
S1 Text. TADbit classes and functions
Principal function, with their (non-default) parameters, used for the analysis of the fly
genome (variables starting with a $ are path to input/output files or folders).

• quality_plot ($FASTQ, nreads=1000000, r_enz=’HindIII’, paired=True)
• full_mapping ($INDEX, $FASTQ, $OUTMAPPED, windows=((5, 20), (5, 30), (5, 40), (5, 50),

(10, 30), (10, 40), (10, 50), (20, 40), (20, 50)), frag_map=False, r_enz=’HindIII’)
• parse_map ($OUTMAPPED_read1, $OUTMAPPED_read2, $PARSED_read1, $PARSED_read2,

re_name=’HindIII’)
• get_intersection ($PARSED_read1, $PARSED_read2, $INTERSECTION, verbose=True)
• plot_distance_vs_interactions ($INTERSECTION, max_diff=50000000, resolution-10000)
• plot_genomic_distribution ($INTERSECTION, resolution=1000000)
• hic_map ($INTERSECTION, resolution=100000, cmap=”tadbit”)
• filter_reads ($INTERSECTION, max_molecule_length=500, over_represented=0.001,

max_frag_size=100000, min_frag_size=50, re_proximity=5)
• apply_filters ($INTERSECTION, $FILTERED, filters=None)
• filter_columns (draw_hist=True)
• normalize_hic (max_dev=0.1, iterations=10)
• correlate_matrices ($GENOMIC_MATRIX1, $GENOMIC_MATRIX2, max_dist=200)
• eig_correlate_matrices ($GENOMIC_MATRIX1, $GENOMIC_MATRIX2, nvect=10)
• find_tad (n_cpus=20, verbose=False)
• align_experiments (randomize=True, rnd_method=”interpolate”, rnd_num=1000)

And bellow a more complete list of functions, with the link to their full online
documentation. This list is the result of an automatic mining in the most important
modules and classes of TADbit using the script
https://github.com/3DGenomes/TADbit/blob/master/doc/summarize_doc.py.

Root	module	

• get_dependencies_version: Check versions of TADbit and all dependencies, as
well and retrieves system info. May be used to ensure reproducibility.

Alignment	module	

• generate_shuffle_tads: Returns a shuffle version of a given list of TADs
• randomization_test: Return the probability that original alignment is better than

an alignment of randomized boundaries.
• generate_rnd_tads: Generates random TADs over a chromosome of a given

size according to a given distribution of lengths of TADs.

TAD	class	

Specific class of TADs, used only within Alignment objects. It is directly inheriting from python
dict. a TAD these keys:

• 'start': position of the TAD
• 'end': position of the TAD
• 'score': of the prediction of boundary
• 'brk': same as 'end'
• 'pos': in the alignment (column number)
• 'exp': Experiment this TAD belongs to
• 'index': of this TAD within all TADs in the Experiment

Alignment	class	

Alignment of TAD borders

• draw [1]: Draw alignments as a plot.
• get_column: Get a list of column responding to a given characteristic.
• itercolumns: Iterate over columns in the alignment
• iteritems: Iterate over experiment names and aligned boundaries
• itervalues: Iterate over experiment names and aligned boundaries
• write_alignment: Print alignment of TAD boundaries between different

experiments. Alignments are displayed with colors according to the
TADbit confidence score for each boundary.

Boundary_aligner	aligner	module	

• consensusize: Given two alignments returns a consensus alignment. Used for
the generation of multiple alignments

• align: Align Topologically Associating Domain borders. Supports multiple-
alignment by building a consensus TAD sequence and aligning each
experiment to it.

Boundary_aligner	globally	module	

• needleman_wunsch: Align two lists of TAD boundaries using a Needleman-
Wunsh implementation

Boundary_aligner	reciprocally	module	

• find_closest_reciprocal: Function to check the needleman_wunsch algorithm.
• reciprocal: Method based on reciprocal closest boundaries (bd). bd1 will be

aligned with bd2 (closest boundary from bd1) if and only if bd1 is the closest
boundary of bd2 too (and of course if the distance between bd1 and bd2 is
lower than max_dist).

Chromosome	module	

• load_chromosome: Load a Chromosome object from a file. A Chromosome
object can be saved with the save_chromosome function.

ChromosomeSize	class	
Simple class inheriting from integer designed to hold chromosome size in base pairs

ExperimentList	class	

Inherited from python built in list, modified for TADbit Experiment.

