
Supplemental Methods 
 
 
Methylated CpG Pre-processing 
 
Within each sample, the % methylation at each CpG was calculated using the bisseq pipeline 
(https://pbtech-vc.med.cornell.edu/git/thk2008/bisseq). Filtering by coverage was then 
performed for all samples and controls using a custom python script to select CpGs with 10 – 
400x coverage. We evaluated whether stringent coverage cutoffs would affect the proportion of 
various represented genomic features. While requiring coverage in a higher number of samples 
decreased the overall number of CpGs considered, the relative proportion of gene parts, CpG 
islands, or CpG island shores remained similar. 
 
 
Hierarchical clustering 
 
In order to determine the optimal set of patient clusters based on AML epigenetic variation, we 
chose to cluster using the CpGs that were most variable across the patient samples. We 
evaluated the standard deviation across all samples displayed by each CpG covered in all 
patients (n=950,953). The resulting distribution showed several modes, and we opted to select 
a cutoff that included only the most variable mode, corresponding to the 85th standard deviation 
percentile. Using these CpGs, we then performed a hierarchical clustering using a euclidean 
distance metric and Ward’s method (‘ward.D’ in R). In this clustering, patients with classic 
translocations such as t(8;21) and t(v;11q23) were in close proximity. We then chose a cutoff 
that preserved this clustering and did not group them with neighboring cases not harboring 
these translocations. 
 
 
Annotating CpGs to genomic features 
 
In order to determine which genomic features overlapped a given CpG, the 
ChIPseeqerAnnotate program from the ChIPseeqer package was used (version 2.1). The output 
was reformatted using a set of custom python scripts such that a one-to-many annotation of 
each CpG resulted. For example, a CpG within one gene promoter that overlaps an exon on the 
opposite strand would be annotated twice, once for each feature. For subsequent analyses, 
CpGs associated with more than one feature were prioritized according to the hierarchy: 
promoter > exon > intron > neighborhood > intergenic. For analyses specifically focusing on 
exons or introns, CpGs within the first exon or intron were omitted due to the proximity to the 
promoter. 
 
To annotate CpG islands, ChIPseeqerNongenicAnnotate was used. To annotate CpG island 
shores, active enhancers, and poised enhancers, this program was modified from its original 
format to include these new annotations.  
 
 
Annotation of enhancers 
 
In order to activate active and poised enhancers, we utilized data from the mobilized CD34+ 
cells in the epigenome roadmap. For all samples with H3K4me1, H3K27ac, H3K4me3, and 
input ChIP-seq data (01480, 01536, 01549), we called peaks using ChIPseeqer (version 2.1) 
using the default parameters.  



 
For active enhancers, intersecting H3K4me1 and H3K27ac peaks were identified in each 
sample and combined peaks overlapping H3K4me3 were removed. Peaks overlapping 
promoters (TSS +/- 2kb) were removed as well. The union of these remaining peaks was then 
used as the set of CD34+ active enhancers in subsequent analyses. Poised enhancers were 
identified in a similar fashion, except that regions with H3K27ac peaks were excluded. 
 
 
Predictive ability of genomic features 
 
To evaluate the contribution of each genomic feature to the overall clustering, we re-analyzed 
the samples using only the CpGs contained within various genomic subsets. For each subset of 
CpGs, we clustered again using CpGs above the 85th percentile of variability within the subset. 
To quantify the relative similarity of the subset to overall clustering, we used the adjusted rand 
index. To determine the significance of the subset clustering, the same procedure was 
performed 500 times using the same number of CpGs chosen at random from the set of CpGs 
covered in all samples. The actual subset adjusted rand index was then compared to this 
distribution of rand indices using a z test. 
 
 
Cluster-specific clustering accuracy by genomic feature 
 
The ability of CpGs within each genomic feature was assessed by inspecting the dendrograms 
produced using the various genomic subsets. If a cluster was entirely preserved, the clustering 
was labeled as ‘intact’. If the original cluster was split into two major groups, it was labeled 
‘partial’. If the clustering showed greater perturbation, it was considered to be ‘lost’. 
 
 
Calculating methylation change 
 
In order to determine the methylation change within each cluster, the group of cases in each 
was compared to the 22 CD34+ normal controls using MethylSig with a minimum of 3 CpGs per 
group. CpGs with ≥ 25% change from controls and q ≤ 0.01 were considered to be differentially 
methylated CpGs (DMCs).  
 
 
Methylation changes at genomic features 
 
In order to determine overall methylation changes at various genomic features, CpGs were 
binned across the feature and flanking sequence. In the enhancer analysis shown in Figure 2a, 
CpGs within every active enhancer and the 10kb flanking sequence was considered with the 
directionality determined according to that of the closest gene. CpGs within each active 
enhancer were divided into 10 bins, and the average difference was calculated. CpGs within 
each flank were also divided into 10 bins and averaged. This was done regardless of the active 
enhancer size or CpG coverage within a given enhancer or bin. For features such as a TSS 
which occupies a single point, the two flanks were divided into 15 bins each and each was 
averaged to preserve the overall number of bins considered. 
 
