Kaiso protects human umbilical vein endothelial cell against apoptosis by differentially regulating the expressions of B-cell CLL/lymphoma 2 family members

Xiaodong Xue¹, Jian Zhang¹, Huai Lan¹, Yinli Xu¹ and Huishan Wang^{1*}

¹Department of Cardiovascular Surgery, General Hospital of Shenyang Military Area Command,

No.83, Wenhua Road, Shenhe District, Shenyang City, Liaoning, China 110016

*Corresponding author: huishanw@126.com

Supplementary Tables

Gene name	Oligo name	Sequence (5'-3')	
Kaiso	sense	CAGGGCAGTTATTAGGAGTGAAA	
	antisense	CAGAATCAGGAGGTAAAGGCTCA	
120 /	sense	TTCAGGCTGAGATTGGGCAG	
p120ctn	antisense	AGAACCACTCATCTTTGCCCT	
DIV	sense	ACGACCAGACTGAGGACATCA	
BIK	antisense	CACCTGTTCGCAGGACACC	
DAV	sense	AGAGGTCTTTTTCCGAGTGGC	
BAX	antisense	TGATGGTTCTGATCAGTTCCG	
BCL2	sense	TCGTTGCCTTATGCATTTGTT	
	antisense	ACTTGATTCTGGTGTTTCCCC	
ACTB	sense	TCCTTCCTGGGCATGGAGT	
	antisense	CAGGAGGAGCAATGATCTTGAT	
GAPDH	sense	GGGTGTGAACCATGAGAAGTATG	
	antisense	GATGGCATGGACTGTGGTCAT	

Supplementary Table S1: Primers used in quantitative real-time PCR

Supplementary Table S2: Primers used in CHIP

Gene name	Primer pair	Oligo name	Sequence (5'-3')
BCL2	1	F(-3902):	GTTTCCTTCTGGCTGCCCCC
	1	R(3601):	GATCCTCCTTCTTGCCCTTC
	2	F(-3602):	GAAGGGCAAGAAGGAGGATC

		R(-3301):	CCAGAAAAGCACACCAAATT
		F(-3302):	AATTTGGTGTGCTTTTCTGG
	3	R(-3001):	GTGTGCAGTGGTGCGATCTC
		F(-3001):	GAGATCGCACCACTGCACAC
	4	R(-2700):	AAGCAGACAGTTTTAAATTA
		F(-2701):	TAATTTAAAACTGTCTGCTT
	5	R(-2400):	CCTAGTCCGTGGCCCAGGCC
		F(-2401):	GGCCTGGGCCACGGACTAGG
	6	R(-2100):	TGGGAGTGTGTGTGTCGCCT
		F(-2101):	AGGCGACACACACACTCCCA
		R(-1800):	GCGGCGCGGTGGGTGTGCGC
	0	F(-1801):	GCGCACACCCACCGCGCCGC
	8	R(-1500):	CTTACTTCATTCTCTGCACA
		F(-1501):	TGTGCAGAGAATGAAGTAAG
	9	R(-1200):	GCACCCCACCGGCGCACCCC
	10	F(-1201):	GGGGTGCGCCGGTGGGGTGC
	10	R(-900):	CGCTTCACGCCTCCCCAGGA
	11	F(-901):	TCCTGGGGAGGCGTGAAGCG
		R(-600):	CTCTCCAGTTATAGCTGATT
	10	F(-601):	AATCAGCTATAACTGGAGAG
	12	R(-300):	AAAACAAACTAATAAGTAAA
	12	F(-301):	TTTACTTATTAGTTTGTTTT
	13	R(-1):	GAGGAAAGGAGGAAAGTAAC
	1	F(-971)	CCTGCTGATCTATCAGCACA
	1	R(-644)	GTGCAGTGGCCCAATCATGG
DAV	2	F(-645)	CCATGATTGGGCCACTGCAC
ВАА		R(-317)	AGCTCTCCCCAGCGCAGAAG
	3	F(-316)	CTTCTGCGCTGGGGAGAGCT
		R(-1)	ACCGCCGCTCCCGCCGCCGC
	1	F(-3001)	AAAATTAGCCGGGTGTGGTG
		R(-2700)	TTCAAGCTCCCCACCCTGCC
	2	F(-2701)	GGCAGGGTGGGGAGCTTGAA
	2	R(-2400)	GCTTTGTGCTCCTGGAGACC
	2	F(-2401)	GGTCTCCAGGAGCACAAAGC
	3	R(-2100)	CCCGCCTCTAATAAAAATAC
DIV	4	F(-2101)	GTATTTTTATTAGAGGCGGG
BIK		R(-1800)	GTTTGTTCACACAGGACACT
	5	F(-1801)	AGTGTCCTGTGTGAACAAAC
		R(-1500)	AAATCTAATGGCCTAGTTCA
	6	F(-1501)	TGAACTAGGCCATTAGATTT
	6	R(-1200)	CAGAGTGGGGAGGCAGAGAG
	7	F(-1201)	CTCTCTGCCTCCCACTCTG
		R(-900)	TCACCCCATACAGTGTCTTA