Mainly, getitem, setitem, and append were modified in order to be able to search for
experiments by index or by name, and to add experiments simply using
Chromosome.experiments.append(Experiment).

The whole ExperimentList object is linked to a Chromosome instance (Chromosome).

AlignmentDict class

dict of Alignment

Modified getitem, setitem, and append in order to be able to search alignments by index or by
name.

linked to a Chromosome

RelativeChromosomeSize	class	

Relative Chromosome size in base pairs.

Only used for TAD alignment randomization.

Chromosome	class	

A Chromosome object designed to deal with Topologically Associating Domains predictions
from different experiments, in different cell types for a given chromosome of DNA, and to
compare them.

• add_experiment: Add a Hi-C experiment to Chromosome
• align_experiments: Align the predicted boundaries of two different

experiments. The resulting alignment will be stored in the
self.experiment list.

• find_tad: Call the tadbit function to calculate the position of
Topologically Associated Domain boundaries

• get_experiment: Fetch an Experiment according to its name. This can
also be done directly with Chromosome.experiments[name].

• get_tad_hic: Retrieve the Hi-C data matrix corresponding to a given
TAD.

• iter_tads: Iterate over the TADs corresponding to a given experiment.
• save_chromosome: Save a Chromosome object to a file (it uses load

from the cPickle). Once saved, the object can be loaded with
load_chromosome.

• set_max_tad_size: Change the maximum size allowed for TADs. It also
applies to the computed experiments.

• tad_density_plot [1]: Draw an summary of the TAD found in a given
experiment and their density in terms of relative Hi-C interaction count.

• visualize [1]: Visualize the matrix of Hi-C interactions of a given
experiment

Experiment	module	

• load_experiment_from_reads: Loads an experiment object from TADbit-
generated read files, that are lists of pairs of reads mapped to a reference
genome.

Experiment	class	

Hi-C experiment.

• filter_columns [1]: Call filtering function, to remove artifactual columns
in a given Hi-C matrix. This function will detect columns with very low
interaction counts; columns passing through a cell with no interaction in
the diagonal; and columns with NaN values (in this case NaN will be

replaced by zero in the original Hi-C data matrix). Filtered out columns
will be stored in the dictionary Experiment._zeros.

• get_hic_matrix: Return the Hi-C matrix.
• get_hic_zscores: Normalize the Hi-C raw data. The result will be stored

into the private Experiment._zscore list.
• load_hic_data: Add a Hi-C experiment to the Chromosome object.
• load_norm_data: Add a normalized Hi-C experiment to the

Chromosome object.
• load_tad_def: Add the Topologically Associated Domains definition

detection to Slice
• model_region [2]: Generates of three-dimensional models using IMP,

for a given segment of chromosome.
• normalize_hic: Normalize the Hi-C data. This normalization step does

the same of the tadbit function (default parameters), It fills the
Experiment.norm variable with the Hi-C values divided by the
calculated weight. The weight of a given cell in column i and row j
corresponds to the square root of the product of the sum of column i by
the sum of row j. normalization is done according to this formula:

• optimal_imp_parameters [2]: Find the optimal set of parameters to be
used for the 3D modeling in IMP.

• print_hic_matrix: Return the Hi-C matrix as string
• set_resolution: Set a new value for the resolution. Copy the original

data into Experiment._ori_hic and replace the Experiment.hic_data with
the data corresponding to new data (compare_condition).

• view [1]: Visualize the matrix of Hi-C interactions
• write_interaction_pairs: Creates a tab separated file with all the

pairwise interactions.
• write_json: Save hic matrix in the json format, read by TADkit.
• write_tad_borders [2]: Print a table summarizing the TADs found by

tadbit. This function outputs something similar to the R function.

Hic_data	module	

HiC_data	class	

This may also hold the print/write-to-file matrix functions

• add_sections: Add genomic coordinate to HiC_data object by getting
them from a fasta file containing chromosome sequences. Orders
matters.

• add_sections_from_fasta: Add genomic coordinate to HiC_data object
by getting them from a FASTA file containing chromosome sequences

• cis_trans_ratio: Counts the number of interactions occurring within
chromosomes (cis) with respect to the total number of interactions

• find_compartments [1] [2]: Search for A/B compartments in each
chromosome of the Hi-C matrix. Hi-C matrix is normalized by the
number interaction expected at a given distance, and by visibility (one
iteration of ICE). A correlation matrix is then calculated from this
normalized matrix, and its first eigenvector is used to identify
compartments. Changes in sign marking boundaries between
compartments. Result is stored as a dictionary of compartment
boundaries, keys being chromosome names.