To calculate this difference for DMCs only, the CpGs were pre-filtered to include only those with 
≥ 25% difference from controls and a q-value ≤ 0.01 as determined by MethylSig. 
 



 
DMC enrichment calculation 
 
In order to determine the enrichment of DMCs for a given cluster within a given genomic 
compartment, a two by two table was constructed containing the counts of DMCs within the 
genomic compartment, non DMCs within the compartment, DMCs outside the genomic 
compartment, and non DMCs outside the genomic compartment. A one-tailed Fisher’s exact 
test was used to determine whether DMCs were enriched within the specified genomic 
compartment for the cluster being considered. This was done for all clusters and all genomic 
compartments. 
 
 
IDH2, IDH1/DNMT3A, and DNMT3A methylation analysis 
 
Analysis of IDH2, IDH1/DNMT3A, and DNMT3A cases was done separately from the initial 
clustering. Cases with an IDH1 or IDH2 mutation without DNMT3A mutation, DNMT3A mutation 
without IDH1 or IDH2 mutation, and IDH1 or IDH2 + DNMT3A mutation were identified and 
assigned to separate categories. As with the original clustering, the group with IDH1 or IDH2 
mutation alone was composed almost entirely of IDH2 mutated AMLs. The IDH1 or IDH2 + 
DNMT3A category was likewise composed almost entirely of IDH1 / DNMT3A cases. These 
categories were subsequently described as IDH2 and IDH1 / DNMT3A. DMCs within each of 
these categories was determined as before by comparing them to the 22 CD34+ controls using 
MethylSig with a minimum coverage of 3 CpGs per category required. 
 
In order to determine the average methylation change at DMCs in each of these categories, the 
same approach was taken as before, using a custom script to analyze DMCs within each 
feature divided into 10 bins. The average methylation change within each of these bins for each 
category is shown (Figure 4a). The average methylation change at promoters and active 
enhancers for these categories was performed in the same way as it was for the 14 clusters. 
 
 
Methylation ‘canyon’ analysis 
 
Large relatively hypomethylated canyons were previously described within the mouse genome 
(1). These annotated regions were then mapped to hg19 using the UCSC genome browser 
liftover tool. Of 1104 canyons originally described in the mouse genome, 227 were conserved in 
the human genome. DNA methylation changes at these regions and their flanking sequences 
were analyzed as previously described by dividing the regions and their flanking sequences into 
10 bins each and averaging the methylation change in each bin (Figure 4a-d). 
 
 
Gene expression analysis 
 
Gene expression analysis was performed using affymetrix hgu133 plus 2 arrays as previously 
described. Probes were assigned to genes according to the brainarray annotation for affymetrix 
hgu 133 plus 2 arrays. Normalization was performed using RMA, and differential expression 
relative to CD34+ normal bone marrow controls was assessed using the limma package. In 
analyses of differential expression, genes with q ≤ 0.05 and a fold change ≥ 1.5 were 
considered to be significant. Probe sets mapping to the same gene symbol were averaged prior 
to plotting. 
 



Assessment of the ability of specific genetic lesions to predict epigenetic clustering 

 
To determine the ability of specific genetic lesions to predict epigenetic clustering, a multinomial 
logistic regression model was built using epigenetic categories as the output and specific 
lesions as the inputs. A base model was built using only the classical cytogenetic lesions 
t(8;21), inv(16), t(v;11q23), t(15;17). To this model, every single genetic lesion and pair of 
genetic lesions was added. The goodness of fit of each model was measured using the Akaike 
Information Criterion (AIC) (2) and compared to the base model using the formula 
exp((AICtranslocation – AICmutation+translocation)/2), which was then plotted as a heatmap (Figure S1a). 
 
Using this approach, CEBPA double mutation, NPM1 mutation, DNMT3A mutation, CEBPA 
silencing, and IDH2 mutation were identified as strong contributors to the determination of 
epigenetic cluster identity. These lesions were then added to the base model, and the same 
analysis was performed (Figure S1b). 
 
 
DMC enrichment 
 
To determine which genomic compartments showed specific differential methylation, we 
constructed a 2 x 2 matrix of each compartment with rows containing counts of differentially and 
non-differentially methylated CpGs, and columns identifying CpGs inside and outside of the 
compartment of interest. Significance was assessed using a one-sided Fisher’s Exact Test, and 
then corrected using the Benjamini-Yekutieli approach (3).  
 
