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Tables 

Table S1: Eligible neoadjuvant chemotherapy breast cancer datasets. Patient samples 

from five publicly available breast cancer datasets were selected for study using the following 

criteria: (1) neoadjuvant treatment with AC-T-based chemotherapy, (2) complete clinical and 

pathologic information and (3) uniform gene expression profiling on Affymetrix Human Genome 

U133A microarrays (hgu133a). Duplicate patient samples or those with incomplete clinical or 

pathologic data (age, ER status, HER2 status, tumor stage, lymph node status, grade or 

pathologic complete response assessment) were removed from analysis. GEO=Gene 

Expression Omnibus.  

 

Table S2: Reference breast cancer datasets for gene expression normalization. Three 

independent publicly available datasets comprised of diverse breast cancer subtypes were 

selected to serve as the frozen reference cohort for z-transformation in calculation of RPS 

values in the five neoadjuvant chemotherapy datasets. 

 

Table S3: List of duplicate samples excluded from study. Duplicate samples across two or 

more studies were identified by comparison of raw microarray signal intensity values across all 

probesets, and identical array scan dates were identified as potentially redundant samples and 

excluded from further analysis. 90% of duplicate samples shared identical clinical and 

pathologic features, while 10% of duplicate samples demonstrated inconsistent clinical and 

pathologic information between studies.  
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Table S4: Test characteristics of a reduced gene model. A reduced model utilizing the four 

RPS genes (RIF1, PARPBP, RAD51 and XRCC5) as well as ER status was developed after 

eliminating variables with low importance scores (<20). Samples were randomly split into 

training (80%) and validation (20%) datasets. The training set was used to optimize the 

parameters and select the best model using 10-fold cross validation with custom evaluation 

metrics to optimize probability threshold for imbalanced classes. The independent test set was 

used to assess the performance of the final model in prediction of the pCR outcome.  

 

Table S5: RPS values for study patients. Background-corrected, normalized and log2-

transformed gene expression values using the SCAN algorithm were converted to z-scores for 

each gene using the mean and standard deviation from three independent reference breast 

cancer datasets. Weighted RPS values were calculated from SCAN-normalized gene 

expression z-scores with weights determined from variable importance measures using the 

following formula: 𝑅𝑃𝑆𝑏 =  −1 ∗ (0.2171423 ∗  𝑅𝐼𝐹1 +  0.1946173 ∗  𝑃𝐴𝑅𝑃𝐵𝑃 +  0.2783017 ∗

 𝑅𝐴𝐷51 +  0.3099387 ∗  𝑋𝑅𝐶𝐶5). Clinical, pathological and intrinsic breast subtype data are 

designated for each sample. GEO=Gene Expression Omnibus. 
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Figures: 

Figure S1: Study flow chart for selection of breast cancer patients. Patients were eligible 

for study based on specific exclusion criteria to address hypotheses relevant to neoadjuvant 

anthracycline-based chemotherapy. 

 

Figure S2: Distributions of SCAN normalized gene expression data. Microarray probeset 

intensity values were background corrected, quantile normalized, robust-weighted-average 

summarization and log2-transformed using the SCAN algorithm. (A) SCAN-normalized gene 

expression data for each gene were plotted for each respective neoadjuvant chemotherapy 

dataset. (B) The mean and standard deviation of the independent frozen reference cohort was 

used to convert SCAN-transformed gene expression signals to z-scores to normalize the gene 

distributions. 

 

Figure S3: Schematic for development of breast cancer-specific RPS values. Five 

neoadjuvant chemotherapy breast cancer datasets (Table S1) were selected for analysis after 

elimination of ineligible studies or patients based on criteria outlined in Figure S1. In total, 513 

patients were eligible for analysis. The five neoadjuvant chemotherapy datasets were combined 

into a single cohort after SCAN normalization and z-transformation, and samples were randomly 

split into training and independent test sets. The training set was used to tune the parameters 

and select the best model using 10-fold cross validation with custom evaluation metrics to 

handle imbalanced classes. After training, the test set was used to independently assess the 

performance of the final model. We started with a full model with ten predictors, including the 

four gene expression values, as well as clinical and pathologic factors: 𝑝𝐶𝑅 ~ 𝑅𝐼𝐹1 +

