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1 Software packages

In this paper, we developed the Expedition suite, consisting of software packages that addressed three key deficiencies in
single-cell alternative splicing analysis:

1. Detect and quantify alternative splicing quickly, with minimum false positives: outrigger, Section 1.1
In single-cell analysis, absolute quantitation of gene expression or “percent spliced-in” (Psi/Ψ) is important and enable
us to learn the distribution of these quantitations. Previously, relative quantitation for splicing (∆Ψ) is more commonly
used to calculate the difference between groups. Such relative quantitation tolerates false positive better, as false
positives may not vary between groups, ∆Ψ ∼ 0 and are thus not noticeable in pairwise comparisons. However, when
studying distribution of absolute quantitation, such false positives obsure the observation in unpredictable way and
hinder biological interpretation. The second main problem of previous splicing algorithm is the inflexible definitions
of alternative exons. The same alternative exons may utilize different flanking exons in different cells/samples, thus
leading to different biological interpretation. To address these problems, we create outrigger, which uses junction
reads to find de novo exons, creates a splice graph to define junction-based alternative events, filters for conserved
splice sites, and strictly rejectes cases of alternative events incompatible with the data at hand. Finally, we discuss and
compare to the popular MISO8 algorithm.

2. Classify modalities of alternative splicing events, including bimodal: anchor, Section 1.2
The power of single-cell analyses rises from the ability to study the distribution of a parameter-of-interest. There
are a few statistical methods for finding bimodal distributions, but none are sufficient because they are either not
sensitive enough, or not robust enough to noise. Additionally, these methods only deal with bimodal distribution and
do not classify other distributions, such as unimodal or multimodal. To create a sensitive distribution classifier for all
modalities, we used Bayesian methods to create anchor, and compare our method to a simple binning method, the
bimodality index17, and the bimodal dip test7.

3. Quantify and visualize dynamics in distributions: bonvoyage, Section 1.3
While there are many statistical tests to compare changes in distributions, few of them is coupled with visual tools
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to present changes in distribution with both magnitude and direction. For the specific question of alternative splicing
changes, we are interested in observing a event becomes more included or more excluded. Thus we have employed
machine learning methods to create a visualizable, interpretable 2d space with “included” and “excluded” axes. This
method is compared to the quantification offered by the Jensen-Shannon Divergence (JSD)2.

1.1 outrigger: Splicing estimation with de novo annotation and graph traversal

Currently available tools for AS detection and quanitification have two major problems: (1) inflexible definitions that cannot
handle different configurations of flanking exons for the same alternative junctions, and (2) lack of rejection of an alternative
event even if its definition is incompatible with the data-at-hand. The first problem is solved with outrigger index, which
defines all potential alternative events based on the junctions and alternative exons from the aggregate of entire sample sets
in a given project, and enumerates all biologically possible flanking exon combinations. This step maximize the likelihood to
identify all possible alternative events. To ensure only valid alternative events were generated, we added outrigger validate

to remove alternative events with introns lacking conserved splice sites. The second prolbem is solved with outrigger psi,
which applies strict rules to only permit junctions with sufficient coverage for an event in a given sample. All the parameters
in the rules can be user-defined. Thus, outrigger addresses key issues with current alternative splicing software.

1.1.1 Algorithm overview

Broadly, the goal of outrigger is to create a custom, de novo alternative splicing annotation by using junction reads and exon
definitions to create a exon-junction graph, traversing the graph to find alternative events, and calculate percent spliced-in
(Psi/Ψ) of the alternative exons.

1.1.1.1 outrigger index: Create custom alternative splicing annotation. The following is a narrative describing
Supplementary Software Figure 2A.

1.1.1.1.1 Inputs. Two inputs are required for outrigger index: junction counts and gene annotations. The junction
counts can be provided in many forms: either .bam6 genome alignment files, splice junction count .SJ.out.tab files created
by the STAR aligner4, or a pre-compiled table of samples’ junction reads in a .csv format. The gene annotations can be
provided in .gtf or .gff format.

1.1.1.1.2 Step 1: Retain junctions from each cell with sufficient read depth. Junctions with reads in an
individual sample less than the minimum number of reads, rmin are removed. By default, rmin = 10, and can be adjusted by
the user, for example to a minimum of 88 reads, with --min-reads 88 on the command line. To illustrate, if one junction
is observed with two (2) reads in 100 samples, although there were a total of 200 reads observed on the junction, it will be
discarded at this step. Because, there is not sufficient evidence to suggest that this junction is well-covered in any sample.

1.1.1.1.3 Step 2: Collapse reads on shared exon-exon junctions, across all samples. The aggregate of all
junctions from all samples in a given project are create to maximize the likelihood of identifing all potential alternative events.

1.1.1.1.4 Step 3: Detect exons de novo. If the gap between two junctions is under X nucleotides, an exon will
be inserted at the gap. This maximum X is necessary, because otherwise we could insert “exons” that are many kilobases
long, but aren’t true exons – they are the intergeneic space between genes. By default, X = 100, and this can be adjusted
by the user, for example to 157 nucleotides, with the command line flag, --max-de-novo-exon-length 157.