To determine enrichment of differential methylation within enhancers in each relevant genomic 
compartment, an analogous approach was taken. Enhancers were defined as described in the 
main text using ChIP-seq data from mobilized CD34+ cells from the epigenome roadmap (4). 2 
x 2 matrices were constructed with rows containing counts of differentially and non-differentially 
methylated CpGs and columns containing enhancer CpGs within the region of interest or CpGs 
outside. Significance testing and correction for multiple testing was performed as before. 
 
Heatmaps of both these analyses are shown in Figure 4, with a color scale that starts at a 
significance level of q > 0.05. 
 
 
Gene Set Analysis of IDH2, DNMT3A, and IDH1/DNMT3A categories 
 
IDH2, DNMT3A, and IDH1/DNMT3A categories were defined as above. Differential expression 
was also determined as above. When multiple probe sets mapped to a single gene symbol, their 
differential expression was averaged. To determine the gene sets perturbed in each of these 
categories, average differential expression values were analyzed using Gene Set Enrichment 
Analysis using a pre-ranked gene list approach and default parameters.  
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SUPPLEMENTARY FIGURE LEGENDS 
 
Figure S1: Ability of specific genomic lesions to predict epigenetic clustering. A: Specific 

lesions adjusted for translocation status. A multinomial logistic regression was built to assess 

the ability of specific genetic lesions to predict epigenetic clustering. A baseline model was built 

using t(8;21), inv(16), t(15;17), and t(v;11q23) status. All possible individual and pairs of 

assayed lesions were then added to this model, and the relative likelihood of improvement in the 

model’s goodness of fit as assessed by the Akaike Information Criterion (AIC) was assessed 

and plotted as a 2-dimensional heatmap. Individual mutations are shown on the diagonal, and 

pairs are shown on the off-diagonal tiles. The scale ranges from worsened -> improved 

predictive ability, with red showing worsened predictive ability, black with minimal change, and 

green showing improved predictive ability. As shown here, only a minority of lesions improve the 

predictive ability of the translocation data. B: Comparable analysis to that shown in (A), now 

with CEBPA-dm, NPM1, DNMT3A, CEBPA-silenced, and IDH2 added to the base model. As 

shown here, no additional mutation or pair of mutations improved the predictive ability of the 

model. 

 

Figure S2: ERRBS coverage. A: Gene parts. Pie chart representation of ERRBS coverage of 

CpGs within and around genes. B: CG dense regions. Pie chart representation of ERRBS 

coverage of CpGs within and around CpG islands. C: Bar plot representation of percentages 

captured for each of the specified genomic features interrogated by ERRBS in this cohort. D: 
Enhancers. Bar plot representing the genomic distribution of ERRBS coverage within active and 

poised enhancers. 

 
Figure S3: Differential methylation at promoters and active enhancers. A: Overall 

methylation change including both DMCs and non-DMCs shows relative enrichment at active 

enhancers. B: Differential methylation (DMCs only) is enriched at active enhancers. C: Overall 

methylation change including both DMCs and non-DMCs shows relative restriction at 

promoters. D: Differential methylation (DMCs only) shows relative restriction at promoters. 

 

Figure S4: DMC distribution. A: Average raw methylation at active enhancers. B: Average 

raw methylation at promoters. C: Differentially methylated CpGs as a percentage of all CpGs 

covered by ERRBS is compared across clusters. D: Total differentially methylated CpG counts 

are compared to total ERRBS coverage. 
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Figure S5: Transcription factor binding site analysis at differentially methylated active 
enhancers in IDH2, DNMT3A, and IDH1/DNMT3A AMLs. A: De-novo CG containing motifs 

enriched in differentially methylated active enhancers in the IDH2 AML cohort. B: De-novo CG 

containing motifs enriched within differentially methylated active enhancers in the DNMT3A AML 

cohort. C: De-novo CG containing motifs enriched within differentially methylated active 

enhancers in the IDH1/DNMT3A AML cohort. D: Raw log2 expression levels of transcription 

factors corresponding to de-novo discovered motifs within active enhancers. E: Analysis of 

transcription factor binding sites within differentially methylated active enhancers using ChIP-

seq based transcription factor binding sites rather than motif-based discovery. Enrichments are 

plotted using –log10(pval) assessed using Fisher’s exact test. Only results with p < 0.01 in at 

least one of the cohorts are shown. 
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SUPPLEMENTARY TABLE LEGENDS 

 

Supplementary Table 1: Detailed information including ERRBS cluster identity, HELP cluster 
identity, cytogenetics, molecular profile, and limited profile of mutations and genetic 
perturbations. 
 

 

Supplementary Table 2: Extended high throughput mutation profiling. 

 

Supplementary Table 3: DMC identity and annotation for all clusters. 

 

Supplementary Table 4: DMC identity and annotation for IDH2, DNMT3A, and IDH1/DNMT3A 

cohorts.  
Supplementary Table 5: DMC identity and annotation for Idh2, Dnmt3a, and Idh2/Dnmt3a 
murine models. 












	mets
	figlegs
	sfigs