• get_hic_data_as_csr: Returns a scipy sparse matrix in Compressed
Sparse Row format of the HiC data in the dictionary

• get_matrix: returns a matrix.

• sum: Sum Hi-C data matrix WARNING: parameters are not meant to be
used by external users

• write_compartments [2]: Write compartments to a file.
• write_coord_table: writes a coordinate table to a file.
• write_matrix: writes the matrix to a file.
• yield_matrix: Yields a matrix line by line. Bad row/columns are returned

as null row/columns.

Mapping	module	

• gt_reads: Compare reads accounting for multicontacts
• get_intersection: Merges the two files corresponding to each reads sides.

Reads found in both files are merged and written in an output file. Dealing with
multiple contacts: - a pairwise contact is created for each possible combnation
of the multicontacts. - if no other fragment from this read are mapped than, both
are kept - otherwise, they are merged into one longer (as if they were mapped
in the positive strand)

• eq_reads: Compare reads accounting for multicontacts
• merge_2d_beds: Merge two result files (file resulting from get_intersection or

from the filtering) into one.

Mapping	analyze	module	

• eig_correlate_matrices [1] [2]: Compare the interactions of two Hi-C matrices
using their 6 first eigenvectors, with Pearson correlation

• plot_genomic_distribution [1] [2]: Plot the number of reads in bins along the
genome (or along a given chromosome).

• plot_strand_bias_by_distance [1]: Classify reads into for categories depending
on the strand on which each end is mapped, and plots the proportion of each of
these categories in function of the genomic distance between them. The four
categories are: - Both read-ends mapped in the forward strand - Both read-
ends mapped in the reverse strand - First read-end in the forward strand1,
second in the reverse - First read-end in the reverse strand1, second in the
forward Note: First/second read-ends are according to their genomic
coordinates. The plot is divided in two halves, in order to use different zooms
for read-ends mapped very close, and read-ends further (by default the first half
goes from a distance of 0 to 2 kb, and the second from 2 kb to 50 kb).

• hic_map [1] [2]: function to retrieve data from HiC-data object. Data can be
stored as a square matrix, or drawn using matplotlib

• plot_iterative_mapping [1]: Plots the number of reads mapped at each step of
the mapping process (in the case of the iterative mapping, each step is
mapping process with a given size of fragments).

• plot_distance_vs_interactions [1]: Plot the number of interactions observed
versus the genomic distance between the mapped ends of the read. The slope
is expected to be around -1, in logarithmic scale and between 700 kb and 10
Mb (according to the prediction of the fractal globule model).

• correlate_matrices [1] [2]: Compare the interactions of two Hi-C matrices at a
given distance, with Spearman rank correlation

• insert_sizes [1]: Plots the distribution of dangling-ends lengths

Mapping	filter	module	

• apply_filter [2]: Create a new file with reads filtered
• filter_reads [2]: Filter mapped pair of reads in order to remove experimental

artifacts (e.g. dangling-ends, self-circle, PCR artifacts

Mapping	full_mapper	module	

• full_mapping: Maps FASTQ reads to an indexed reference genome. Mapping
can be done either without knowledge of the restriction enzyme used, or for
experiments performed without one, like Micro-C (iterative mapping), or using
the ligation sites created from the digested ends (fragment-based mapping).

• transform_fastq: Given a FASTQ file it can split it into chunks of a given number
of reads, trim each read according to a start/end positions or split them into
restriction enzyme fragments

Mapping	restriction_enzymes	module	

• map_re_sites_nochunk: map all restriction enzyme (RE) sites of a given
enzyme in a genome. Position of a RE site is defined as the genomic
coordinate of the first nucleotide after the first cut (genomic coordinate starts at
1). In the case of HindIII the genomic coordinate is this one: 123456 789

• repaired: returns the resulting sequence after reparation of two digested and
repaired ends, marking dangling ends.

• map_re_sites: map all restriction enzyme (RE) sites of a given enzyme in a
genome. Position of a RE site is defined as the genomic coordinate of the first
nucleotide after the first cut (genomic coordinate starts at 1). In the case of
HindIII the genomic coordinate is this one: 123456 789

• religated: returns the resulting sequence after religation of two digested and
repaired ends.