1.1.1.1.5 Step 4: Integrate exon annotation to obtain pairwise exon-junction relationships. Annotated
exons are integrated with the de novo exons and create a table of the pairwise relationships of each exon to each junction.
We do this by creating a database of genes, transcripts, and exons from a GTF gene annotation file using gffutils3, and
observing which junctions are adjacent to each exon. This outputs an “exon-direction-junction” table which is used in Step
5.

1.1.1.1.6 Step 5: Combine pairwise relationships to obtain global structure. We then use the adjacencies to
build a directional graph which connects exons to each other via junctions. This graph database was built using graphlite1,
a Python program that provides a lightweight graph wrapper over SQLite.

1.1.1.1.7 Step 6: Search for alternative exons. To find alternative events, all exons in the graph database were
transversed to test, if starting from that exon, it could be a first exon of an skipped exon (SE) or mutually exclusive exon
(MXE) event.
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1.1.1.1.8 Outputs. The output of outrigger index is a folder containing the following. The events.csv file con-
tains the event definitions will be used by outrigger psi. The exonN.bed files, where N is an exon number, will be used by
outrigger validate to check for canonical or non-canonical splice sites.

The splicing event definitions in the events.csv files are specified by the junctions and the alternative exon. As there
may be multiple potential flanking exons with the same junctions, rather than choosing a single version (as is done by
MISO, Supplementary Software Figure 2B), we output all possible flanking exon configurations. Thus, while the critical
alternative exons are exon 2 for SE events and exons 2 and 3 for MXE events, we show all possible exon flanking exon 1s
and exon 3s for SE, and all possible flanking exon 1s and exon 4s for MXE events (Supplementary Software Figure 2A,
lower right).

Below is an example command using outrigger index:

outrigger index --bam *sorted.bam \

--gtf /projects/ps-yeolab/genomes/mm10/gencode/m10/gencode.vM10.annotation.gtf

This creates a folder called outrigger output with the following contents:

outrigger output/

index

gtf ........................................................................................Added by Step 3
gencode.vM10.annotation.gtf..........................................................Added by Step 4
gencode.vM10.annotation.gtf.db.......................................................Added by Step 4
novel exons.gtf........................................................................Added by Step 3

exon direction junction.csv..............................................................Added by Step 4
mxe ........................................................................................Added by Step 6

event.bed...............................................................................Added by Step 6
events.csv .............................................................................Added by Step 6
exon1.bed...............................................................................Added by Step 6
exon2.bed...............................................................................Added by Step 6
exon3.bed...............................................................................Added by Step 6
exon4.bed...............................................................................Added by Step 6
intron.bed .............................................................................Added by Step 6

se..........................................................................................Added by Step 6
event.bed...............................................................................Added by Step 6
events.csv .............................................................................Added by Step 6
exon1.bed...............................................................................Added by Step 6
exon2.bed...............................................................................Added by Step 6
exon3.bed...............................................................................Added by Step 6
intron.bed .............................................................................Added by Step 6

junctions.....................................................................................Added by Step 1
metadata.csv..............................................................................Added by Step 2
reads.csv..................................................................................Added by Step 1

Supplementary Figure 1: Example output of outrigger index command.

Besides outputting the relevant events.csv which is used in outrigger psi to define events, we also output .bed files
for the entire event, the alternative intron, and each exon, facilitating downstream sequence analysis.

1.1.1.2 outrigger validate: Remove alterantive splicing lacking conserved splice sites. The following describes
the biological intuition behind Supplementary Software Figure 3A. Major (U2) splicesome recognize splice-sites as (5′

end of intron/3′ end of intron) GT/AG and GC/AG the Minor (U12) spliceosome recognizes splice-sites as AT/AC5;10. By default,
these combinations of splice-sties are allowed. But the valid splice sites can be user-specified and changed for example to
AA/AA and GG/GG with --valid-splice-sites AA/AA,GG/GG.

The output of outrigger validate is a splice sites.csv folder containing the splice sites, and an additional folder
in the splice type folder, called validated, containing filtered events.csv which only contain alternative events with valid
splice sites. For example, as a follow up on our previous outrigger index command, we validate the alternative exons with
the command,

outrigger validate --genome mm10 \

--fasta /projects/ps-yeolab/genomes/mm10/GRCm38.primary_assembly.genome.fa
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This creates the following additions to the outrigger output folder:

outrigger output/

index

gtf

gencode.vM10.annotation.gtf

gencode.vM10.annotation.gtf.db

novel exons.gtf

exon direction junction.csv

mxe

event.bed

events.csv

exon1.bed

exon2.bed

exon3.bed

exon4.bed

intron.bed

splice sites.csv ........................................................Added by outrigger validate

validated................................................................Added by outrigger validate

events.csv............................................................Added by outrigger validate

se

event.bed

events.csv

exon1.bed

exon2.bed

exon3.bed

intron.bed

splice sites.csv ........................................................Added by outrigger validate

validated................................................................Added by outrigger validate

events.csv............................................................Added by outrigger validate

junctions

metadata.csv

reads.csv

Supplementary Figure 2: Example output of outrigger validate command.

1.1.1.3 Potential “Franken-events” created by combining junctions over multiple datasets. As many junctions
may occur spuriously in a single cell (sample), aggregating all junctions across all cells (sample) may create events that were
not observed in any individual cell (Supplementary Software Figure 3B). We wanted to ensure we strictly defined when
events were valid or not in these cases.

