. A large pressure may change the embed-
ding that minimizes H, resulting in geometric nonlinearity of the deformation gradient. Due to the path-
independence of equilibrium states, we therefore consider the equivalent problem of loading a circular
toroidal section with bending parameter c with a large internal pressure. This is a complicated problem
for which an analytic, shell-theoretic solution is difficult. In order to explore whether or not a pressure of
the same magnitude as E. coli’s turgor pressure may affect the embedding and thus the associated stress
profile, we undertook numerical simulations using Abaqus FEA. The methodology is reviewed in the Sup-
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plementary Methods; briefly, a capped toroidal section was initialized as a fine mesh and equilibrated with
respect to a range of internal pressures. Although complicated, small-amplitude variations in σxx appear
for large strains where pr/Y ≈ 0.1 (which is relevant to E. coli; see Supplementary Table 1), the numerical
results are surprisingly well-approximated by the linear-theoretic stress profile of equation (S9) (Supple-
mentary Figs. 2b-c).

We offer an interpretation of our numerical results, and in particular the lack of variation in σxx, by noting
that there is negligible torque due to pressure for shells with circular cross-sections [1]. This would imply
that, even in the presence of a large pressure, a non-circular cross-section is necessary for variation in the
axial stresses. To see this, we consider a shell under internal pressure as pictured in Supplementary Fig.
2a. The upper-half portion of the shell, which is cut by the shaded plane, is in mechanical equilibrium.
The sum of all forces acting on the region must vanish by the condition of equilibrium. The contribution
to the torque exerted on the shell by pressure around a point A is exactly that coming from the contour
above, which by force balance is equivalent to the torque associated with the cross-section containing A.
Since the center of mass of a circular cross-section coincides with the moment center, there is no lever arm
and this torque must vanish. Thus, a shell with circular cross-section cannot have a variational axial stress
component. Further analysis of a toroidal shell with elliptic cross-section indicates that a finite eccentric-
ity can result in sinusoidal variations in σxx [13]. These remarks are consistent with our simulation results,
where we observed typical cross-sections of the deformed geometry to have a vanishingly small eccentricity.

In summary, our numerical results suggest that it is valid to approximate the stress profile of a cell in Phase
2 of our experiments with the linear result of equation (S9). From this, we remark that there are approxi-
mately no differential axial stresses at equilibrium, and in particular, that a growth mechanismwhich solely
detects the axial stresses σxx, as implicated in previous work [14, 15], may fail to account for the observed
straightening. However, as shown below, the nonvanishing variation in σyy results in a nonzero variation
in the areal strain. Because the sign of this variation is opposite from that of the variation inside the mi-
crochamber, a growth mechanism which detects areal strain would result in straightening.

Nonuniform crosslinking and anisotropic elasticity cannot explain straightening. Apreviously proposed
mechanism for shape regulation in bacteria, which may induce residual stresses in the cell wall, is the
nonuniform crosslinking of glycan strands (or cleavage of peptide bonds, which can be considered similarly)
[16]. Crosslinking inhomogeneity along the circumferential direction would be relevant if the crosslinking
machinery in E. coli preferentially linked glycan strands according to local density or area.

To probe whether or not nonuniform crosslinking of glycan strands also produces variations in elastic quan-
tities that can explain the observed straightening, we modeled crosslinking inhomogeneity by taking the
elastic modulus of the cell wall to vary azimuthally: Y (θ) = Y (1 + d sin θ), where d is a parameter quanti-
fying the magnitude of the inhomogeneity and Y is again the two-dimensional elastic modulus of the cell,
viewed as an isotropicmaterial. Because a formal, shell-theoretic solution of the equilibrium state is difficult,
we determined the equilibrium stress profile numerically with Abaqus FEA simulations (Supplementary
Fig. 3). Interestingly, our simulation results reveal that both σxx and the areal strains are larger on the outer
edge of the deformed state, where Y is smaller. The possibility of stress-dependent crosslinking explaining
straightening can be ruled out from this “sign error” alone: if a smaller axial stress or areal strain results in
more crosslinking and an increased value of Y inside the microchamber, then upon release there would be
a runaway effect with no straightening. If a larger axial stress or areal strain leads to more crosslinking, then
the snapback in the microfluidics experiment discussed in the main text should have been in the direction
opposite the applied flow [1]. We thus conclude that growth which localizes to the axial stresses or areal
strains incurred by nonuniform crosslinking cannot explain our straightening observations.

Althoughwe havemodeled the E. coli cell wall as an isotropic shell described by two elastic constants (E, ν),
there is also evidence that PG is stiffer in the circumferential direction than the axial direction due to the
circumferential orientation of glycan strands [17, 18]. To probe whether cell wall anisotropy can lead to sub-
stantial variations in elastic quantities, we performed Abaqus FEA simulations in lieu of more complicated,
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anisotropic elasticity calculations. We simulated an orthotropic half-toroidal shell with a circumferential
elastic modulus twice as large as the axial one under internal pressure; this takes into account both the
effects of differential growth and anisotropic elasticity. Our results, which are summarized in Supplemen-
tary Fig. 4, show small, non-sinusoidal variations in σxx and nearly identical variations in σyy compared
to the differential growth case. Thus, although a more accurate model of cell wall elasticity may involve it,
anisotropic elasticity is insufficient to explain our observations: it does not result in the form of σxx nec-
essary for an axial stress-dependent growth rate to explain our straightening observations; neither does it
yield larger variations in σyy than can be obtained simply by considering differential growth alone.

Elastic quantities for a cell inside and outside themicrochamber. In order tomodel the coupling of growth
to areal strains in the cellwall, we require the formof the areal strains both inside andoutside themicrocham-
ber. The stress profile of a straight cylinder, i.e. that of the cell in the undeformed state, is σxx = pr/2 and
σyy = pr. By linear superposition of strains, the strain profile of a bent cell inside the microchamber is (c.f.
equation (S5))

uinxx ≈ η
(

1

2
− ν
)

+ (B − c) sin θ, uinyy = η
(

1− ν

2

)
− ν(B − c) sin θ, (S10)

where we have set η = pr/Y and anticipate η, a dimensionless pressure, to be of order unity in our ex-
periments [14]. Note that the −c sin θ term arises from differential growth and adaptation of the cell to the
bending force inside in microchamber. In particular, the differential growth parameter offsets the degree of
bending, and the deformation can be viewed as one from a torus with bending parameter c to a torus with
a bending parameter B.

We now recall the linear theory approximation to the residual stresses caused by differential growth:

σoutxx ≈
pr

2
, σoutyy ≈

pr

2

(
2 + c sin θ

1 + c sin θ

)
≈ pr − prc

2
sin θ. (S11)

To first order in c, the areal strains A = (1 +uxx)(1 +uyy)− 1 both inside and outside the microchamber are

Ain = Ain0 + δAin ≈ 6η + 2η2 − 6ην − 5η2ν + 2η2ν2

4
+
(
1 + η − ν − ην + ην2

)
(B − c) sin θ, (S12)

Aout = Aout0 + δAout ≈ 6η + 2η2 − 6ην − 5η2ν + 2η2ν2

4
− cη

4
(2− 2ν + η − 4ην + ην2) sin θ. (S13)

Henceforth we will replace the “≈” symbol with “=” in equations (S12) and (S13) to avoid confusion with
subsequent approximations.