 𝑃𝐴𝑅𝑃𝐵𝑃 +  𝑅𝐴𝐷51 +  𝑋𝑅𝐶𝐶5 +  𝐴𝑔𝑒 < 50 +  𝐸𝑅𝑝𝑙𝑢𝑠 +  𝐻𝐸𝑅2𝑝𝑙𝑢𝑠 +  𝑇3𝑜𝑟4 +  𝐿𝑁𝑝𝑙𝑢𝑠 +



4 
 

 𝐺𝑟𝑎𝑑𝑒3.  Variables with importance scores <20 (scaled to have a range of 0 to 100) were 

eliminated, leaving only the four RPS genes and ER status as predictors: 𝑝𝐶𝑅 ~ 𝑅𝐼𝐹1 +

 𝑃𝐴𝑅𝑃𝐵𝑃 +  𝑅𝐴𝐷51 +  𝑋𝑅𝐶𝐶5 +  𝐸𝑅𝑝𝑙𝑢𝑠. Using the expression levels for the four genes as 

predictors, two separate models were built in ER-positive and ER-negative subsets of samples 

(50%-50% for training and test sets).  This generated the final breast cancer-specific RPS 

model: 𝑅𝑃𝑆𝑏 =  −1 ∗ (0.2171423 ∗  𝑅𝐼𝐹1 +  0.1946173 ∗  𝑃𝐴𝑅𝑃𝐵𝑃 +  0.2783017 ∗  𝑅𝐴𝐷51 +

 0.3099387 ∗  𝑋𝑅𝐶𝐶5), with the sum of gene weight coefficients equal to 1. Logistic regression 

models were constructed to fit the relationship between probability of pCR (y variable, binary) 

and RPSb value (x variable, continuous) in each of the ER-positive and ER-negative subsets.   

 

Figure S4: Variable importance of clinical, pathologic and gene expression features. Ten 

factors were examined for variable importance in predicting pathologic complete response 

(pCR) using Random Forest Modeling (RMF). Samples were randomly split into training (80%) 

and test (20%) datasets. A training set was used to optimize the model parameters and select 

the best model using 10-fold cross validation with custom evaluation metrics to address 

imbalanced classes. The test set was used to test the performance of the final model in 

predicting pCR. RIF1, XRCC5, RAD51 and PARPBP values were SCAN-normalized, z-score-

transformed gene expression measurements. The remaining features were analyzed as binary 

variables.   

 

Figure S5: RPS values in BRCA-mutated clinical breast cancers. Box-whisker plots of RPS 

values for women with BRCA1-mutated, BRCA2-mutated and sporadic breast cancers. 

Statistical significance was determined using two-tailed Student’s t-test between groups.  
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Figure S6: RPS associates with adverse clinical-pathologic features. Box-whisker plots of 

RPS values for clinical-pathologic variables (dichotomized). T stage=tumor stage; N 

stage=nodal stage; ER=estrogen receptor status; HER2=human epidermal growth factor 

receptor 2; ER and HER2 denote status determined by immunohistochemistry. Statistical 

significance was determined using one-tailed Student’s t-test between groups. **P≤0.01, 

***P≤0.001. 

 

Figure S7: RPS predicts residual cancer burden following neoadjuvant doxorubicin-

based chemotherapy in breast cancer. RCB-0/I=pathologic complete response (pCR)/ 

minimal residual disease; RCB-II/III=moderate/extensive residual disease. Low and high RPS 

values denote the lowest 50th and highest 50th RPS percentiles. P-values were determined 

using Chi-Square tests between groups.  

 

Figure S8: RPS values as a function of hormone receptor and HER2 in breast cancer. 

Box-whisker plots of RPSb values (top) and pCR rates (bottom) by hormone receptor (HR; i.e. 

ER and/or PR) and HER2/neu expression. ER, PR and HER2/neu expression was determined 

by immunohistochemical analysis. 
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