In the case of SE events, the exon will have Ψ = NA for the cell with the observed inclusion junctions, since they don’t
have sufficient reads on both sides of the exon. For the cell with the exclusion junction, it will have Ψ = 0 since no inclusion
reads were observed.

For MXE events, if each of the four junctions was observed independently in a different cell, then all of the cells will have
Ψ = NA for that splicing event since there are no cells which have sufficient reads on all junctions of either isoform.

1.1.1.4 outrigger psi: Calculate percent spliced-in of alternative exons To calculate percent spliced-in (Psi/Ψ)
of a potentially alternative exon identified in outrigger index, we use the equation for Ψ = inclusion reads

total reads
16, with substantial

checks for whether the event is valid (Supplementary Software Figure 4). For SE, there is only one exclusion junction
and thus the the exclusion junction is weighted by two to compensate (Eq. 1). For MXE, the calcluation is simply the
inclusion reads divided by the total reads (Eq. 2). The junction reads between exon i and exon j are presented as ri,j ,
displaying inclusion reads in red and exclusion reads in blue.

SE Ψ

Ψ =
r1,2 + r2,3

r1,2 + r2,3 + 2r1,3
(1)

MXE Ψ

Ψ =
r1,2 + r2,4

r1,2 + r2,4 + r1,3 + r3,4
(2)

Multiple validation steps were incorporated to ensure that the junction reads observed in each sample are consistent with
the type of splicing event annotated by outrigger. This process is described in Supplementary Software . 4.
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Case 1: Incompatible junctions with sufficient reads. This step checks whether the junction reads are compatible with a MXE
event, or rather a twin cassette event. Specifically, evidence of r2,3 > rmin or r1,4 > rmin suggests this junction is a
twin cassette event but not an MXE event. In such cases, Ψ = NA. As described in outrigger index, the minimum
number of reads is user-defined, for example to 37 with --min-reads 37.

Case 2: Zero observed reads. Given no reads is observed, this event is Ψ = NA, rather than Ψ = 0 since Ψ = 0 indicates
exclusion.

Case 3: All compatible junctions with insufficient reads. No single junction has the minimum number of reads rmin, by de-
fault rmin is 10, and can be modifiable by the --min-reads flag. If this is the case, we assign Ψ = NA.

Case 4: Only one junction with sufficient reads. This applies to a single junction of two junctions per isoform, e.g. Isoform2
of either SE or MXE events, and Isoform1 of an MXE event, has sufficient reads. Since only one junction has the
minimum number of reads, rmin, no sufficient evidence indicates inclusion of exon-of-interest, thus, we assign Ψ = NA.

Case 5: One junction with > 10× more reads than the other. When the alternative exon is covered on the two sides with
junction reads of great disparity, there is insufficient evidence supporting the inclusion of alternative exon or suggests
the exon may involved in a complex splicing, rather than a SE or MXE. Thus, Ψ = NA. The default multiplier is 10
and can be modified by the user, for example to 55 by --uneven-coverage-multiplier 55.

Case 6: Exclusion: Isoform2 with suffcient reads and Isoform1 with zero reads. All junctions on Isoform2 have greater than
the minimum reads rmin, and all junctions of Isoform1 have no observed reads, thus Ψ = 0.

Case 7: Inclusion: Isoform2 with zero reads and Isoform1 with sufficient reads. All junctions on Isoform2 have no observed
reads and all junctions of Isoform1 have greater than the minimum reads rmin, thus Ψ = 1.

Case 8: Sufficient reads on all junctions. Both Isoform1 and Isoform2 have greater than the minimum reads on all their
junctions. This is the best possible case for alternative splicing.

Case 9: Isoform2 with sufficient reads but Isoform1 has one or more junctions with insufficient reads. If the exclusion iso-
form, Isoform2 has sufficient reads, but the inclusion isoform (Isoform1) does not, then we assess whether the total
read coverage of the event,

∑
i,j ri,jexceeds rthreshold. If so, a Ψ is calculated; if not, Ψ = NA. We define rthreshold as

the number of junctions n times the minimum number of reads rmin. For example, with a minimum read count is 10
on an SE event, rthreshold = 30. For a minimum read count of 10 on an MXE event, rthreshold = 40.

Case 10: Isoform2 has one or more junctions with insufficient reads but Isoform1 has sufficient reads. Similar to Case 9, we
again test if the total read coverage is sufficient to calculate Ψ, i.e. if

∑
i,j ri,j ≥ rthreshold. If so, we calculate Ψ, and if

not, we assign Ψ = NA.

Case 11: Isoform1 and Isoform2 each have both sufficient and insufficient junctions. This case only applies to MXE events
as SE events have as single Isoform2 junction, and cannot have both sufficient and insufficient junctions. If by the
per-junction coverage, it is unclear whether the event has sufficient coverage, then we test if the total coverage of the
event is sufficient. If so, we calculate Ψ, and if not, we assign Ψ = NA.

1.1.1.4.1 Outputs The output of outrigger psi is added into the outrigger output folder by creating a psi folder
for each splice type. psi.csv contains Ψ in a matrix, and the summary.csv produces a summary of all the events observed
in all samples with their junction reads.