If the quantityB−c is positive inside the microchamber, meaning that the differential growth relieves some
but not all of the areal strain incurred by bending, then the variational terms δAin and δAout are oppo-
site in sign inside and outside the microchamber for a broad range of material parameters relevant to E.
coli (as summarized in Supplementary Table 1). A growth rate that depends on areal strain may therefore
qualitatively account for the observed straightening. We show in the following sections that it is quantita-
tively consistent with the straightening as well, with an areal strain-growth coupling parameter that can be
inferred directly from the snapback event.
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Supplementary Note 2
We now derive equation (3) in the main text and show that areal strain-dependent initiation of new glycan
strands, according to the form of the areal strains from equations (S12) and (S13), is quantitatively consistent
with the experimentally observed straightening rate. Our consideration of the growth dynamics of an un-
confined toroidal shell can be generalized to other geometries and may be useful for describing the growth
of other surfaces [14, 15].

Dynamics. If the initiation rate of new glycan strands is areal strain-dependent, then the growth at a given
angle will depend on the initiations that happened at a different angle, with MreB decays being modeled as
a Poisson process with rate 1/τ . Let k denote a constant, net rate of initiation per unit area. In a curved cell,
the outer side of the cell is longer than the inner side, and thus the probability of initiation will be larger
on the outer side of the cell if there is no strain-coupling. The infinitesimal surface area element on a small
toroidal segment of radius r = Rcell and radius of curvature Rcurv is

dA(θ, t) =

(
1 +

r

Rcurv
sin θ

)
dLrdθ = (1 +B(t) sin θ) dL(t)rdθ, (S14)

where dL = dL(t) is the infinitesimal width of the segment averaged over the cross-section at a time t, which
is identical to the length along the midline. If the number of glycan strand initiations γ per unit area can be
linearly decomposed into strain-independent and strain-dependent components as γ(θ, t) = k + αδA(θ, t),
where k is a constant, strain-independent rate, δA(θ, t) is the variational areal strain as a function of angle θ
and time t, and the parameter α quantifies the intensity of growth-strain coupling (c.f. equation (2) in the
main text), then the probability of initiation between angles θ and θ + dθ at time t is

p(θ, t)dθ = γ(θ, t)(1 +B(t) sin θ)rdθ = (k + αδA(θ, t)) (1 +B(t) sin θ) rdθ. (S15)

In fact, the form of γ may be more generally applicable: if f [δA(θ, t)] is a functional that quantifies the
variational areal strain coupling with an intensity parameter β, then expanding f to first order in δA gives
the initiation rate γ as

γ(θ, t) = k + βf [δA(θ, t)] = k + β(f0 + f1δA(θ, t)), (S16)

where f0 and f1 are constants. By aggregating the constant terms, we recover equation (S15) above.

Note that k includes the effect of PG turnover [19, 20] and can be expressed in terms of the new glycan strand
initiation rate knew and the degradation rate kdeg as k = knew − kdeg . From the self-consistent expressions
of k and α determined below, we see that characteristic values of αδA are smaller than knew and the ratio
|αδA|/knew ≈ 30-70% (as can be found using the parameter values given in Supplementary Table 1 and
equations (S12) and (S13)). This suggests that strain-dependent initiation of new glycan strands is typically
a moderate effect relative to the total initiation of new glycan strands.

Let τ denote the persistence time ofMreB andM = v/r its angular speed. SinceMreB is assumed to degrade
as a Poisson process with rate 1/τ , the amount of material added per initiation event by an MreB molecule
going in the +θ direction as a function of θ is ∆Ls(θ) = L0e

−θ/Mτ , where L0 is the width of one PG insert.
The growth rate is given by convolving p and ∆Ls over θ, resulting in the integro-differential “growth”
equation

1

L

∂L

∂t

∣∣∣∣
θ

≈ L0r

2

(∫ θ

−∞
dθ′γ

(
θ′, t− θ − θ′

M

)(
1 +B

(
t− θ − θ′

M

)
sin θ′

)
e−

θ−θ′
Mτ e−

θ−θ′
M λ (S17)

+

∫ ∞
θ

dθ′γ

(
θ′, t+

θ − θ′

M

)(
1 +B

(
t+

θ − θ′

M

)
sin θ′

)
e
θ−θ′
Mτ e

θ−θ′
M λ

)
,

where the second integral is the result of takingMreBmolecules moving in the opposite−θ direction (M 7→
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−M and [−∞, θ] 7→ [θ,∞]) and we summarize the notation as follows:

L = L(θ, t) is the pole-to-pole length of the cell at angle θ and time t;
L is the average length over angles θ, which is identical to the length of the midline;
L0 is the width of one PG insertion;
r is the radius of the cell;
δA(θ, t) is the differential areal strain (dimensionless);
α is a parameter for the growth rate-areal strain coupling (units of 1/(area·time));
k is a constant initiation rate per area (units of 1/(area·time));
M is the circumferential speed of MreB (units of radians/time);
τ is the persistence time of MreB;
λ is the normalized growth rate of the cell, equivalent to dL/(Ldt);
c = c(t) is the differential growth parameter of the cell; and
B = B(t) is the bending parameter of the cell.

(A full summary of all the persistent notation used in thiswork appears in Supplementary Table 1.) Note that
equation (S17) is an approximation, as for simplicity we have taken the limits of integration to ∓∞ instead
of bounding them. This approximation is supported for the parameter values tabulated in Supplementary
Table 1 by simulations of the discrete growth process, as detailed in the Supplementary Methods (see also
Supplementary Fig. 5 and Supplementary Video 11). To avoid confusion with subsequent approximations,
we will again replace the “≈” symbol with “=” in equation (S17).

In the growth equation (S17), the exp(±λ|θ − θ′|/M) factors come from the identity L(t0) = L(0) exp(λt0):
the initiation of growth sites in the past not only depends on the strain profile in the past, but also the length
(and curvature) of the cell in the past. Noting that λ sets a timescale and the processivityMτ sets the scale
for angles, it is clear that the rate k ∼ λ/L0rMτ . We now find the exact, self-consistent expression for k by
considering growth without areal strain-coupling.