Modelling	imp_modelling	module	

• generate_3d_models [2]: This function generates three-dimensional models
starting from Hi-C data. The final analysis will be performed on the n_keep top
models.

Modelling	impmodel	module	

• load_impmodel_from_xyz: Loads an IMPmodel object using an xyz file of the
form:

• load_impmodel_from_cmm: Loads an IMPmodel object using an cmm file of
the form:

IMPmodel	class	

A container for the IMP modeling results.

• objective_function [1]: This function plots the objective function value
per each Monte-Carlo step.

Modelling	impoptimizer	module	

IMPoptimizer	class	

This class optimizes a set of parameters (scale, maxdist, lowfreq and upfreq) in order to
maximize the correlation between the models generated by IMP and the input data.

• get_best_parameters_dict:

• load_from_file: Loads the optimized parameters from a file generated
with the function:
pytadbit.modelling.impoptimizer.IMPoptimizer.write_result. This
function does not overwrite the parameters that were already loaded or
calculated.

• load_grid_search: Loads one file or a list of files containing pre-
calculated Structural Models (keep_models parameter used). And
correlate each set of models with real data. Useful to run different
correlation on the same data avoiding to re-calculate each time the
models.

• plot_2d [1]: A grid of heatmaps representing the result of the
optimization.

• plot_3d: A grid of heatmaps representing the result of the optimization.
• run_grid_search [2]: This function calculates the correlation between

the models generated by IMP and the input data for the four main IMP
parameters (scale, maxdist, lowfreq and upfreq) in the given ranges of
values.

• write_result: This function writes a log file of all the values tested for
each parameter, and the resulting correlation value. This file can be
used to load or merge data a posteriori using the function
pytadbit.modelling.impoptimizer.IMPoptimizer.load_from_file

Modelling	structuralmodel	module	

IMPmodel	class	

A container for the IMP modeling results.

• accessible_surface [1]: Calculates a mesh surface around the model
(distance equal to input radius) and checks if each point of this mesh
could be replaced by an object (i.e. a protein) of a given radius Outer
part of the model can be excluded from the estimation of accessible
surface, as the occupancy outside the model is unknown (see
superradius option).

• center_of_mass: Gives the center of mass of a model
• contour: Total length of the model
• cube_side: Calculates the side of a cube containing the model.
• cube_volume: Calculates the volume of a cube containing the model.
• distance: Calculates the distance between one point of the model and

an external coordinate
• inaccessible_particles: Gives the number of loci/particles that are

accessible to an object (i.e. a protein) of a given size.
• longest_axe: Gives the distance between most distant particles of the

model
• min_max_by_axis: Calculates the minimum and maximum coordinates

of the model
• persistence_length: Calculates the persistence length (Lp) of given

section of the model. Persistence length is calculated according to
[Bystricky2004] :

• radius_of_gyration: Calculates the radius of gyration or gyradius of the
model Defined as:

• shortest_axe: Minimum distance between two particles in the model
• view_model [1]: Visualize a selected model in the three dimensions.

(either with Chimera or through matplotlib).

• write_cmm [2]: Save a model in the cmm format, read by Chimera
(http://www.cgl.ucsf.edu/chimera). Note: If none of model_num, models
or cluster parameter are set, ALL the models will be written.

• write_xyz [2]: Writes a xyz file containing the 3D coordinates of each
particle in the model. Outfile is tab separated column with the bead
number being the first column, then the genomic coordinate and finally
the 3 coordinates X, Y and Z Note: If none of model_num, models or
cluster parameter are set, ALL the models will be written.

Modelling	structuralmodels	module	

• load_structuralmodels: Loads StructuralModels from a file (generated with
save_models).

StructuralModels	class	

This class contains three-dimensional models generated from a single Hi-C data. They can be
reached either by their index (integer representing their rank according to objective function
value), or by their IMP random intial number (as string).

• accessibility [1] [2]: Calculates a mesh surface around the model
(distance equal to input radius) and checks if each point of this mesh
could be replaced by an object (i.e. a protein) of a given radius Outer
part of the model can be excluded from the estimation of accessible
surface, as the occupancy outside the model is unkown (see
superradius option).

• align_models: Three-dimensional aligner for structural models.
• angle_between_3_particles: Calculates the angle between 3 particles.