To follow up with our outrigger index and outrigger validate commands, we can run the below example command
in the same directory:

outrigger psi

This command adds to the existing output folder outrigger output. Therefore, we don’t need to specify a genome
location or reads or index location if this command is run from the same folder as the outrigger index command was run,
and there exists in the directory a folder called outrigger output.
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outrigger output/

index

gtf

gencode.vM10.annotation.gtf

gencode.vM10.annotation.gtf.db

novel exons.gtf

exon direction junction.csv

mxe

event.bed

events.csv

exon1.bed

exon2.bed

exon3.bed

exon4.bed

intron.bed

splice sites.csv

validated

events.csv

se

event.bed

events.csv

exon1.bed

exon2.bed

exon3.bed

intron.bed

splice sites.csv

validated

events.csv

junctions

metadata.csv

reads.csv

psi. .................................................................................Added by outrigger psi

mxe................................................................................Added by outrigger psi

psi.csv........................................................................Added by outrigger psi

summary.csv ...................................................................Added by outrigger psi

outrigger psi.csv................................................................Added by outrigger psi

se.................................................................................Added by outrigger psi

psi.csv........................................................................Added by outrigger psi

summary.csv ...................................................................Added by outrigger psi

Supplementary Figure 3: Example output of outrigger psi command.

1.1.1.5 Advantages and limitations of outrigger. The main advantages of outrigger are speed and conserved
memory footprint. As outrigger operates only on junction reads, rather than resampling reads from a .bam alignment file,
which can range in size from 500MB to 20GB and results in a high memory footprint, outrigger summarizes each .bam

file to only its junction reads and uses that to estimate Psi/Ψ values. Additionally, employing three steps of outrigger

outrigger is able to maximize the number of potential alternative events and subsequently apply strict validation rules in
the step of outrigger psi calculation to eliminate false positive events from each sample. However, currently, outrigger can
only deal with SE and MXE events. We are in the process of incorporating other alternative splice types.

1.1.2 Comparison to other methods

In comparison to the popular splicing program MISO8, outrigger has three major advantages:

1. Ability to build de novo exon indexes (outrigger index)

2. Flexiblity of junction-based definitions of alternative exons, enumerating all possible flanking exons (outrigger index)

3. Ability to eliminate incompatible alternative events (outrigger psi)

4. Speed of evaluation. Instead of using the huge .bam alignment files directly, outrigger summarizes the files as junction
reads, leading to much faster calculation of percent spliced-in. Once an index is built with outrigger index (24-48
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hours), then calculation of Ψ/Psi takes 2-4 hours, even on hundreds of samples. With MISO, the calculation can take
8 hours per sample.

1.1.2.1 Ability to build de novo exon indexes. MISO provides pre-built alternative splicing indexes, which may not
be incompatible with the data at hand. There is a program, GESS18 to detect alternative exons from .bam files, which can
only handle a handful files at a time and freeze when given hundreds of single-cell .bam files. In contrast, in the outrigger
indexing step, outrigger builds indexes based on provided data, which will be integrated with provided exon annotation
allowing identification of novel exons.

1.1.2.2 Flexiblity of junction-based definitions of alternative exons, enumerating all possible flanking exons.
Multiple possible flanking exons can be associated with an alternative exon, most algorithms, including MISO and rMATS15,
choose a single set (often the shortest one), rather than being flexible and allowing the user to choose the relevant ones. The
resulting “best guess” of the alternative event may not be biologically relavent and may be misleading to interprete. In such
case, computational translation of alternative events, as demonstrated in Figure 4, will not be possible.

1.1.2.3 Ability to eliminate incompatible alternative events Comparing MISO Ψ values side-by-side with a corre-
sponding outrigger psi calculation, we find that 46% of MISO Ψ values are rejected and assigned Ψ = NA by outrigger

(Supplementary Software Figure 1).
A large group of false positives that are correctly rejected by outrigger are Case 1, where only incompatible junctions

present sufficient reads. For example, when twin cassette events are annotated as MXE events and the data indicates inclusion
of both alternative exons, MISO will calculate Ψ as 0.5. Because MISO uses a prior of Ψ = 0.5 and resamples the data to
calculate Ψ. In such a case, MISO is never convinced that Ψ should be towards 1 or 0 and remains at Ψ 0.5 (Supplementary
Software Figure 1A).

The majority of the false positives are Case 4, where only one junction has sufficient reads. As MISO counts both junctions
to calculate Ψ, shown in Supplementary Software Figure 1B-C, many of the events are not covered on both sides of the
alternative exons, which may suggest the events are not true SE events, but rather alternative first exon events, for instance.

We used MISO’s event definitions and found that as many as 50% of MISO events did not pass the stringent rules of
outrigger, primarily due to the incompatibility with the annotation of SE and MXE and insufficient coverage (Supplementary
Software Figure 1J-L).