Differential growth and straighteningwith no strain-coupling. If the areal strain-growth coupling param-
eter α = 0, then the length profile L in this case satisfies

1

L

∂L

∂t
=
L0r

2

(∫ θ

−∞
dθ′k

(
1 +B

(
t− θ − θ′

M

)
sin θ′

)
e−

θ−θ′
Mτ e−

θ−θ′
M λ (S18)

+

∫ ∞
θ

dθ′k

(
1 +B

(
t+

θ − θ′

M

)
sin θ′

)
e
θ−θ′
Mτ e

θ−θ′
M λ

)
=
kL0rMτ

1 + λτ

(
1 +

(1 + λτ)(1 + λτ(1− S))

(1 + λτ(1− S))2 + (Mτ)2
B(t) sin θ

)
,

where we assume the ansatz B(t) = B0 exp(−λSt) and, as in a previous work, define S as the straightening
coefficient [16]. A differential growth f1(θ, t) = c(t) sin θmultiplies the average length L(t) = L(0) exp(λt) by
a factor 1 + c(t) sin θ along the x-direction: L(θ, t) = L(t)(1 + c(t) sin θ), where we also identify c(t) = B(t)
once the cell has equilibrated. For self-consistency, we require the expression in equation (S18) to equal

1

L

∂L

∂t
=

1

L(t)

∂(L(t)(1 +B(t) sin θ))

∂t
= λ(1 + (1− S)B(t) sin θ). (S19)

(Note that we assume, in interpreting the results of our MreB experiments in Fig. 5 of the main text, that
MreB density is proportional to 1

L
∂L
∂t in this equation.) We thus see that

k =
λ(1 + λτ)

MτL0r
and 1− S =

(1 + λτ)(1 + λτ(1− S))

(1 + λτ(1− S))2 + (Mτ)2
. (S20)
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The straightening coefficient is self-consistently described by a solution to a cubic equation. Equation (S20)
differs from the corresponding expressions

k =
λ

MτL0r
and S =

(Mτ)2

1 + (Mτ)2
(S21)

in [16], where the authors assumed that λτ � 1 and set B(t) = r/Rcurv; namely, in [16], corrections to the
area element due to length contraction and the decay of curvature B(t) = B0 exp(−λSt) were neglected.
Neglecting these corrections can be useful for gaining intuition, as instead of the cubic equation for S, we
obtain the simple form of equation (S21). In general, due to the coupling between straightening and area-
dependent initiation, equation (S20) and not equation (S21) yields the correct expression for S. However, in
the limit thatMτ → ∞, both equation (S20) and equation (S21) yield S → 1. In the limit thatMτ → 0 and
λτ � 1, both equations also yield S → 0.

Thus, both expressions for S result in a similar picture: assuming that λτ � 1, which is consistent with the
parameter values in Supplementary Table 1, proportional growth is recovered in the zero processivity case
Mτ = 0, where S = 0 and B(t) = B0. The infinite processivity case is recovered by taking S → 1, so that
B(t) = B0 exp(−λt). In the limit of high processivity with no strain-coupling, the bending parameter B(t)
therefore decays exponentially with the growth rate, agreeing with the result in [16]. In summary, without
strain-coupling the cell straightens as

B(t) ∼

{
const. zero processivity, no strain-coupling; no straightening
exp(−λt) infinite processivity, no strain-coupling; straightening rate equals growth rate.

(S22)

We note again that the latter case, in which the straightening rate equals the growth rate, leads to self-
similarity and not actual “straightening.” In particular, the aspect ratio L(t)B(t) does not decay with time.

Small processivity with strain-coupling. If the areal strain-coupling parameter α does not vanish, then the
growth equation assumes the full form of equation (S17):

1

L

∂L

∂t

∣∣∣∣
θ

=
L0r

2

(∫ θ

−∞
dθ′γ

(
θ′, t− θ − θ′

M

)(
1 +B

(
t− θ − θ′

M

)
sin θ′

)
e−

θ−θ′
Mτ e−

θ−θ′
M λ (S23)

+

∫ ∞
θ

dθ′γ

(
θ′, t+

θ − θ′

M

)(
1 +B

(
t+

θ − θ′

M

)
sin θ′

)
e
θ−θ′
Mτ e

θ−θ′
M λ

)
,

where
γ(θ, t) =

λ(1 + λτ)

L0rMτ
+ αδA (θ, t) . (S24)

Evaluating equation (S23) gives

1

L

∂L

∂t

∣∣∣∣
θ

= λ (1 + (1− S)B(t) sin θ) + J, (S25)

where

J =
L0r

2

(∫ θ

−∞
dθ′αδA

(
θ′, t− θ − θ′

M

)(
1 +B

(
t− θ − θ′

M

)
sin θ′

)
e−

θ−θ′
Mτ e−

θ−θ′
M λ (S26)

+

∫ ∞
θ

dθ′αδA

(
θ′, t+

θ − θ′

M

)(
1 +B

(
t+

θ − θ′

M

)
sin θ′

)
e
θ−θ′
Mτ e

θ−θ′
M λ

)
is nonnegative and describes the contribution of strain-coupling to straightening. Here the “straightening
coefficient” S no longer appears in the expression for B(t), but is a variable that conveniently satisfies an
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equation analogous to equation (S20):

1− S =
(1 + λτ)(1 + λτ − µτ)

(1 + λτ − µτ)2 + (Mτ)2
, (S27)

for B(t) = B0 exp(−µt). We leave J unevaluated for now and focus instead on the growth inside the mi-
crochamber.

For the cell to grow at a constant differential growth c0 inside the microchamber under a constant strain-
coupling parameter α, a self-consistency criterion must be satisfied. In particular, considering the growth
profile within the microchamber gives us an equation relating the constant differential growth c0 within the
microchamber to the strain-coupling parameter α. Inside the microchamber, the cell is subject to an areal
strain of the form of equation (S12), which is proportional to the constant bending parameterB0 and relieved
by a constant, self-consistent value of the differential growth parameter c0. For the sign of the differential
growth to be consistent with that of the differential areal strains, we require B0 ≥ c0. The differential areal
strain profile of the cell inside the microchamber, as given by equation (S12), is

δA(θ, t) =
(
1 + η − ν − ην + ην2

)
(B0 − c0) sin θ. (S28)

We demand the differential growth to be at a steady state in the microchamber so that dc(t)/dt = 0 and,
from equation (S19), write

λ(1 + c0 sin θ) ≈ λ(1 + (1− S)B0 sin θ) + J1, (S29)

where J1 ∝ α(B0 − c0) sin θ is defined analogously to J but with the differential areal strain δA(θ, t) inside
the microchamber as shown in equation (S28). Note additionally that J1 is nonnegative. In the limit of small
processivity and assuming that λτ, µτ � 1, S → 0 and equation (S29) reduces to

(c0 −B0) sin θ = J1 ∝ α(B0 − c0) sin θ. (S30)

Thus, the only physical, self-consistent solution (with α ≥ 0) for c0 is that the cell is differentially strain-free,
i.e. B0 = c0. In this case, when the cell is released from the microchamber, there would be no snapback be-
cause themicrochamber bending parameterB0 and the differential growth c0 are equal; the cell has adapted
completely to the shape of the microchamber. Since we have found a nonvanishing elastic snapback in our
experiments, we conclude that the case of small processivity with strain-coupling is inconsistent with the
PG synthesis machinery in E. coli.