	0	F(-901)	TAAGACACTGTATGGGGTGA
	8	R(-600)	AAGTTCTCCTCGGACACCAG
	9	F(-601)	CTGGTGTCCGAGGAGAACTT
		R(-300)	TGGAGGGCAGTGGCACAATC
	10	F(-301)	GATTGTGCCACTGCCCTCCA
		R(-1)	TTCTCCTCTGGGGGCAAAAAG

Supplementary Table S3: Primers used in MSP

Gene name	Primer pair	Oligo name	Sequence (5'-3')
	1	F(M)(-635)	TTTTAGTTTGGGTAATATAGTGAG
		R(M)(-516)	ATTACAAACATAAACTACCGCGC
		F(U)(-635)	TTTTAGTTTGGGTAATATAGTGAG
		R(U)(-516)	ATTACAAACATAAACTACCACAC
	2	F(M)(-532)	TAGTTTATGTTTGTAATTTTAGCGT
DAV		R(M)(-428)	TAAATCTAACAATATAACCCACGCC
ВАХ		F(U)(-532)	GTAGTTTATGTTTGTAATTTTAGTGT
		R(U)(-428)	TAAATCTAACAATATAACCCACACC
	3	F(M)(-404)	TTTAGTTTTTAGTTATTTATAACGTT
		R(M)(-302)	ATTTAAACTCTCCCCAACGCA
		F(U)(-404)	TTTAGTTTTTAGTTATTTATAACATT
		R(U)(-302)	ATTTAAACTCTCCCCAACACA

M:methylated, U: unmethylated

Supplementary Table S4: Primers for genomic DNA amplification in luciferase reporter assay

Gene name	Oligo name	Sequence (5'-3')
BCL2	F(MluI)	GAT <u>ACGCGT</u> GCTTCTAGCGCTCGGCACCG
	R(SmaI)	GAT <u>CCCGGG</u> TGAGGAAAGGAGGAAAGTAA
BAX	F(KpnI)	GAT <u>GGTACC</u> CCTGCTGATCTATCAGCACA
	R(XhoI)	GAT <u>CTCGAG</u> ACGTGAGAGCCCCGCTGAAC
BIK	F(MluI)	GAT <u>ACGCGT</u> GGTCAGCCACTGCAGCTCCA
	R(XhoI)	GAT <u>CTCGAG</u> TCTGGGGCAAAAAGACAGCA

Underlined: inserted restrictive endonuclease recognition sites

Supplementary Table S5: Site-directed mutations in luciferase reporter assay

Gana nama	Promoter position	Site mutation $(5, 3)$	Sequence similarity to
Gene name	r tomoter position	She mutation (5 - 5)	5'-TCCTGCNA-3'

BCL2	-1040 \sim -1033	TCC <u>TG</u> CCT → TCC <u>AA</u> CCT	87.5%→ 62.5%
	-970 \sim -963	TCC <u>TG</u> CCT → TCC <u>AA</u> CCT	87.5%→ 62.5%
	-728 ~ -721	TCC <u>TG</u> CGG → TCC <u>AA</u> CGG	87.5%→ 62.5%
	-193 ~ -186	TCC <u>TG</u> CAT → TCC <u>AA</u> CAT	87.5%→ 62.5%
BAX	-389 \sim -382	TCC <u>TG</u> CCT → TCC <u>AA</u> CCT	87.5%→ 62.5%
BIK	-1070 \sim -1063	AG <u>CT</u> GCAA → AG <u>AG</u> GCAA	$75\% \rightarrow 50\%$
	-695 \sim -688	C <u>CC</u> TGCAG → C <u>GA</u> TGCAG	$75\% \rightarrow 50\%$
	-390 \sim -383	C <u>CC</u> AGCTA → C <u>GA</u> AGCTA	$75\% \rightarrow 50\%$
	-75 \sim -68	TCC <u>TG</u> TGA → TCC <u>AA</u> TGA	$87.5\% \rightarrow 62.5\%$
	$-36 \sim -29$	T <u>CC</u> AGTCA → T <u>GA</u> AGTCA	$75\% \rightarrow 50\%$