1.2 anchor: Modality estimation

1.2.1 Algorithm overview

1.2.1.1 Model modalities as beta distributions We define modality as a distinct type of distributions. Since Ψs are
continuous value between (0, 1), distribution of Ψ can be modeled as Beta distribution. The probability density function for
the Beta distribution, Pr(α, β) is defined between (0, 1), with parameters α > 0 and β > 0,

Pr(α, β) ∼ 1

B (α, β)
x(α−1) (1− x)

(β−1)
, (3)

where B (α, β) is the Beta function, defined by α > 0 and β > 0. It may be easier to think about how the α and
β parameters affect distribution by observing the mean and variance Supplementary Software Figure 5A. The beta
distributions can be described by four parameterizations: 1 ≤ α < β, α = β > 1, α > β ≥ 1, α = β < 1 (Supplementary
Software Figure 5B). Conveniently, these four configurations correspond to the four modalities we are interested in:
1 ≤ α < β corresponds to excluded, α = β > 1 to middle, α > β ≥ 1 to included, and α = β < 1 to bimodal (Supplementary
Software Figure 5C). The final multimodal modality corresponds to α = β = 1, which is equivalent to the uniform
distribution used as null model.

1.2.1.2 Model parameterization To describe feature distribution as modalities, we parameterized the four parameter-
izable modalities and used Bayesian model selection to choose the best model to describe the distribution. Python package
scipy11;13 was used to implement Beta distribution. For included (excluded) modality, we fixed β (α) at 1 and linearly
increased α (β) from 2 to 20 (Supplementary Software Figure 5D). We chose 2 as a starting parameter since it is near
the α = β = 1 uniform distribution, as we wanted to allow excluded and included distributions with noise. For bimodal
(middle) modality, we changed α and β simultaneously, monotonically decreasing (increasing) the parameters from α = 1

12 ,
β = 1

12 (α = 2, β = 2) to α = 1
30 , β = 1

30 (α = 20, β = 20). The parameters for bimodal start at 1
12 rather than 1

2 because
starting the parameters from 1

2 resulted in more false positive “bimodal” events, whereas starting the parameters from 1
2

ensures any density near 0.5 is downweighted.
The fit of feature distribution is assessed to the four configurations using Bayes Factors, represented by K,
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K(m) =
P (D|M (m)

1 )

P (D|M0)
(4)

=

∑
i P (α

(m)
i , β

(m)
i |M (m)

i )P (D|α(m)
i , β

(m)
i ,M

(m)
i )∑

P (α0, β0|M0)P (D|α0, β0,M0)
(5)

=

∑
i P (α

(m)
i , β

(m)
i |M (m)

i )P (D|α(m)
i , β

(m)
i ,M

(m)
i )

1
(6)

=
∑
i

P (α
(m)
i , β

(m)
i |M (m)

i )P (D|α(m)
i , β

(m)
i ,M

(m)
i ) (7)

Where M
(m)
i is the model of interest (e.g. M

(bimodal)
i ) and α

(m)
i , β

(m)
i are the corresponding parameters from the pa-

rameterization shown in Supplementary Software Figure 5D. The null model, M0 is the uniform distribution, where
α0 = β0 = 1, and thus P (D|M0) = 1 for all datasets. We use a Bayes Factor cutoff of Kcutoff to indicate the threshold where
the model begins to explain the data reasonably well. In practice we set Kcutoff = 25 (log2Kcutoff = 5).

The excluded and included modalities vary only one parameter at a time, whereas middle and bimodal modalities vary
both α and β simoutanously. Models with more parameters are more likely to fit, thus we fit to the one-parameter models
first, assessing whether K > Kcutoff for either excluded or included. No distribution can fit both excluded and included
modalities, thus it is assigned to the modality with highest K. Next, the distribution is fitted to the two-parameter bimodal
and middle models, checking if K > Kcutoff . If neither modality applies, we assign the modality to multimodal (Figure 2C).

As exact 0 and 1 are not in the range of the Beta distribution, we implement this model selection by adding a small
number (0.001) to 0 and subtracting this small number from 1. Thus, we approximate the data-derived distribution from
the invalid closed interval [0, 1] to the valid open interval of (0, 1).

1.2.2 Simulations

We optimized the algorithm parameters using test datasets and visually inspecting random samples from both the best-
and worst-fitting data and ensuring that the even the worst fitting data was still believably categorized as the modality
(Supplementary Software Figure 6).

1.2.2.1 Dataset 1: “Perfect Modalities” with noise To test the limits of anchor, we simulated perfectly excluded,
middle, included, and bimodal distribution, added uniform random noise with 100 iterations, and estimated modality at
each noise level with iteration (Supplementary Figure 3A). As expected, the most frequently predicted modality was
“multimodal,” since the dataset was created from randomly added noise (Supplementary Figure 3B). The next frequent
modality was bimodal, followed by a tie with excluded and included, and the least frequent one is middle modality. We
found that these parameterizations can accurately predict modality with up to 35% noise added to the middle modality,
50% noise added to excluded and included modalities, and up to 70% noise added to the bimodal modality(Supplementary
Figure 3D). By visual inspection of distributions fit best or worst to each modality (Supplementary Software Fig-
ure 6A), we observed that the bimodal distributions are sufficiently different from other parameterizations, demonstrating
the robustness of the algorithm.