Large processivity with strain-coupling. Parameter values suggest that large processivity is relevant to
MreB: assuming a persistence time of τ = 5 mins and a spot velocity of v = 5 nm/sec [3, 21, 22], the pro-
cessivity, in units of length, isMτr = 1.5µm whereM = v/r = 0.01 rad/sec and the cell radius r = 0.5µm.
For λτ, µτ � 1, this corresponds to a straightening coefficient of S = 0.9. For these large processivities,
the growth due to coupling to areal strain is given again by equation (S23). Temporarily ignoring the con-
stant terms in the integrands and taking the zeroth-order term in B(t), the relevant integrals describing the
growth after release from the microchamber are proportional to∫ θ

−∞
dθ′c

(
t− θ − θ′

M

)
e−

θ−θ′
Mτ e−

θ−θ′
M λ sin θ′ +

∫ ∞
θ

dθ′c

(
t+

θ − θ′

M

)
e
θ−θ′
Mτ e

θ−θ′
M λ sin θ′. (S31)

We therefore need to specify the form of c(t). Taking t = 0 to be the time when the cell is released from the
microchamber, we assume an ansatz for c(t) of the form

c(t) =

{
c0 exp(−µt) t ≥ 0

c0 t < 0
(S32)

and, to be precise, bound the limits of integration so that we integrate starting from a time t0 = t+ tc in the
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past, where t0 →∞ is the total time the cell has been in existence (i.e., the sum of both the confined time tc
and released time t from the microchamber). We recall that the differential areal strain profile is

δA(θ, t) =

{
− cη4 (2− 2ν + η − 4ην + ην2) sin θ ≡ ξ1c sin θ t ≥ 0

(1 + η − ν − ην + ην2)(B0 − c) sin θ ≡ ξ0(B0 − c) sin θ t < 0,
(S33)

where we have defined ξ0 and ξ1 so that ξ0 > 0 and ξ1 < 0 for the parameter values listed in Supplementary
Table 1. Thus, neglecting terms in the integrand of equation (S23) which are of order B2, we have

1

L

∂L

∂t

∣∣∣∣
θ

= λ(1 + (1− S)B(t) sin θ) +
L0r

2
(I1 + I2), (S34)

where I1 and I2 are defined as the integrals

I1 = αξ0(B0 − c0)

∫ θ−Mt

θ−Mt0

dθ′e−
θ−θ′
Mτ e−

θ−θ′
M λ sin θ′ (S35)

+αξ1

∫ θ

θ−Mt

dθ′c

(
t− θ − θ′

M

)
e−

θ−θ′
Mτ e−

θ−θ′
M λ sin θ′,

I2 = αξ0(B0 − c0)

∫ θ+Mt0

θ+Mt

dθ′e
θ−θ′
Mτ e

θ−θ′
M λ sin θ′ (S36)

+αξ1

∫ θ+Mt

θ

dθ′c

(
t+

θ − θ′

M

)
e
θ−θ′
Mτ e

θ−θ′
M λ sin θ′.

This is the same calculation as the small processivity case with J = I1 + I2; however, we now desire to
evaluate these integrals explicitly. Doing so, we find

I1 + I2 = αξ0(B0 − c0)Ψ1 sin θ + αξ1Ψ2 sin θ, (S37)

where

Ψ1 =
2Mτ(e−(λ+1/τ)t((1 + λτ) cos(Mt)−Mτ sin(Mt)) + e−(λ+1/τ)t0(−(1 + λτ) cos(Mt0) +Mτ sin(Mt0)))

(1 + λτ)2 + (Mτ)2

(S38)
and

Ψ2 =
2c0Mτ(e−µt(1− µτ + λτ)− e−(λ+1/τ)t(1− µτ + λτ) cos(Mt) +Mτe−(λ+1/τ)t sin(Mt))

1− 2µτ + 2λτ + (µτ)2 − 2µλτ2 + (λτ)2 + (Mτ)2
. (S39)

The expression for I1+I2 contains oscillations that decay as exp(−(λ+1/τ)t). 1/τ is a rate that is larger than
the growth rate in our experiments: as td ≈ 30 min, the MreB persistence time τ ≈ td/6. Since biological pa-
rameter values suggest that it is valid to assume 1/τ � µ ≥ λ, i.e. that the persistence time ofMreB is smaller
than the doubling time of the cell (see also Supplementary Table 1), we can take the e−(λ+1/τ)t cos(Mt)
and e−(λ+1/τ)t sin(Mt) terms above to be small in comparison to e−µt, and the e−(λ+1/τ)t0 cos(Mt0) and
e−(λ+1/τ)t0 sin(Mt0) terms to vanish for large enough t0. Thus we have

I ≡ I1 + I2 ≈
2αξ1c

0Mτe−µt(1− µτ + λτ) sin θ

1− 2µτ + 2λτ + (µτ)2 − 2µλτ2 + (λτ)2 + (Mτ)2
. (S40)

We then impose the self-consistency criterion from equation (S19), which describes the action of the differ-
ential growth c on the length L:

dc(t)

dt
sin θ + λ(1 + c(t) sin θ) = λ(1 + (1− S)B(t) sin θ) +

L0r

2
I. (S41)
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Note additionally that S → 1 in the infinite processivity limit. Equation (S41) then becomes a cubic equation
for µ which can be solved numerically. However, to first find the value of c0 that gives a self-consistent
differential growth profile within the microchamber, we again demand the differential growth to be at a
steady state in the microchamber, so that dc(t)/dt = 0 for t < 0 and, for the confined differential areal strain
profile δA(θ, t) = ξ0(B0 − c0) sin θ,

λc0 sin θ =
L0r

2

(
αξ0(B0 − c0)

∫ θ

θ−Mtc

dθ′e−
θ−θ′
Mτ e−

θ−θ′
M λ sin θ′ (S42)

+αξ0(B0 − c0)

∫ θ+Mtc

θ

dθ′e
θ−θ′
Mτ e

θ−θ′
M λ sin θ′

)

≈ αξ0(B0 − c0)L0rMτ sin θ

(1 + λτ)2 + (Mτ)2

(
(1 + λτ)− e−(λ+1/τ)tc((1 + λτ) cos(Mtc)−Mτ sin(Mtc))

)
,

where the cell has been inside themicrochamber for a time tc, which is the same as the time the cell has been
in existence (and assumed to be large). Thus, the constant differential growth inside the microchamber is
given by

c0 ≈
αB0L0rMτξ0

λ+ λM2τ2 + αL0rMτξ0
≈ αB0L0rξ0
λMτ + αL0rξ0

, (S43)

wherewe again ignore the oscillations that decay as−tc/τ by assuming that the persistence time of theMreB
is small compared to the doubling time, 1/τ � µ ≥ λ, and that tc is large. The second approximation uses
the assumption of large processivity,Mτ � 1.

To relate the straightening rate µ to the snapback ratio κ, we note that, when the cell is removed from the
microchamber, it elastically snaps to a bent cylinder described by the bending parameter Bsnapback = c0.
Thus, κ is related to c0 as

κ =
Bsnapback

B0
=

c0

B0
=⇒ c0 = B0κ. (S44)

For our theory of areal strain-dependent differential growth to be self-consistent, we require B0 ≥ c0, or
κ ≤ 1, which agrees with our experimental observations. We may now solve equation (S41) for µ to get the
straightening enhancement in terms of κ and related parameters.