Given three particles A, B and C, the angle g (angle ACB, shown
below):

• average_model: Builds and returns an average model representing a
given group of models

• centroid_model: Estimates and returns the centroid model of a given
group of models.

• cluster_analysis_dendrogram [1]: Representation of the clustering
results. The length of the leaves if proportional to the final objective
function value of each model. The branch widths are proportional to the
number of models in a given cluster (or group of clusters, if it is an
internal branch).

• cluster_models: This function performs a clustering analysis of the
generated models based on structural comparison. The result will be
stored in StructuralModels.clusters Clustering is done according to a
score of pairwise comparison calculated as:

• contact_map [1] [2]: Plots a contact map representing the frequency of
interaction (defined by a distance cutoff) between two particles.

• correlate_with_real_data [1]: Plots the result of a correlation between a
given group of models and original Hi-C data.

• deconvolve [1]: This function performs a deconvolution analysis of a
given froup of models. It first clusters models based on structural
comparison (dRMSD), and then, performs a differential contact map
between each possible pair of cluster.

• define_best_models: Defines the number of top models (based on the
objective function) to keep. If keep_all is set to True in
generate_3d_models or in model_region, then the full set of models
(n_models parameter) will be used, otherwise only the n_keep models
will be available.

• density_plot [1] [2]: Plots the number of nucleotides per nm of
chromatin vs the modeled region bins.

• dihedral_angle: Calculates the dihedral angle between 2 planes formed
by 5 particles (one common to both planes).

• fetch_model_by_rand_init: Models are stored according to their
objective function value (first best), but in order to reproduce a model,
we need its initial random number. This method helps to fetch the
model corresponding to a given initial random number stored under
StructuralModels.models[N]['rand_init'].

• get_contact_matrix: Returns a matrix with the number of interactions
observed below a given cutoff distance.

• interactions [1] [2]: Plots, for each particle, the number of interactions
(particles closer than the given cut-off). The value given is the average
for all models.

• median_3d_dist [1]: Computes the median distance between two
particles over a set of models

• model_consistency [1] [2]: Plots the particle consistency, over a given
set of models, vs the modeled region bins. The consistency is a
measure of the variability (or stability) of the modeled region (the higher
the consistency value, the higher stability).

• objective_function_model [1]: This function plots the objective function
value per each Monte-Carlo step

• particle_coordinates: Returns the mean coordinate of a given particle in
a group of models.

• save_models [2]: Saves all the models in pickle format (python object
written to disk).

• view_centroid: shortcut for view_models(tool='plot', show='highlighted',
highlight='centroid')

• view_models [1]: Visualize a selected model in the three dimensions
(either with Chimera or through matplotlib).

• walking_angle [1] [2]: Plots the angle between successive loci in a
given model or set of models. In order to limit the noise of the measure
angle is calculated between 3 loci, between each are two other loci.
E.g. in the scheme bellow, angle are calculated between loci A, D and
G.

• walking_dihedral [1] [2]: Plots the dihedral angle between successive
planes. A plane is formed by 3 successive loci.

• zscore_plot [1]: Generate 3 plots. Two heatmaps of the Z-scores used
for modeling, one of which is binary showing in red Z-scores higher
than upper cut-off; and in blue Z-scores lower than lower cut-off. Last
plot is an histogram of the distribution of Z-scores, showing selected
regions. Histogram also shows the fit to normal distribution.

Parsers	bed_parser	module	

• parse_bed: simple BED and BEDgraph parser that only checks for the fields 1,
2, 3 and 5 (or 1, 2 and 3 if 5 not availbale).

Parsers	genome_parser	module	

• parse_fasta: Parse a list of fasta files, or just one fasta. WARNING: The order
is important

Parsers	hic_parser	module	

• optimal_reader: Reads a matrix generated by TADbit. Can be slower than
autoreader, but uses almost a third of the memory

• autoreader: Auto-detect matrix format of HiC data file.
• read_matrix: Read and checks a matrix from a file (using autoreader) or a list.
• is_asymmetric: Helper functions for the autoreader.
• load_hic_data_from_reads:
• symmetrize_dico: Make an HiC_data object symmetric by summing two halves

of the matrix
• symmetrize: Make a matrix symmetric by summing two halves of the matrix
• is_asymmetric_dico: Helper functions for the optimal_reader

AutoReadFail	class	
Exception to handle failed autoreader.