1.2.2.2 Dataset 2: “Maybe Bimodals” with noise To test the proportions of zeros and ones that able to constitute
“bimodal” distribution, we created another dataset comprised 100 samples of varying amounts of 0s and 1s, and adding random
uniform noise (Supplementary Figure 3H). The primary predicted modality was bimodal, then multimodal, and finally
included and excluded (Supplementary Figure 3I). No distribution was predicted as the middle modality, indicating the
bimodal and middle modalities are drastically different with little chance of mis-assignment. The falloff of correctly predicting
bimodality is at adding 70% noise (Supplementary Figure 3K), consistent with the previous simulation with “Perfect
Modalities” dataset (Supplementary Figure 3D). We found that bimodality is determing with a 90:10 (10:90) proportion
of samples of 0:1 (0:1) (Supplementary Figure 3L). Visual inspection of distributions fit best or worst to each modality
confirmed the assignment of each modality(Supplementary Software Figure 6B).

To summarize, simulation with two different datasets indicates that 1) bimodal modality can tolerate to up to 70% of
uniform random noise, and middle modality is least tolerable to noise at only 30%, 2) included and excluded modalities are
drastically different, so as the middle and bimodal modalities, thus the two step modality assignment procedure (Figure 2)
is well-grounded, 3) anchoris able to determine a bimodal modality with up to 90:10 proportion of zeros and ones.

1.2.3 Comparison to other methods

1.2.3.1 Simple binning We can compare this to other methods we attempted, such as fixing bins of [0, 0.3, 0.7, 1] and
using cutoffs for the densities, which does not account for the continuous nature of the underlying distributions. We found the
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modality whose binned distribution was the smallest distance (measured by Jensen-Shannon Divergence2) away from each
binned event. In both the simulated modalities and simulated bimodal datasets, we found a sharp increase in multimodal
distributions and by eye, poorer categorization of the bimodal modality, especially at the decision boundary of low JSD
(Supplementary Figure 3C, E, J, L, P).

1.2.3.2 Bimodality index Another test for bimodality is the Bimodality Index17 (BI), which requires estimating each
feature as a mixture of Gaussian models. We used the implementation of Generalized Mixture Models in scikit-learn14 to
estimate two Gaussian distributions for each model, and calculated the BI. For perfect bimodal featues, the value is large, for
example, we found that for the zero-noise bimodal event, the BI = 402) and was the single bimodality index that was larger
than 100 for any feature (Supplementary Figure 3F, L, P). This shows that our method is more sensitive to finding
bimodal features with the addition of noise, which BI cannot handle.

1.2.3.3 Hartigan’s Dip test A commonly used test for unimodality is Hartigan’s dip test7. If the distribution fails the
unimodality test, then it is considered bimodal. To define a cutoff for when the dip statistic becomes reliable, we calculated
the dip statistic using a Python implementation of the test, called diptest12. We used a p-value cutoff of p < 0.05 as our
threshold for assigning an event as bimodal. We used the diptest statistic on the two datasets, and found that while the
zero-noise bimodal event was not detected as bimodal, adding as small amount of noise improved the diptest’s detection of
bimodal events (Supplementary Figure 3G, M, Q), and the accuracy dropped off at a very high noise level - 90%. As
expected, the excluded, included, and middle modalities weren’t detected as bimodal, except at higher noise levels, which we
also saw with anchor.

1.3 bonvoyage: Transformation of distributions to waypoints and voyages

1.3.1 Algorithm overview

The goal of bonvoyage is to be able to summarize the entire distribution of a feature into a single point in space, enabling
visualization multiple distributions at a time with intuitive interpretation. To accomplish this, we will transform one-
dimensional vectors into two-dimensional space. Specifically, the x-axis will represent the excluded dimension and the y-axis
will represent the included dimension, and all points will be described as a sum of excluded and included components
(Figure 6A, left). For example, for two distinct cell-types, we can imagine a feature that starts at a included modality in
the first and changes to a excluded event in the second, or changes from middle to bimodal (Figure 6A, right).

1.3.1.1 Data discretization We will use a reduced representation of our splicing data by binning each feature on bins
b of size 0.1, where bn represents the nth bin. We represent the binned splicing matrix with BΨ, where BΨ[k, j] represents
the fraction of non-null samples in feature j with Ψ value contained in bk. In practice, we pre-filter the data by using only
features for which there are enough samples. In the main text for this paper, we used a minimum of 10 cells.

1.3.1.2 Dimensionality reduction via non-negative matrix factorization Non-negative matrix factorization (NMF)
is a parts-based dimensionality reduction algorithm which results in meaningful, interpretable results9. It is an alternative
to other dimensionality reduction methods such as principal- and independent- component analyses (PCA and ICA) because
its features are both independent, and non-negative, and thus each feature is composed of a sum of the underlying structure
of the data, without pesky negative terms.

Thus, for NMF, we will be reducing BΨ as such,

BΨ ≈W ×H, (8)

Where W is a (features, 2)-size matrix of the composition of each feature as a sum of how many samples are excluded and
included. We found that in the alternative splicing data, the primary components were the included and excluded values,
but in other datasets, this may not be the case. Thus, as the components of NMF are the most prominent features, to ensure
reproducibility of the axes across datasets, we seeded the NMF transformation with a matrix that is composed of features
that are primarily excluded plus a single included feature (Supplementary Figure 6A). We used the Python package
scikit-learn14 for the Projected Gradient NMF implementation.