Large processivity: approximating the straightening rate. Supposing thatMτ � 1� µτ > λτ , the integral
I in equation (S40) assumes the form

I ≈ 2αξ1c
0e−µt sin θ

Mτ
. (S45)

Then equation (S41) reads, for c(t) = c0 exp(−µt),

dc(t)

dt
sin θ + λc(t) sin θ = (−c0µe−µt + λc0e−µt) sin θ =

L0r

2
I. (S46)

Thus
µ ≈ λ− αξ1L0r

Mτ
, (S47)

where we recall that ξ1 < 0. Similarly, ifMτ � 1� µτ > λτ , from equation (S43) we have

c0 ≈
αB0L0rξ0

λMτ + αL0rξ0
, (S48)

which also leads to an expression for the areal strain-growth coupling parameter α in terms of the snapback
ratio κ as

α ≈ c0Mλτ

L0rξ0(B0 − c0)
=

κMλτ

L0rξ0(1− κ)
. (S49)
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Substituting equation (S49) into equation (S47), we have

µ ≈ λ
(

1− κξ1
(1− κ)ξ0

)
. (S50)

This approximation agrees well with numerical solutions of the full equation (S23) above, which are shown
in Fig. 3 of the main text and Supplementary Fig. 6a. The methodology of the numerical analysis is de-
scribed in the Methods section of the main text.

InfiniteMreB persistence and non-monotonicity of the straightening rate. If τ →∞ but we do not assume
that 1/τ � λ, then MreB can persist longer than the doubling time of the cell, and the e−(λ+1/τ)t terms can-
not be neglected in equation (S37). A numerical solution of equation (S23) then shows that this leads tomore
oscillations, but a lower averaged straightening rate compared to the case of an intermediate processivity.
For the parameter values summarized in Supplementary Table 1, Supplementary Fig. 6 shows a numerical
solution of equation (S23) in both the regimes τ : Mτ � 1 � µτ > λτ and τ : Mτ � µτ > λτ > 1, which
numerically confirms the existence of curvature oscillations in the latter case.

As discussed in the main text, the straightening rate µ is non-monotone in the processivity τ (measured
in units of time, assuming a constant angular speed M ). Indeed, although straightening arises from the
differential initiation of new glycan strands, previous growth sites can still be active and “wash away” the
effect of areal strain-dependent initiation. We may quantify the non-monotonicity of µ by solving equation
(S41)—which holds for any processivity—without assuming either the limit of zero or infinite processivity.
For simplicity, however, we consider only a finite range of τ where 1/τ � µ ≥ λ, so that equation (S40) is
still valid. Additionally, inside the microchamber, equation (S42) is modified to become

λc0 sin θ − λ(1− S)B0 sin θ ≈ αξ0(B0 − c0)L0rMτ sin θ

1 + (Mτ)2
. (S51)

The corrected form of the differential growth c0 is therefore related to the strain-coupling parameter α as

α =
λ(c0 − (1− S)B0)(1 + (Mτ)2)

L0rMτξ0(B0 − c0)
. (S52)

The second equation is only valid if α ≥ 0, and in particular c0 ≥ (1−S)B0; otherwise the choice of proces-
sivity is inconsistent with the observation of an elastic snapback, and the self-consistent solution requires
the cell to be differentially strain-free as in the zero processivity case. With these corrections, equation (S41)
is a cubic equation in µ that can be numerically solved as a function of τ when 1/τ � µ ≥ λ. The resulting
numerical solution of µ, which is non-monotone in τ , is plotted over the domain τ ∈ [1 min, 50 min] in Fig.
3d of the main text and compared to the quantity λS(τ), where S(τ) is numerically found by solving equa-
tion (S20) for the values ofM and λ tabulated in Supplementary Table 1 and describes the straightening rate
in the case of growth without areal strain-coupling. This calculation also allowed us to verify the validity of
the approximationMτ � 1 used above, as we have assumed that, for MreB,Mτ = 3 rad (Supplementary
Table 1). For the range of parameter values considered in the main text, we found that the corrected values
of µ due to finite processivity deviate by less than 10% from the prediction of equation (S50).
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Supplementary Discussion
Consistency with past microfluidics experiments. In [1], one of us applied a hydrodynamic drag force
on filamentous E. coli and B. subtilis cells and observed the deformation to induce both elastic bending and
plastic remodeling of the cell wall. The deformed cells always recovered their straight, rod-like shape after
growth, agreeing with the observations made in this study.

One detail that differs between the current experiment and the microfluidics setup is the degree of snap-
back observed by the cell upon equilibration. In [1], the authors observed characteristic snapback ratios of
κ ≈ 0.5, while we found κ = 0.78 (see the Supplementary Methods). We can explain the discrepancy be-
tween these two observations by noticing that the areal strain profile incurred by the bending of a cell under
a hydrodynamic drag force is nonuniform in the axial direction x. In particular, the cell has a nonuniform
bending parameter B(x) along its length. Qualitatively, the differential initiation rate of such a cell would
be smaller than the differential initiation rate of a cell bent uniformly by a bending parameter equal to the
maximal value ofB(x). To reconcile these different snapback ratios quantitatively, we showed that theywere
consistent with each other under a common set of parameter values. Since a cell under hydrodynamic drag
has complicated growth dynamics owing to the nonuniform stress profile, we performed MATLAB-based
simulations of PG growth that numerically predicted the snapback in the experimental setup of [1]. We
found several combinations of material parameter values and processivity values, in the range of those tab-
ulated in Supplementary Table 1, that predicted both a snapback of κ ≈ 0.5 in [1] and a snapback of κ ≈ 0.7
in the current protocol. Furthermore, this check for self-consistency suggested a processivity ofMτ = 3 to
6 radians and, assuming a constant spot velocity of v = 5 nm/s, an MreB persistence time of τ = 5 to 10
minutes. This is consistent with the experimental value of τ found in [23].

Hyperosmotic shock during recovery. For a large enough hyperosmotic shock, we expect the cellular turgor
pressure to decrease and the straightening rate, which now depends on a smaller variational areal strain,
to also decrease. We therefore verified that the cellular growth curves were similar during different de-
grees of osmotic shock (Supplementary Fig. 11a) and osmotically shocked cells with 100 mM and 250 mM
LB+sorbitol solution upon release from the same microchamber environment in Phase 2. These osmotic
shock magnitudes are believed to be sufficient to decrease the cellular turgor pressure by several atmo-
spheres [24] and hence noticeably affect straightening. For 20-30 cells in each osmolarity, however, we found
no evidence of osmotic shock affecting the straightening rate (Supplementary Fig. 11b). We attribute the
absence of an effect on straightening to osmoregulation, which is believed to occur on a timescale ∼1 min
[24, 25]. The fast timescale in which osmotic homeostasis occurs, relative to straightening, calls for more
complex experimental protocols which can ascertain that the cellular turgor pressure is continually lowered
over a timescale of ∼30 min.
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Supplementary Methods
CurvatureTracker: a MATLAB-based software package for curvature analysis. A summary of Curature-
Tracker’s methodology can be found in the Methods section of the main text. Supplementary Fig. 7 shows
an example of two image sequences involving the straightening of two distinct cells that were successfully
tracked by CurvatureTracker.

Because the processed images have varying dimensions in pixels, we normalized all length quantities by the
length (in pixels) of the cell in the first frame, and multiplied by the expected length at release, fπd, where
f is the fraction of the microchamber the cell filled and d is the diameter of the microchamber, to obtain
physical lengths.