Underlined: mutated nucleotides

Gene name	Oligo name	Sequence (5'-3')	
	F(3709-WT)	AAATTTCCTGCATCTCATGC	
DCI 2	R(3709-WT)	GCATGAGATGCAGGAAATTT	
DCL2	F(3709-MU)	AAATTTCC <u>AA</u> CATCTCATGC	
	R(3709-MU)	GCATGAGATG <u>TT</u> GGAAATTT	
	F(585-WT)	TAGGGGTCCAGTCATATGCT	
DAV	R(585-WT)	AGCATATGACTGGACCCCTA	
DAA	F(585-MU)	ATAACGTCCTGCCTGGAAGC	
	R(585-MU)	GCTTCCAGGCAGGACGTTAT	
	F(-75-WT)	GGGTCATCCTGTGAGAGAGC	
	R(-75-WT)	GCTCTCTCACAGGATGACCC	
	F(-75-MU)	GGGTCATCC <u>AA</u> TGAGAGAGC	
ВІК	R(-75-MU)	GCTCTCTCA <u>TT</u> GGATGACCC	
	F(-36-WT)	TAGGGGTCCAGTCATATGCT	
	R(-36-WT)	AGCATATGACTGGACCCCTA	
	F(-36-MU)	TAGGGGT <u>GA</u> AGTCATATGCT	
	R(-36-MU)	AGCATATGACT <u>TC</u> ACCCCTA	

Supplementary Table S6: Probes used in EMSA

Underlined: mutated nucleotides

Supplementary Figures

Supplementary Figure S1: Nuclear and cytoplasmic expression of Kaiso in H₂O₂ treated HMEC-1.

Nuclear and cytoplasmic extracts were separately prepared from HMEC-1 treated or untreated with 400μ M H₂O₂ for 2 hours. The nuclear and cytoplasmic expressions of Kaiso were detected by Western blot. GAPDH served as a cytoplasmic marker and a loading control. Histone H3 served as a nuclear marker and a loading control. Values were presented as mean \pm SD, * p<0.01, n = 3

Supplementary Figure S2: Selective silencing of Kaiso in endothelial cells.

HUVEC (A) and HMEC-1 (B) were transfected with NC-siRNA or Kaiso-siRNA2 and silencing efficiency was evaluated by quantitative real-time PCR at 48, 60 or 72 hours post transfection. Values were presented as mean \pm SD, * p<0.01, compared with blank, n = 3.

Supplementary Figure S3: Expression of BCL2 in Kaiso knock-down HUVEC.

HUVEC were transfected with NC-siRNA or Kaiso-siRNA2 and were cultured at 37°C for 48 hours. The expression of BCL2 was evaluated by western blot analysis. Tubulin served as a loading control. Values were presented as mean \pm SD, * p<0.01, compared with blank, n = 3.

Supplementary Figure S4: Kaiso-mediated inhibition of Caspase-3 activation was compromised by BCL2 knock down.

HUVEC were cotransfected with pCDNA3.1-Kaiso and BCL2 siRNA.48 hours later, the cells were

treated with 400 μ M H₂O₂ for another 8 hours. The expressions of Kaiso, BCL2 and cleaved-Caspase3 were detected by Western blot. Tubulin served as a loading control. Values were presented as mean \pm SD, * p<0.01, n = 3.

Supplementary Figure S5: Detection of ^mCpG in Kaiso binding region of the BAX promoter. Methylated cytosines were detected by methylation specific PCR (MSP) in HUVEC and HMEC-1 treated or untreated with 5-azacytidine for 72 hours. The PCR products were resolved in 3% agarose gel (lower). Three primer sets were used as shown in the upper panel (primers were listed in the Supplementary Table S3). CpGs detected were numbered and the KBS was underlined (upper). At least, four CpGs (-510, -450, -382, -320) around the KBS were methylated and all of which were demethylated after 5-azacytidine treatment. M: methylated primer pairs; U: unmethylated primer pairs.