We call the projected distributions “waypoint space,” and the distance between two points a “voyage,” such as the voyage
of the MXE event in PKM (Figure 6C).

1.3.2 Simulations

1.3.2.1 Transformation of static distributions To demonstrate the ability of bonvoyage, we created a simulated
dataset which we call “Maybe Everything” consisting of every combination of 0s, 1s, and 0.5s (Supplementary Figure 6A-
D), essentially incorporating both the “Perfect Modalities” (from 1.2.2.1) and “Maybe Bimodals” (from 1.2.2.2) into a single
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dataset. Again, we added uniform random noise at 5% intervals. We transformed the entire simulated dataset into the
“waypoint” space.

To identifying features which change in distribution, we calculate the “voyage” between them in waypoint space. As
a demonstration, we shuffle the simulated data to create two different in silico phenotypes. We will use each feature as a
“waypoint” along the voyage, and calculate total travel distance of each feature between the phenotypes.

A key aspect of the waypoint space is that while changes from exclusion to inclusion are easy to spot by a change in
means, the change from a middle to a bimodal is not, and requires a battery of other tests to find. Here, voyage space has a
significant advantage as it gives both the magnitude of change and a directly interpretable direction.

1.3.3 Comparison to other methods

As there exist many methods for comparing distributions, we will show that the magnitude of change obtained from bonvoyage

is comparable to other metrics for assessing changes in distribution. In particular, we will show the metrics within each
modality, and across modalities, compared to Jensen-Shannon Divergence2 (JSD) in (Supplementary Figure 6E). While
JSD is more sensitive to slight changes in distribution (their scatterplots are skewed towards the right), it does not also
encode directionality of change. Thus, bonvoyage offers a unique perspective on how to interpret changes in distribution.
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2 Supplementary Software Figures

2.1 Supplementary Software Figure 1
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Supplementary Software Figure 1: Examples of inconsistencies in MISO’s estimation with single-cell data.
A-C. Representative examples of SE and MXE AS events measured by MISO, but were unsupported with
visual inspection on IGV browser, and were disqualified by outrigger. To identify SE and MXE events, outrigger
constructs a de novo splicing index based on the junction reads in all libraries in the dataset (see details in Supplementary
Software Figures 2 to 4). The following examples are not considered bys outriggeras true SE or MXE events, therefore
annotated as NA. Note, MISO does not estimate modality for each event, anchor (see details in Supplementary Figure 3)
was used to estimate modality.
A. Top, a MISO-annotated MXE event in ARF4 with MISO estimated Ψs ∼ 0.5 and classified as “middle” modality in each
of iPSC, NPC, and MN by anchor. Yet, in the IGV browser (bottom), this event appears as a twin cassette event, where
both exons 2 and 3 are included, indicating that at least in our dataset this event is not consistent with the MISO annotation.
Outrigger disqulifies this event as a MXE and assign NA (top left).
B. Top, a MISO-annotated SE event in CLF1 with MISO estimated Ψs ranging from 0.1 to 0.6 and is classified as a “middle”
modality event by anchor in each of iPSC, NPC, and MN. Yet, in the IGV browser (bottom), exon 1 for this annotation is
not covered at all. Given the data, outrigger do not consider this as a bona fide SE event and assign NA to this event.
C. Top, a MISO-annotated MXE event in AHSA1 with a wide range of MISO calculated Ψs and is classified as the “multi-
modal” modality in each of iPSCs, NPC, and MN populations by anchor. Bottom, in the IGV browser. Exons 2 and 3 are
the annotated alternative exons for MXE, however, another two well-covered exons between exon 2 and 3 were observed and
one extra exon between exon 3 and 4, which disqualify this event as an MXE event. Furthermore, when both exon 2 and
3 are included, MISO estimated Ψ scores are closer to 1 instead of around 0.5, as was seen in (A.). Thus, outrigger rejects
this as MXE and assign NA.
D. Using outrigger ’s strict rules on MISO annotations, the majority (51%) of the data generated by MISO was rejected by
outrigger (left). Right, using the exact same annotation from MISO, outrigger 22% of events found by outrigger had
too wide of a confidence interval (> 0.4) by MISO.
E. Heatmap comparing the numbers and percentages of alternative events that were within |∆Ψ| < 0.2, switched to exactly
1 or 0 in outrigger, were NA in either MISO or outrigger, or were in another case.
F. Barplot of the number of cases found only in MISO (orange) and rejected as NA by outrigger, and of the cases found
only by outrigger(green) and considered to have too wide of a confidence interval by MISO.
To summarize, outrigger follows strict rules to identify alternative splicing (Supplementary Software Figures 2 to 4)
and provides a Ψ distribution more localized at the extremes of Ψ = 0 and Ψ = 1. Although outrigger may identify fewer
events, they are true SE and MXE events.
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2.2 Supplementary Software Figure 2
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Supplementary Software Figure 2: Internal steps of indexing via outrigger index: Exons identification and
defining alternative events.
A. Internal workings of the indexing step via outrigger index. User-provided inputs junction reads can be either genome-
aligned .bam files, the .SJ.out.tab splice junction files from the STAR aligner, or a compiled table in .csv of all junction
reads from all samples for the project. Step 1, only junction reads with sufficient depth in a cell/sample are retained. By
default, the minimum number of reads is 10 per cell/sample, which can be modified with the flag --min-reads. Step 2,
junction reads are used to identify junction locations, and reads are aggregated across all cells/samples regardless of which
cell/sample it came from. Step 3, if there is a “gap” between two junctions that is smaller than certain length X (by default,
X = 100 nucleotides but can be modified with the flag --max-de-novo-exon-length), then an exon is inserted. Step 4, the
identfied exons are compared with the annotated exons to obtain the pairwise relationships between exons and junctions.
Step 4 outputs a table of “triples:” of (exon, direction, junction) encoding the directional relationship between exons
and junctions. Step 5, the output tables from step 4 are utilized to connect exons through junctions and creates a graph
database. Finally, in Step 6, alternative exons are identified by traversing the graph database. The output of the indexing
step run by the command outrigger index, is junction-based, outputting the alternative exon and all possible configurations
of flanking exons for each event. For example, on the bottom right, the same skipped exon event using the same alternative
junctions, have four possible configurations of flanking exons. They are considered to be the same event, but are reported
with all four configurations for the ease-to-use in downstream analysis.
B. Defining alternative events and comparison of biological interpretability of events found by MISO and outrigger. For a
given alternative exon (black box), there can be multiple transcripts corresponding to the alternative exon but with different
flanking exons. MISO chooses to define the alternative event using the shortest exons on both sides. Yet, this MISO-defined
alternative event may not actually exist as a transcript in the dataset and will be misleading to interpret. For example,
attempts to translate such non-existing transcript(s) will be inappropriate. In contrast, outrigger defines the event based
on the junctions, and outputs all corresponding flanking exon configurations, thus enabling boader use of the outputs and
more relevant biological interpretation.
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2.3 Supplementary Software Figure 3
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Supplementary Software Figure 3: outrigger validation and pathological cases.
A. Validation via outrigger validate: Removal of alternative events with introns lacking consensus splice sites. In this
optional step, exons with flanking introns lacking known splice site motifs are removed. This is configurable. By default,
the valid splice sites are specified as, --valid-splice-sites GT/AG,GC/AG,AT/AC, but can be any pair of two nucleotides.
B. Possible pathological cases of outrigger. These “Franken-events” consist of junctions that were observed in independent
samples. At the indexing step, aggregated reads from multiple cells/samples are considered to construct an index of all
junctions to maximize the number of AS events. Yet, at the Psi/Ψ calculation step, in each individual cell/sample, insufficient
reads may be observed for certain junction resulting in Ψ = NA in some cells/samples for the same event. Top, skipped
exons, if each junction is observed only in one cell, the cell with the exclusion junction is assigned a Ψ = 0 while the remaining
cells are assigned as Ψ = NA. Bottom, mutually exclusive exons, Ψ = NA for all 4 cells, as there is insufficient evidence of
exon inclusion or exclusion in any one cell. Thus, the number of detected events output by outrigger index can greatly
overestimate the number of valid events in the dataset found by outrigger psi.
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2.4 Supplementary Software Figure 4
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Supplementary Software Figure 4: Cases created by percent spliced-in calculation via the command outrigger