In analyzing the straightening data with CurvatureTracker, we observed long tail behavior when the cell
curvature was plotted as a function of time, which we believe to be indicative of substrate pinning or ex-
cessive growth whereby the cell became confined to the square microchamber and had insufficient space
to straighten. We therefore truncated the dataset by discarding points over approximately 20 minutes (2/3
the doubling time) of straightening and extracting the growth and straightening rates anew (Supplemen-
tary Fig. 8a). Because of the large density of data points at small times, we found that the corrected values
differed only by less than 5%. For simplicity, we report all extracted values in our work using the full, un-
truncated time series. Below, we discuss the two different fits, local and global, that were used to describe
the cell curvature.

Image analysis methodology. As a check on our experimental setup and CurvatureTracker, we checked
that the normalized relative growth rate λ = dL/(Ldt) should be constant and positive, so that L(t) =
L0 exp(λt) (note that we have dropped the bar on the L, which denoted length along the midline). From the
60 processed image sequences, we extracted a mean value of

λ = 0.0416/frame = 0.0208 min−1. (S53)

This corresponds to a doubling time of ln(2)/λ ≈ 33 min for E. coli, in agreement with the literature (around
30 minutes at 30◦C [26, 27]; note also that the time between each imaged frame is 2 minutes). Similarly,
if curvature decays exponentially as a function of time, then the relative decay rate over any interval X =
[x0, x1] along the midline of the cell µ(X) = −∂C(X, t)/(C(X, t)∂t),where C(X, t) is the average curvature
at segment X at time t, should be constant and positive so that C(X, t) = C0(X) exp(−µt). We take X =
[0.2, 0.8]× (cell length), so that we consider the summed curvatures over the entire cell; in practice, the cell
is divided into 10 ordered segments along its length andwe average the absolute value of the curvature over
segments 2 to 9. This method produced less noisy results as compared to computing the curvature over the
lengths of entire cells, since the ends were free and oftentimes substantially more curved than the bulk of
the cell. From the processed image stacks, we extracted a mean value of

µ = 0.0752/frame = 0.0376 min−1, (S54)

which yields a straightening ratio of µ/λ = 1.81. A plot of ln(L/L0) against ln(C/C0) for all processed
stacks, which recapitulates the fits above and the faster-than-expected decay of curvature relative to infinite
processivity, is shown in Supplementary Fig. 8a.

Because the cells were released frommicrochamber confinement when they filled approximately 90% of the
circumference of the microchamber, which has a radius of 4 µm, we used this length information to com-
puted the average curvature at the frame t = 1 to be C(X, 1) = 0.18 µm−1. The initial curvature of this
fit is then extrapolated as C(X, 0) = 0.18 exp(µ) ≈ 0.194 µm−1, and since the microchamber curvature is
C = 0.25 µm−1, we extracted a snapback ratio of κ ≈ 0.194/0.25 = 0.78 (Supplementary Fig. 8b).

Repeating the foregoing analysis with a global, circle fit to the midline yields similar results. In particular,
we performed a global fit to the cell by considering the circle joining the head, midpoint, and tail of each
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cell, where the midpoint is determined as the point that bisects the length of the cell in the ninth-order
polynomial fit. We found that

λ = 0.0425/frame, µ = 0.0877/frame, (S55)

corresponding to a straightening ratio of µ/λ = 2.06. Supplementary Fig. 8a shows a time series of the
curvature as computed with the global fit, which can be compared to that computed with the segmented
fit. The average curvature at frame t = 1 was determined again to be C(1) = 0.18 µm−1, and extrapolating
to find the initial curvature yielded C(0) = 0.18 exp(µ) ≈ 0.197 µm−1. Since the microchamber curvature is
C = 0.25, the snapback ratio is κ ≈ 0.79; this is nearly identical to the value found with the segmented fit.

Finite-element simulationswithAbaqus FEA.WeusedAbaqus FEA to obtain the equilibrium stress profile
in the following cases:

1. Cylindrical shell under internal pressure held at one end against a mandrel and subject to a point force
at the other end.

2. Closed toroidal section subject to an internal pressure.
3. Closed cylindrical shell with sinusoidally varying elastic modulus subject to an internal pressure.
4. Closed toroidal section composed of an orthotropic material subject to an internal pressure, with the

anisotropy specified by engineering constants.
Abaqus input files (.inp format) were created with MATLAB, with shells being discretized uniformly into
approximately 10,000 S4R elements. The shells were specified to have elastic modulus 1, Poisson ratio 0.2-
0.5, radius 3 units, thickness 0.1 units, and pressures ranging from 0.00001-0.007 units unless otherwise
noted. The larger values of pressure correspond to finite strains of the order of pr/Y ∼ 0.1, and estimates of
thematerial properties of E. coli suggest that they lie in this regime (Supplementary Table 1). The lengthwas
discretized into 300 elements and the circumference was discretized into 32 elements; varying the fineness
of this discretization yielded similar results. For closed surfaces, flat endcaps were placed with a thickness
of 1000 simulation units; we repeated our simulations for different thicknesses ranging from 0.1-1000 simu-
lation units and found our reported results to be robust to this variation. For case (2), the bending parameter
of the torus was varied from c = 0.01 to 0.1. For case (3), 32 different element sets with sinusoidally vary-
ing elastic moduli, for which the variational parameter d ranged from 0.1 to 0.7, were assigned to elements
circumferentially. For case (4), a part orientation was defined and the orthotropic material properties were
specified with engineering constants. In all cases, the option of geometric nonlinearity was turned on and
surface coordinate systems were specified appropriately. For all simulations, we verified that the stress pro-
files are identical along the bulk of the shell, excluding a small region near the endcaps.

Discrete simulations of the growth process. In order to provide numerical evidence for the validity of
extending the limits of integration to∓∞ in equation (S17), we simulated the growth process withMATLAB
for parameter values similar to those in Supplementary Table 1 and assessed whether the straightening rate
agreed with equation (S50). We initiated a set of time series describing the pole-to-pole lengths L(θ) at
discretized angles θ ∈ [0, 2π] and nucleated a discrete number (∼ 30) of new growth sites. The number
of growth sites at each angle differed depending on both the pole-to-pole length and the differential areal
strain at that angle, as prescribed by the integrand of equation (S17). We increased L(θ) by an amount
proportional to the number of growth sites at θ. Each growth site was then translocated with an angular
velocity M and randomly removed according to a Poisson process with rate 1/τ . In the continuum limit,
this numerical simulation agrees with the numerical solution of the growth equation, as discussed in the
Methods section of the main text. The simulation results, which are shown in Supplementary Fig. 5 and
Supplementary Video 11, suggest that:

1. extending the limits of integration to ∓∞ in equation (S17) is valid as an approximation;
2. after the areal strain profile flips signs, the transient effect due to old growth sites (which were nucle-

ated according to a different areal strain profile) is negligible for the parameter values considered.
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MreB-msfGFP fluorescence analysis methodology. Cell boundaries were detected from phase contrast
microscopy images using the MATLAB-based cell segmentation tool Morphometrics (SimTK) [23]. The cell
poles and the cell centerline were identified using the MicrobeTracker package (Supplementary Figs. 9a-b)
[28]. The centerline was used for a cell-internal orthogonal coordinate system, with X the contour length
along the centerline. Sample pointsXi were equally spaced along the contour with an interval of 0.5 pixels,
and the second coordinates of these points were chosen perpendicular to the centerline.