Parsers	map_parser	module	

• parse_map: Parse map files Keep a summary of the results into 2 tab-
separated files that will contain 6 columns: read ID, Chromosome, position,
strand (either 0 or 1), mapped sequence lebgth, position of the closest
upstream RE site, position of the closest downstream RE site. The position of
reads mapped on reverse strand will be computed from the end of the read
(original position + read length - 1)

Parsers	sam_parser	module	

• parse_sam: Parse sam/bam file using pysam tools. Keep a summary of the
results into 2 tab-separated files that will contain 6 columns: read ID,
Chromosome, position, strand (either 0 or 1), mapped sequence lebgth,
position of the closest upstream RE site, position of the closest downstream RE
site

Parsers	tad_parser	module	

• parse_tads: Parse a tab separated value file that contains the list of TADs of a
given experiment. This file might have been generated whith the print_result_R
or with the R binding for tadbit

Tad_clustering	tad_cmo	module	

• virgin_score: Fill a matrix with zeros, except first row and first column filled with
multiple values of penalty.

• core_nw_long: Core of the long Needleman-Wunsch algorithm that aligns
matrices

• core_nw: Core of the fast Needleman-Wunsch algorithm that aligns matrices
• optimal_cmo: Calculates the optimal contact map overlap between 2 matrices

TODO: make the selection of number of eigen vectors automatic or relying on
the summed contribution (e.g. select the EVs that sum 80% of the info)

Tadbit	module	

• tadbit: The TADbit algorithm works on raw chromosome interaction count data.
The normalization is neither necessary nor recommended, since the data is

assumed to be discrete counts. TADbit is a breakpoint detection algorithm that
returns the optimal segmentation of the chromosome under BIC-penalized
likelihood. The model assumes that counts have a Poisson distribution and that
the expected value of the counts decreases like a power-law with the linear
distance on the chromosome. This expected value of the counts at position (i,j)
is corrected by the counts at diagonal positions (i,i) and (j,j). This normalizes for
different restriction enzyme site densities and 'mappability' of the reads in case
a bin contains repeated regions.

• batch_tadbit [2]: Use tadbit on directories of data files. All files in the specified
directory will be considered data file. The presence of non data files will cause
the function to either crash or produce aberrant results. Each file has to contain
the data for a single unit/chromosome. The files can be separated in sub-
directories corresponding to single experiments or any other organization. Data
files that should be considered replicates have to start with the same
characters, until the character sep. For instance, all replicates of the unit 'chr1'
should start with 'chr1_', using the default value of sep. The data files are read
through read.delim. You can pass options to read.delim through the list
read_options. For instance if the files have no header, use
read_options=list(header=FALSE) and if they also have row names,
read_options=list(header=FALSE, row.names=1). Other arguments such as
max_size, n_CPU and verbose are passed to tadbit. NOTE: only used
externally, not from Chromosome

Utils	extraviews	module	

• compare_models: Plots the difference of contact maps of two group of
structural models.

• plot_3d_model [1]: Given a 3 lists of coordinates (x, y, z) plots a three-
dimentional model using matplotlib

• color_residues: Function to color residues from blue to red.
• plot_2d_optimization_result [1]: A grid of heatmaps representing the result of

the optimization.
• colorize: Colorize with ANSII colors a string for printing in shell. this acording to

a given number between 0 and 10
• tad_border_coloring: Colors TAD borders from blue to red (bad to good score).

TAD are displayed in scale of grey, from light to dark grey (first to last particle in
the TAD)

• tad_coloring: Colors TADs from blue to red (first to last TAD). TAD borders are
displayed in scale of grey, from light to dark grey (again first to last border)

• augmented_dendrogram [1]:
• chimera_view [1]: Open a list of .cmm files with Chimera

(http://www.cgl.ucsf.edu/chimera) to view models.
• plot_3d_optimization_result: Displays a three dimensional scatter plot

representing the result of the optimization.
• nicer: writes resolution number for human beings.

Utils	fastq_utils	module	

• count_reads_approx: Get the approximate number of reads in a FASTQ file. By
averaging the sizes of a given sample od randomly selected reads, and relating
this mean to the size of the file.