psi. The table describes the 11-step sequential logic of outrigger to reject an event in a cell/sample based on that
cell/sample’s junction reads. If an event reaches a Ψ = NA case, then it is rejected from that sample, otherwise, it continues
through the cases. If the event is rejected, then it is assigned Ψ = NA, if it is not rejected, then it gets a 0 ≤ Ψ ≤ 1 value
based on the junction reads.
Strict evalution of percent spliced-in (Psi/Ψ). To compute the percent spliced-in (Psi/Ψ) of skipped exon (SE) and mutually
exclusive exons (MXE) alternative events during the execution of the command outrigger psi, we use Ψ = inclusion reads

total reads .
We represent the number of reads spanning the junction between exoni and exonj as ri,j .
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2.5 Supplementary Software Figure 5
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Supplementary Software Figure 5: Overview of anchor parameterization of the Beta distribution.
A. Top, equation for the Beta distribution of the random variable x with parameters α, β > 0. Bottom left, equation for the
mean (µ) of the Beta distribution as a function of its parameters. Bottom right, equation for the variance (σ2) of the Beta
distribution as a function of parameters.
B. Cartoon of valid values of α and β parameters of Beta distribution, showing how the space is partitioned by the modalities.
C. Violinplots representing the four ideal modalities, plus the null “multimodal” distribution. Each modality is annotated
with examples of four cells representing within-cell distributions of included (dark grey) and excluded (light grey) transcripts,
and the corresponding parameters of the Beta distribution.
D. Violinplots of 1 million random samples of the family of Beta distributions specified by the α and β (x tick labels)
parameterization of the four modalities: excluded, bimodal, included, and middle.
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2.6 Supplementary Software Figure 6
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Supplementary Software Figure 6: Best and worst fitting modality data using anchor.
Left, 10 events with largest Bayes Factor, K (best fit) from the assigned modality. Right, 10 events with smallest Bayes
Factor, K (worst fit) from their assigned modality. For multimodal, as there is no fit, this simply shows 20 random events.
A. Bayesian anchor method on “Perfect modalities” dataset.
B. Bayesian anchor method on “Maybe bimodals” dataset.
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