To measure the bending-induced curvature of the cell body C(X) rather than local curvature fluctuations
on the cell boundaries, we smoothened the x- and y-coordinates of the raw, extracted centerline using a
Gaussian filter (with a standard deviation of 12.5 pixels) and subsequently calculated the curvature at every
smoothened sample point as described. We only considered cells that do not show centerline curvatures
with opposite signs, indicative of twisting, and we chose the orientation of the cell poles so that the center-
line curvature is positive for every cell. The inside and outside boundaries of the cell are thus always on the
left and right sides of the centerline, respectively, when observed along the cell contour.

MreB-msfGFP images were filtered with a 2D Gaussian filter (with a standard deviation of 0.5 pixels) to
remove pixel noise. In analyzing MreB intensity ratio and curvature, we only considered the “central re-
gion” of the cell, which constitutes 40% of the cell length (Supplementary Fig. 9b). We therefore excluded
the cell poles and also the regions that appear as straight during microscopy in two dimensions: this may,
presumably, be due to cell twisting upon release from confinement and during recovery. To extract the
MreB-msfGFP intensities Iin/out(X) on the inner and outer cell boundaries closest to the centerline pointX ,
filtered image intensities were linearly interpolated at 5 equally spaced points within a 130 nm-long inter-
val perpendicular to the cell centerline and centered about the inner or outer boundaries. The interpolated
intensity values were averaged to yield the MreB intensity values Iin/out(X) on the inner and outer cell
boundaries. To ensure that possible discrepancies between the boundaries identified from phase-contrast
images and the physical cell boundaries did not lead to artifacts in our measurements, we checked that our
analysis yields almost the same average MreB intensity ratio values for intervals as large as 300 nm (Sup-
plementary Fig. 9c-d). MreB-msfGFP intensity values were normalized by the average over all boundary
values in the region of interest (Supplementary Fig. 9b) as

I(X) = Irawin/out(X)

(
1

2N

∑
i

(Irawin (Xi) + Irawout (Xi))

)−1
, (S56)

where N is the number of points along the centerline region of interest. Average values were obtained by
summation over all datapointsXi in all cells. The conditional MreB intensity as a function of local centerline
curvature, I(C), is the binned average of all normalized boundary intensities associated with a centerline
curvature close to +C (outside boundaries) or −C (inside boundaries), reflecting the positive and negative
curvature of the outer and inner cell edges, respectively.

We verified that our analysis of average curvature and average MreB intensity ratio are robust with respect
to changes of the region of interest between 35% and 45% of the cell length (Supplementary Fig. 9c). Fur-
thermore, the curves displaying theMreB intensity ratio as a function of centerline curvature do not depend
on the region of interest as long as cell poles are excluded (Supplementary Fig. 9d), consistent with the idea
that within experimental conditions MreB intensity ratio is dictated by centerline curvature. Using an in-
dependent method of quantifying MreB localization by partitioning the cell in half along the midline and
taking the pixel average over the inner and outer bulks, we found that the population average enrichment
of the inner bulk drops from 1.07 at 10 mins after release to 1.05 at 30 mins after release and that the distri-
bution becomes markedly shifted to the left (Supplementary Fig. 10a).

Finally, we checked the population-averaged straightening ratio of 60 MreB-msfGRP fusion cells and found
that it was≈ 1.66, similar to that of the wild-type cells (≈ 1.8) used in this study (Supplementary Fig. 10b).
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Supplementary Tables

Quantity Symbol Value Source

Material parameters

Cell wall elastic modulus (3D) E 20-30 MPa [1, 17, 18]

Cell wall thickness h 3 nm [29, 30]

Cell wall elastic modulus (2D) Y 0.06-0.09 N/m Y = Eh

Cell wall Poisson ratio ν 0.16-0.30 [17, 31]

Cell radius r 0.5 µm experiment, [32, 33]

Turgor pressure p 0.3-2 atm [18, 34, 35]

Dimensionless pressure η 0.16-1.11 η = pr/Y

MreB persistence time τ 5 min [23]

MreB spot velocity v 5 nm/s [3, 21, 22]

MreB angular velocity M 0.01 rad/s M = v/r

MreB processivity Mτ 3 rad extracted

Straightening parameters

Microchamber radius Rcurv 4 µm experiment

Microchamber bending parameter B0 0.125 B0 = r/Rcurv

Snapback ratio κ 0.78 ± 0.09 extracted

Steady-state differential growth c0 0.098 ± 0.011 κ = c0/B0

Peptidoglycan insertion width L0 1.1 nm [36]

Peptidoglycan turnover rate ft 0.40 [19, 20]

Constant net growth initiation rate k 13 µm−2 ·min−1 k = λ(1+λτ)
MτL0r

Constant new growth initiation rate knew 21 µm−2 ·min−1 knew = k
1−ft

Constant degradation rate kdeg 8 µm−2 ·min−1 kdeg = ftk
1−ft

Areal strain-growth coupling parameter α 200-400 µm−2 ·min−1 α ≈ κMλτ
L0rξ0(1−κ)

Doubling time td 33 min extracted

Growth rate λ 0.0208-0.0213 min−1 extracted

Straightening rate µ 0.0376-0.0439 min−1 extracted

Supplementary Table 1: Variables used (or calculated) in the paper and their numerical values.
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Phase 1 Phase 2

Measurement Temperature after 2
doubling times

5 min after
extraction

30 min after
extraction

Curvature (µm−1)

30◦C 0.26 0.24 no data

37◦C 0.271 0.25 0.216

SD = 0.018 SD = 0.03 SD = 0.066

MreB intensity
ratio between inner
and outer edges

30◦C 1.05 1.16 no data

37◦C 1.07 1.103 1.052

SD = 0.019 SD = 0.02 SD = 0.002

Supplementary Table 2: Mean cell centerline curvature andMreB intensity ratios of theMreB-msfGFP fusion
strain at different temperatures inside confinement, 5 min after extraction, and 30 min after recovery. The
standard deviation values (SD) are acquired from the repetitions of the same experiment. Measurements
were obtained for 17 cells in Phase 1 and 20 cells 5 min after release at 30◦C, and 119 cells in Phase 1, 132
cells 5 min after release, and 32 cells 30 min after release at 37◦C.
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Supplementary Videos
Supplementary Videos 1–10: Straightening dynamics of single E. coli cells. Supplementary Videos 1 to 10
show individual, filamentous E. coli cells recovering their native rod shapes as they grow after release from
toroidal microchambers. The time between frames is 2 minutes, the time lapses cover a period of about 40
minutes, and the field of view is approximately 40 µmwide.