• quality_plot [1]: Plots the sequencing quality of a given FASTQ file. If a
restrinction enzyme (RE) name is provided, can also represent the distribution
of digested and undigested RE sites and estimate an expected proportion of
dangling-ends. Proportion of dangling-ends is inferred by counting the number

of times a dangling-end site, is found at the beginning of any of the reads
(divided by the number of reads).

• count_reads: Count the number of reads in a FASTQ file (can be slow on big
files, try count_reads_approx)

• estimate_cardinality: Estimates the number of unique elements in the input set
values. from: http://blog.notdot.net/2012/09/Dam-Cool-Algorithms-Cardinality-
Estimation Arguments: values: An iterator of hashable elements to estimate the
cardinality of. k: The number of bits of hash to use as a bucket number; there
will be 2**k buckets.

Utils	file_handling	module	

• magic_open: To read uncompressed zip gzip bzip2 or tar.xx files
• wc: Pythonic way to count lines
• get_free_space_mb: Return folder/drive free space (in bytes) Based on

stackoverflow answer: http://stackoverflow.com/questions/51658/cross-
platform-space-remaining-on-volume-using-python

• which: stackoverflow: http://stackoverflow.com/questions/377017/test-if-
executable-exists-in-python

Utils	hic_filtering	module	

• filter_by_mean [1]: fits the distribution of Hi-C interaction count by column in the
matrix to a polynomial. Then searches for the first possible

• hic_filtering_for_modelling [1]: Call filtering function, to remove artifactual
columns in a given Hi-C matrix. This function will detect columns with very low
interaction counts; and columns with NaN values (in this case NaN will be
replaced by zero in the original Hi-C data matrix). Filtered out columns will be
stored in the dictionary Experiment._zeros.

• filter_by_zero_count:

Utils	hmm	module	

• best_path: Viterbi algorithm with backpointers
• gaussian_prob: of x to follow the gaussian with given E

https://en.wikipedia.org/wiki/Normal_distribution

Utils	normalize_hic	module	

• iterative: Implementation of iterative correction Imakaev 2012
• expected: Computes the expected values by averaging observed interactions at

a given distance in a given HiC matrix.

Utils	tadmaths	module	

• mean_none: Calculates the mean of a list of values without taking into account
the None

• right_double_mad: Double Median Absolute Deviation: a 'Robust' version of
standard deviation. Indices variability of the sample.
http://eurekastatistics.com/using-the-median-absolute-deviation-to-find-outliers

• zscore: Calculates the log10, Z-score of a given list of values.
• calinski_harabasz: Implementation of the CH score [CalinskiHarabasz1974],

that has shown to be one the most accurate way to compare clustering
methods [MilliganCooper1985] [Tibshirani2001]. The CH score is:

• newton_raphson: Newton-Raphson method as defined in:
http://www.maths.tcd.ie/~ryan/TeachingArchive/161/teaching/newton-
raphson.c.html used to search for the persistence length of a given model.

• mad: Median Absolute Deviation: a "Robust" version of standard deviation.
Indices variability of the sample.
https://en.wikipedia.org/wiki/Median_absolute_deviation

Interpolate	class	
Simple linear interpolation, to be used when the one from scipy is not available.

Utils	three_dim_stats	module	

• square_distance: Calculates the square distance between two particles.
• dihedral: Calculates dihedral angle between 4 points in 3D (array with x,y,z)
• generate_circle_points: Returns list of 3d coordinates of points on a circle using

the Rodrigues rotation formula. see Murray, G. (2013). Rotation About an
Arbitrary Axis in 3 Dimensions for details

• mass_center: Transforms coordinates according to the center of mass
• generate_sphere_points: Returns list of 3d coordinates of points on a sphere

using the Golden Section Spiral algorithm.
• rotate_among_y_axis: Rotate and object with a list of x, y, z coordinates among

its center of mass
• calc_eqv_rmsd: Calculates the RMSD, dRMSD, the number of equivalent

positions and a score combining these three measures. The measure are done
between a group of models in a one against all manner.

• get_center_of_mass: get the center of mass of a given object with list of x, y, z
coordinates

• find_angle_rotation_improve_x: Finds the rotation angle needed to face the
longest edge of the molecule

• fast_square_distance: Calculates the square distance between two
coordinates.

• angle_between_3_points: Calculates the angle between 3 particles Given three
particles A, B and C, the angle g (angle ACB, shown below):

• build_mesh: Main function for the calculation of the accessibility of a model.

[2] (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24) functions
writing text files

	

[1] (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39) functions generating plots