Supplementary Video 11: Numerical simulation of the growth process. Supplementary Video 11 shows
numerical simulations in (1) the case of zero processivity; (2) the case of infinite processivity; and (3) the
case of a self-consistent areal-strain coupling that results in a constant differential growth in Phase 1 and
straightening in Phase 2. The simulation methodology is detailed in the Supplementary Methods.
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Supplementary Figures
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Supplementary Figure 1: Stress profiles of pressurized cylindrical shells subject to bending moments.
a, Abaqus FEA simulations of a pressurized cylindrical shell subjected to a bending force against a fixed
mandrel. b, Plots of the stress resultants for typical cross-sections indicated in a for varying values of p
and ν. The remaining simulation parameters are discussed in the Supplementary Methods. The theoretical
prediction agrees with the simulated stress profiles. We interpret the small variations in the simulated
σyy profiles to arise from a small eccentricity induced by bending, which is quantitatively consistent with
equation (S8) (not shown).
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Supplementary Figure 2: Stress profiles of closed toroidal shells subject to internal pressure. a, A toroidal
section with a circular cross-section at equilibrium cannot have a nonvanishing torque due to pressure. b,
Abaqus FEA simulations for the equilibrium of an initially circular toroidal segment subject to internal
pressure, where the axial and circumferential stress resultants σxx and σyy are displayed. Here pr/Y =
0.03, ν = 0.2, and the differential growth parameter is c = 0.1. The remaining simulation parameters
are discussed in the Supplementary Methods. c, Plots of the normalized stress resultants σxx/〈σxx〉 and
σyy/〈σyy〉 as functions of the azimuthal coordinate θ, for c = 0.01 and c = 0.1. The remaining simulation
parameters are again discussed in the Supplementary Methods. A variational component in σxx, which
is small compared to the variational component in σyy, arises for large strains on the order of 0.1, and is
generally non-sinusoidal. Nevertheless, the stress resultants remain well-approximated by the linear theory
result for a pressurized torus of circular cross-section.
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Supplementary Figure 3: Finite-element simulations of shells with varying elastic moduli. a, Abaqus
FEA simulations of a capped, pressurized cylindrical shell with a sinusoidally varying elastic modulus of
the form Y (θ) = Y (1 + d sin θ). Here pr/Y ≈ 0.1, ν = 0.2, and the variational parameter d = 0.6. The
remaining simulation parameters are detailed in the Supplementary Methods. Note that, in the deformed
state, both σxx and σyy are larger on the outer edge but generally exhibit complex behavior. b, A plot of
the normalized stress resultants σxx/〈σxx〉 and σyy/〈σyy〉 for a range of p, d, and ν, with the remaining
simulation parameters as discussed in the Supplementary Methods.
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Supplementary Figure 5: Numerical simulation of the growth process. a, Simulation results for parameter
values faithful to E. coli, as summarized in Supplementary Table 1 and the Supplementary Methods, except
that we have set c0 = 0.35 to emphasize the curvature decay in the associated Supplementary Video 11. By
coupling growth to areal strains, the cell grows at a steady-state value of the differential growth parameter
for t < 30 and straightens for t > 30. See Supplementary Video 11 for an animation of the growth process. b,
Different simulations of a. Although the discrete nature of the initiation and growth process may introduce
variations in cell length and curvature, these simulations suggest a negligible transient effect due to old
growth sites once the areal strain profile has flipped. c, Average simulated straightening rates with the same
parameters as a, except η and ν are varied. The simulation results agree with the theoretical prediction for
a range of η and ν.
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Supplementary Figure 6: Numerical solutions of the growth equation. a, A numerical solution of equation
(S23) in the regime τ : Mτ � 1 � µτ > λτ , where all parameters are set to values in the ranges specified
by Supplementary Table 1. The length along the midline of the cell grows exponentially with rate λ. As
expected, the curvature decays exponentially with rate λ in the case of infinite processivity with no areal
strain-coupling (dashed black line), but faster in the case where there is strain-coupling (solid blue line). The
solid red line is the curve−µt, with µ given by equation (S50), which agrees with the numerical result. b, A
numerical solution of equation (S23) in the regime τ : Mτ � µτ > λτ > 1, whereM = 0.6 rad/min and τ =
1000 min. The remaining parameter values are set according to Supplementary Table 1. This corresponds to
the case where MreB may persist longer than the doubling time of the cell, as discussed in Supplementary
Note 2. Although small amplitude oscillations appear (inset), the curvature decays at an average rate that
is higher than the prediction of infinite processivity, but lower than the case of an intermediate processivity
with strain-coupling (a).
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Supplementary Figure 8: Image analysis results. a, Aggregated straightening data from all 60 cells, where
both a local, segmented fit (left) and a global fit (right) to the cell curvature were used. Unlike Fig. 4c of the
main text, a moving average filter was not applied. The time is plotted in units of 1/λ, corresponding to the
doubling time of the cell divided by ln(2). The log normalized curvature is defined as ln(C(t)/C(t = 2 min)),
where C(t) is the curvature of the cell at time t. The gray data points were discarded in considering a
truncated fit, as discussed in the Supplementary Methods; because the blue data points are significantly
denser, the straightening rates of the truncated datasets lie within only 5% of the full dataset values for both
fits. b, Plots of average cell curvature against time for both fits. Extrapolating the population-averaged cell
curvature (thick red curve) via an exponential fit to t = 0 allows us to infer the snapback ratios. Shaded
areas denote values within one standard deviation of the population means. The gray dashed lines denote
exponential fits to values which are one standard deviation away from the population average.
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Supplementary Figure 9: MreB-msfGFP fluorescence analysis methodology and sensitivity analysis. a,
ForMreB-msfGFPmeasurements, cell contours are obtained fromphase contrast images and an cell-internal
coordinate system is developed based on the cell centerline (cell boundaries in black, smooth centerline in
red, raw centerline in cyan, lines perpendicular to raw centerline in blue). b, The MreB-msfGFP signal as a
function of contour length Iin/out(X) is obtained by linear interpolation and averaging along an interval of
points perpendicular to the cell boundaries along the central 40% of the cell (central region is shown in light
blue together with cell boundaries and smooth centerline). c, Average cell curvature is robust with respect to
changes of the cellular regions of interest considered for analysis both after extraction and during recovery.
Inside the microchambers, the curvature and MreB intensity ratio drop as a function of the fraction of total
cell length considered, consistent with the observation that the ends of cells are often straighter than the
central region. Each curve in c and d was generated by measurements from between 20-40 cells from at
least two replicate experiments, as detailed in the Methods section of the main text. d, MreB intensity ratio
as a function of local curvature is unaffected by the size of the region of interest considered for analysis in
microchambers, after extraction, and during recovery. Negative and positive curvatures correspond to inner
and outer edges, respectively.
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Supplementary Figure 10: Checking theMreB-msfGFP fluorescence analysis. a, Distributions of the inner
MreB enrichment using a simple bulk pixel averaging method, at two different times in Phase 2, which
are representative of three replicate experiments. The red line denotes the mean. b, Population-averaged
straightening statistics of the MreB-msfGFP fusion, for a local curvature fit on 60 cells as discussed in the
Supplementary Methods. We find a straightening ratio 〈µ〉/〈λ〉 ≈ 1.7, approximately that of the wild-type
strain (〈µ〉/〈λ〉 ≈ 1.8) used in this study (Fig. 4c of the main text).
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Supplementary Figure 11: Effect of hyperosmotic shock on straightening. a, Growth curves of E. coli bulk
culture subjected to varying degrees of hyperosmotic shock, which are representative of two independent
measurements and three repetitions each. b, A straightening plot of the hyperosmotically shocked cells for
a local curvature fit (60 cells for 0 mM, 22 cells for 100 mM and 27 cells for 250 mM), corresponding to Fig.
4c in the main text.
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